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same tolerance to disturbances and uncertain elements inserted at this 
point. While point X is clearly  a  physically important one (more 
important than point X X, certainly),  engineers  who  may wish to test 
robustness at still other points in the control loop should recognize that 
the recovery  results  may not be applicable there. If such other points are 
judged more important than X, a  slight  generalization of the adjustment 
procedure may be used to ensure  margin  recovery, as outlined in 
Appendix A. 

The suggested adjustment procedure is essentially the dual of a  sensi- 
tivity  recovery  method  suggested  by  Kwakenaak [7]. The latter provides 
a method for selecting the weights in the quadratic performance  index so 
that full-state  sensitivity properties are achieved  asymptotically as the 
control weight  goes to zero. In this case, however,  closed-loop plant 
poles instead of observer poles are driven to the system  zeros,  which can 
result in unacceptable  closed-loop transfer function matrices for the final 
system. 

APPENDIX A 
DERIVATION OF PROPERTY 3 

Referring to Fig. ](a), the transfer functions from control signal U" to 
states x (with  loop  broken at point X)  are given  by 

x = @Bu" (A.  1) 

where @=(sZ- A)- I .  The corresponding transfer functions from U" to i 
in Fig. I@) are 

i = ( O - ' + K C ) - l ( B l r ' + K c @ B u ~ ~ )  (-4.2) 

=[O-@K(z+C@,K)-'CO](BU'+KC~Bu") 

=@[B(C@.B)-'-K(Z+CQK)-']C~Bu' 

+@[K(Z+ C@K)- ' ]C@Bu".  (-4.3) 

We  now note that (A.3) is identical to (-4.1) if (1) is  satisfied.  Hence, all 
control signals  based on i in Fig. I@) (e.g., I'= - H 1 H 2 i )  will have 
identical loop transfer functions as the corresponding controls based on 
x in Fig. l(a) (i.e., I('= - HIH2x).  This completes the derivation. 

We  close  with the final observation that the equivalence of (A.l) and 
(A.3)  is a  property  which can be  achieved for other loop breaking points 
in the plant instead of point X. Consider an arbitrary point Y with 
variables v(dim(v)= m), and let v" denote inputs at point Y with the 
loop broken at Y. Then a full state implementation  has the transfer 
functions 

x=@,'(Bu+Fv") (A.4) 

where @I is the transfer matrix (sZ-A')-', modified from O by the 
broken loops. F is the control input matrix for point Y. The correspond- 
ing observer-based  implementation has the transfer functions 

i=[(@')-l+KC]-'[Bu+Fv^+KC@'(Bu+Fv")]. (A.5) 

Following  steps  analogous to (A.Z)-(A.3), this reduces to 

i = O'Bu 

+~' [F(c@F'F) - ' -K(z+cO. 'K) - ' ]COP'F;  

+@I[ K(Z+ c@.'K)-']c@'Fv". (-4.6) 

We again note that (A.6)  is identical to (A.4) if the following  modified 
statement of (1) is satisfied: 

K(z+C@'K)-'=F(c@'F)-'. (-4.7) 

Hence, all loop transfer functions based in x in the observer-based 
implementation will be identical to loop transfer functions based on x in 
the full-state  implementation.  Like (2), (A.7) can be satisfied  asymptoti- 

cally  by  a  "fictitious  noise" adjustment procedure 
loop system 

.i = A 'x + Fv" 
y = c x  

is controllable,  observable, and minimum phase. 
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whenever the broken 

Note,  however, that 
asymptotic  satisfaction of  (A.7) will generally  preclude satisfaction of  (1). 
Hence, we can recover  margins at point X or point Y but not at both 
points simdtaneously. 
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Some Relations Satisfied by Prime Polynomial 
Matrices and Their Role in Linear Multivariable 

System Theory 

P. J. ANTSAKLIS, MEMBER, IEEE 

A b s m - A  number of relations which am satisfied by prime poly- 
nomial matrices are derived aml then used to study the polynomial mahix 
equation BG, + G2A = V and to parametrically characterize the dass of 
stabilizing output feedback cympemators. 

I. INTRODUCTION 

The concept of right  (left)  primeness of two polynomial  matrices,  a 
generalization of the primeness of two polynomials, is one of the most 
important concepts of linear multivariable  system  theory  because it is 
directly  related  to  the concepts of controllability and observability [8], 
[ 111. It is known that to any two minimal dual factorizations B,(s)A ; '(s) 
and A - '(s)B(s) of a transfer matrix T(s), Le., T= BIA = A  - 'B, corre- 
spond four polynomial  matrices X,@), Yl(s), X(s), and Y(s), which 
satisfy X,A,+Y,B,=Z and A X + B Y = Z  [8], [Ill. When  these (non- 
unique)  matrices are being used in the literature, they are usually 
supposed to have been  derived  independently,  by  some  process, and they 
do not satisfy  any other relations than the above. If X,, Y,, X, and Y are 
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derived  using  a  certain  procedure, discussed in this paper,  a  number of 
additional useful  relations are satisfied  without any loss of generality. 

In this paper, assuming  first that A ,  and B ,  are given, it is shown how 
the matrices X, ,   Y , ,   A ,   B ,   X ,  and Y can be found to satisfy  certain 
relations. The applicability of these  results  is  then  extended by  showing 
how to modify  the above matrices, if it is assumed that they are all given, 
to make  them satisfy the same  relations. The above  analysis is then 
applied to three  problems of multivariable  system  theory.  The  first  two 
deal with the regulator  problem with internal stability (RF'IS); in particu- 
lar, a shorter proof  of a known result [5]  is  given and some  new results 
are derived  involving the polynomial  matrix equation BG, + G,A = V [4], 
[ S I .  In Problem 3, the  class of all stabilizing output feedback  compensa- 
tors is parametrically  characterized and the relation  between this and 
some earlier research [13],  [3], [ I S ]  is pointed out. 

11. PRELIMINARIES 

The following  properties of polynomial  matrices are presented  here for 

1) The following statements are equivalent [ 1 I], [ S I ,  [2] .  
convenience. 

a) U(s) is a  unimodular  polynomial  matrix. 
b) U-'(s)  exists and it is a  polynomial  matrix. 
c) I U(s)l= k is  a  nonzero  real number, where 1 . 1  denotes the  de- 

Assume that A&) and B,(s) are two polynomial  matrices of dimen- 

2) The following statements are equivalent [ I l l ,  [ S I ,  [2], [3] .  

terminant. 

sions r X m and p X m, respectively. 

a) A , , B ,  are relatively right prime (rrp). 

c) There exists  a &odulardmatrix U(s) such that 

d) There exists X&), Y l ( s )  such that 

X I ( ~ ) A I ( ~ ) +   Y I ( ~ ) B I ( s ) = I .  

e) The invariant polynomials of [::::;I are all unity. 

f )  Rank [ ] = m for all s in the  field of complex  numbers. 

Note that f) implies p + r > m, i.e., p + r z m is a  necessary  condition 

In view  now of IC) and 2f) the following  is  clear. 

3) If U(s)= [ :], where U(s) is unimodular,  then A , ,   B ,  are 

for the  primeness of A ,  and B,   [2] .  

BI(4  
rrp. Note that X's are appropriate polynomial  matrices. 

4) [ - B(s),   A(s)]  is  a basis of the  left  kernel of [ 4 if 
[ - B ( s ) , A ( s ) ] [  : : l f ; ] = O  and  rank [ - B ( s ) , A ( s ) ] = p + r -  

rank[ ::I::]. If  in addition B(s),   A(s) are relatively  left  prime  (rlp),  it  is 

aprime basis [6], [ I O ] ,  [14], [3] .  
Finally, note that (P, Q, R, W) stands for Pz = Qu, y = Rr + Wu, which 

is a  differential operator representation of a  system  with input u, output 
y, and "partial" state z [ 1 I]; observe that T =  RP -'Q + W is the  transfer 
matrix of this system. The argument s will be omitted  in the following 
for simplicity. Ik represents  the k X k identity matrix. 

111. h h m  RESULTS 

Let A , ,   B ,  be  two  relatively  right  prime (rrp) [ I l l  polynomial  matrices 
of dimensions r X m, p X m, respectively. Then there  exists  a  unimodular 
matrix U such that 

The matrix U can be  written as 

where X , ,  Y,, B, A are polynomial  matrices of dimensions m X r, m xp,  
q X r ,  q xp,  respectively,  with q + m = p  + r (U is  a square matrix).  Since 
U is unimodular, B and A are relatively  left  prime  (rlp)  polynomial 

matrices;  furthermore, [ - B,A]  =O. Therefore, [ - B,A]  is  a  prime 

basis of the  left  kernel of . It should also be  noted that when r = m 

and IA,I#O, which  is normally  the case in linear  system  theory, [AI= 
IUllA,l' and B , A ; ' = A - ' B  represent dual prime factorizations of a 
transfer m a t r i x .  

[".:I 
[ 4 

The (unique)  inverse of U is 

where A , ,  B ,  are the given  matrices and X ,  Y are  appropriatep X q, r X q 
polynomial  matrices. If  now the identities UU-' = I and U -'U= I are 
written  explicitly in terms of the submatrices of U and U - l ,  the 
following  relations are derived: 

U U - ' = I :  X,A,+   Y ,B,==I , , ,  U - ' U = I :  A , X , + Y B = I ,  
- X , Y +   Y , X = O m x q  A , Y , -   Y A = O r x p  
- BA,   +AB,  =Oq,, B , X , - X B = O p x ,  

B Y + A X = I q  B ,   Y ,  + XA = Ip. 

(4) 

Remark: Relations (4) are important in al l  problems  which  involve 
prime  polynomial  matrices,  because  they  provide  a  tool to simplify 
expressions and prove  propositions in a  way  simple  enough to offer 
insight to the  underlying  difficulties. Their usefulness, although not yet 
fully  explored, will become apparent during the  study of a number of 
problems  (Problems 1-3). It should also be  mentioned that in view of the 
fact that the controllability and observability of a  time-invariant  linear 
system  correspond to the primeness of polynomial  matrices, if the 
differential operator representation is  used [ S I ,  [ I  I], the importance of (4) 
in the study of linear  system  theory  is  intuitively  clear. 

The above procedure can be summarized as follows:  given  a  pair of 
rrp polynomial  matrices (A, ,B, ) ,  a unimodular matrix U is found which 
satisfies (1) (using, for example,  the  algorithm to reduce  a  matrix to 
upper  triangular form [ I I D  and its submatrices X , ,   Y , ,   B ,  A are ap- 
propriately  defined as in (2); the inverse U-' is then  taken and the 
matrices X and Y are found by (3). Clearly, if the rlp matrices B and A 
are given instead of A ,  and B,,  similar (dual) results can be easily 
derived. 

It is important to notice that the process  described by relations  (1)-(4) 
is not restricted to the case when the given  matri-xs p , ,  B ,  are rrp. In 
particular,  assume that two polynomial matrices A, ,  B ,  are given  which 
are not rrp but  they  have  a  greatest common right  divisor (gad) GR (GR 
is not unimodular). Then [ I l l  there  exists  a  unimodular matrix fi such 
that 

same  procedure is applied.  Namely, fi(s) is found to satisfy (5) apd the 
relations  (4)-are  derived, yhich now invplve X , ,   Y , ,  B, A (from U) and 
x ,  Y, A , = A , G , - ] ,  B , = B , G , - ~  (from u-'). 

'This can be seea by taking the determinants of U [ ' ; ] = [ A ; '  :'I [3]. 
B I A  i 
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The  procedure can be directly applied to the case  when rrp and rlp 
factorizations of a  given transfer matrix are desired (realization theory 
using  differential operator representation approach). In particular, given 
a p x m  transfer matrix T(s), polynomial  matrices A_, ,and B,, not 
necessarily rrp, can be easily found such that T= B,A; (see [l 1, 
Sawtion 5.4D. If now a unimodular matrix U satisfying (5) is found and 
U is also evaluated, in view of the above, T= B,A ; = A  - ‘B where 
B,, A ,  are rrp and A ,  B are rlp polynomial  matrices. Furthermore, (4) is 
also satisfied. 

The following  theorem deals with solutions of equations which  involve 
polynomial  matrices. 

Theorem I :  Assume that [G,,GJ is a  solution of the equation 

[ G l , 4 ] [  i:] = V where A , ,  B ,  are rrp and Vis a  polynomial  matrix. 

Then the general  solution [GI, CZ] is 

A 

[ C t , C , ] = [ G , , G J + W [ - B , A l   ( 6 )  

where [ - B,A] is a  prime  basis of the left kernel of [ and Wisany 

polynomial ma& 
Proof: Clearly, (6) is  a solution for any W. Furthermore, the  dif- 

ference of any two solutions is in the left  kernel of [ and wnse 

quently it can be written as W [  - B,A]  with W an appropriate poly- 
nomial matrix,  since [- B,A]  is  a prime basis [6] ,  [IO]. Q.E.D. 

Remurk: 1)  If [G,,GZ]= VX,, Y , ]  where [X,, Y,]   =Z,  ( 6 )  be- [ ::] 
comes 

[ G,,G2] = Y [ X , ,  Y , ] +  W [  - &A].  (7) 

2) The equation [G,,G,] = Q, where  a  gcrd of 2, and i, is GR, 

has a  solution iff iG< I is  a  polynomial  matrix. If a solution exists, then 

[6,,6,]= ?G;IIX1,YI]+W[-B,A]  (8) 

[:;I 

polynomial mailk’ 
3) Similar results to (6), (3, and (8) can be derived for A H ,  + BH, = 

V 
I .  

Coroflmy I :  The general  solution of [X,, Y , ]  

where [ X , ,   Y , ]  is a particular solution, [ - B,A]  is a  prime  basis of the  left 

kernel of [ :: 1, and W ,  is any polynomial  matrix.  Similarly, 

is the general  solution of [ & A ] [  l] = Z  [6]. 

then (4) is also  satisfied by 
Corofhy  2: If X,, Y , ,  X, Y ,  A , ,  B, ,  A ,  B are derived  using (1)-(3), 

[ z,, F,] = [X,, Y,1+ S[ - B,AI 

where S is any polynomial ‘patrix. - 

unimodular matrix satisfying (1) for any S. Its unique inverse  gives 

of (9). Q.E.D. 
Before stating and proving  Theorem 2 the  following  lemma  is in order. 

Lemma 1: Let X , A ,  + Y , B ,  = Z and [ - & A ]  

U A 1 y1 1 is  unimodular iff B and A are rlp. 
- B  A 

Froof: If U iiAunim,dular, then B and A are rlp (see Preliminaries). 

Now  let fi= [ 51 be a unimodular matrix satisfying (1) and 

assum: th!t B, A are rlp. In %ey of Corollary 1, there  exists  a FV such 
that [X,, Y , ] = [ X , ,   Y , ] +  W [  - &A].  Let also 0 be a  unimodular matrix 
such that [ - &a]= fi[ - B,A]  (note that prime bases “e related by a 

- B  A 

unimodular  multiplication [6], [14D. Then fi= 

plies that U is unimodular. Q.E.D. 
Corollary 2 and Lemma 1 will now be used to study the problem of 

modifying  given  matrices, so that they  satisfy (4). 
Theorem 2: Assume that the matrices X,, Y, ,  X, 

satisfy X , A , + Y , B , = Z ,   A X + B Y = Z ,  and [ - & A ]  

[ F l , F 1 ] = [ X , , Y , ] + S [ - B , A ]  with S = X , Y -  YIX and X, Y, A,   B,  A , ,  
and B ,  also  satisfy (4). 

Proof: since B,A are rlp, in view  of  Lemma I,  U= 

unimodular. Let U-’ = 

together  with corollfry 1,  &plies that &ere  exists  a  polynomial  matrix s 
suchthat[ :I=[ $I+[ -~~]S.S=X,Y-Y,Xisasolutionbecause 

A , S = ( A , X , ) Y - ( A , Y , ) X = ( Z -   f B ) Y -  FAX 

- B , S =  - ( B , X , ) Y + ( B , Y , ) X =   - i B Y + ( Z - i A ) X  

= Y -   f ( B Y + A X ) =   Y -  f 

= X - Z ( B Y + A X ) = X - i  

where  (4),  which are satisfied  by X , ,   Y , ,  i, f, were used. In view  now of 
Corollary 2, if [F,, F,] =[X,, Y , ]  + S[  - &A], with S tbove, is  used in 
U instead of [X,, Y , ] ,  U- ’ will give Y ,  X instead of Y ,  X and x,, TI, X, 
Y will satisfy (4). 

Remark: In view  of the  proof of Theorem 2, it is clear that if [ r]-[ - :I-[ Ag:]S,withSasabove,isusedinsteadof [ ;],then 

- 
XI,  YI, x, F will satisfy (4). . .  

The above  analysis Ad especially relations (4) will now be used to 
give  a shorter proof  of a known result (Problem l), to derive  some  new 
results  referring to an important polynomial  matrix equation (Problem 2) 
and f d y  to classify and extend  results  referring to the class of 
stabilizing output feedback compensators of a linear  system  (Problem 3). 

Problem I 

The regulator  problem  with internal stability @IS) has been  solved 
in [5], [I61 using  frequency-domain  techniques.  Assume,  without loss of 
generality, that the  variables X,, Y, ,  X, Y ,  A , ,  B, ,  A ,  B of [5] have been 
chosen to satisfy (4k Let_also idlfIl + &f12= Z where fI,,-fi2 are chosen 

relations  similar  to (4). Then Lemmas 8, 9, and 10 as well as Theorem 2 
of [5] can be  substituted  by the following  theorem,  thus  greatly simplify- 
ing the “special case.” 

Such that n,, &, Pdl, G I ,  Pdl, e,, Of [5], together  with n ~ ,  &, satisfy 

Theorem 3: There exist  polynomial  matrices V, W such that 

iff there  exist  polynomial  matrices V, W which  satisfy 
_ _  

I =  SF+ w&,. 
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Proof-Necessi@: Assume that V ,  -W :xist such that (10) is satisfied. 
Then using  the  relations PdlIIl=Z-l12&l, A X = I -  BY, and A B ,  = 
BA,(IO) implies  in turn 

- X = B , V + ( W - X f i , ) & ,  

A X = - A B , V - A ( W - X ~ ~ , ) &  

Z - B Y = - B A , V - A ( W - X ~ 2 ) ~ ,  

Z = B [ Y - A , V ] + [ A ( X f i 2 - W ) ] & .  

Sufficiency: Assume that v, wexist suzh F a t  (1 1) is satisfied. Then, if 
J? 1- II, and the relations PdlII, + I12QdE = I, BX = X , B ,  are used, 
(1 1) implies that 

Z - f i 2 &  = BV+ @&, 
Pd,rIl = BV+ J?& 

- XPdlIT, = - XBV- X@&, 

- X P d I r I , = B , [   - X , V ] + [ - X W ] & , .  Q.E.D. 

Problem 2 

The properties of the unimodular matrix U(s) [see (1) to (4)] will now 
be  employed to derive  necessary and sufficient  conditions for the ex- 
istence of solutions to a  polynomial matrix equation of the  form BG, + 
G A  = V .  Although  such condition.? have been in  existence for some 
time [9], the importance of these  polynomial equations to the multivari- 
able synthesis  has  only  recently  been pointed out [7] ,   [4] ,   [5] ,   [ l ] ,  [ 161, and 
therefore  the need for a  different  set of conditions, which will hopefully 
clarify the relation  between  the above polynomial equations and linear 
system  theory. 

Assume that polynomial  matrices GI and G2  have  been found which 
satisfy 

B,G,+G#=Z, (12) 

where B,,  A are given p x  m, q X p  polynomial  matrices.  Observe that 
(12) implies that G I ,  A are rrp, which in turn implies that m + q > p  (see 
Preliminaries).  The  two cases m + q = p  and m + q >p will now  be studied 
separately  before  the  main  theorem  (Theorem 4 )  is stated. 

1 )  m + q = p .  

This implies that [B,,GJ-' = , a  unimodular  matrix, and conse- 

quently, the rows of B ,  must be rrp and the c o l u m n s  of A must  be rlp 
(see  2b) and 3) of Preliminaries); furthermore AB,=O. If these  condi- 
tions are satisfied,  matrices G I ,   G ,  can be found as follows:  let G,  be 
such that G I B ,  =I. Then, in view  of  Lemma  1, is unimodular and 

= [ B , , H ] .  Let C2= H .  Clearly, BIG,  + G d  =I. Thus, we have 

E l  

[ A I  

[:]-I 
the  following. 

are rlp,  the rows of B ,  are rrp, and A B ,  =O. 
Le- 2: There  exist G I ,  G2 which  satisfy  (12) iff the c o l u m n s  of A 

2) m + q > p .  
Le- 3: There  exist GI,   G,  which satisfy (12) iff there  exist  poly- 

nomial  matrices A , ,  B of dimensions r X m, qX r, respectively,  with 
r = q + r n - p ,  such that A B , = B A ,  with A ,  B rlp and A , ,  B ,  rrp poly- 
nomid matrices? 

Proof-Sufficiency: Assume that matrices A , ,  B such that AB,= 
BA, with B, ,  A ,  rrp and A ,  B rlp,  have  been  found.  Let X,, Y ,  satisfy 
X , A ,  + Y,B,  =I. In view  of  Lemma I ,  u 2 is mimodular. 

1-8 A 1 
J 

XA =Ip, i.e., GI = Y , ,  G2 = X .  

'They involve equivdence of po~ymomid matrices. 

linear system theory has been shown (121. Note that  the  approach used here is different 
'These conditions have k e n  derived  independently by Wolovich and  their  relation to 

than in [IZ]. 

Necessiw: Assume that G I ,  G2 satisfy (12) and let [- CI,CJ be  a 
prime  basis of the  left  kernel of 1 z, 1. In view of  emm ma I, 

also (4jl .   AG2+D,CI=Z,  GlB,+D,C2=Z, and AB,-D,C,=O. Let 
B Dl and A ,  2 C,; then A B , = B A ,  with A ,  B rIp and B , ,   A ,  rrp. 

Q.E.D. 
Remarks: 1) From the necessity and sufficiency  proofs it can be  easily 

seen [using (4)] that B I G , +  G A = Z  has a  solution iff A,H,+  H,B=Z 
has a  solution, where AB,  = BA, with A ,  B rlp and A , ,  B ,  rrp polynomial 
matrices. 2) Note that (9)  implies that, if Y, ,  X is a particular solution of 
(12),  i.e., B , Y , + X A = Z ,  then F , = Y , + S A ,  f = X - B , S  satisfies (12) 
for any  polynomial  matrix S. 

The following  theorem can now be stated 
Theorem 4: Given  two  polynomial  matrices B, ,  A of dimensions 

p x m ,   q x p ,  respectively,  there  exist  matrices GI, G2  which satisfy (12) 
iff: 

1) m + q > p  and 
2) thereexistrXm,qXrpolynomialmatricesA,andBwithr=q+m 

-p ,  such that [ - & A ] .  1 :: 1 = O  where  the  columns of [ - B,A]  are rlp 
L - A  

and the  rows of 1 1 are rrp. 

Proof: The ;roof% obvious in view of Lemmas 2 and 3. Q.E.D. 
Theorem 5: Given  polynomial  matrices 3, A and V with A ,  V rrp ( B ,  

V rlp),  there  exist  polynomial  matrices G I ,  G2 such that 

iff there  exist  polynomial  matrices H I ,   H z  which satisfy BH, + HA-= 
~~ 

Z(&H, + H# =I) where [ - V , A ]  - ([ -;I) is a  prime  basis of the  left 
- -  

kernel of 1 ;I (the  right  kernel of [ B ,  VD. 

Prmf: The proof  of the part in parentheses is similar and it is 
omitted. 

Suficienq: Assume that there _exist HI, H i  such that BH, + FA-= I. 
Postmultiply by Vand note-that AV=  VA.  Then B(H,Y)+(H,V)A=  V,  
i.e., G I  = H I  V and G2 = H2  V.  

Necessiry: Assume that G I ,  G2 satisfy (13) and let [ -  p , i ]  be a  prime 
basis of the  left  kernel of . Let X , ,  Y ,  be such that X , A  + Y,V=Z 

and note that in view  of  Lemma 1, U A [ 5' ''1 is unimodular. If 

U - I = [  $ -:I, then A ,   V ,  A', e, X,, Y, ,  X,  and Y satisfy (4). 

Postmultiply (13)  by Y ,  and observe that A Y ,  = Yfi and V Y ,  = I -  Xi. 
Rearranging, the equation B(G, Y,)+(G,Y+ X ) A  = Z is derived, i.e., 
H , = G , Y ,  andH,=G,Y+X. Q.E.D. 

Remark: The  above proof of sufficiency is valid  @dependently of the 
primeness of ( A ,  V ) ;  th is  implies that if BH, + H d  = Z has a solution, 
where [- ;,,A] is a prime  basis of the left  kernel of ( A ,  V is not 

necessarily rrp), then BG, + G2A =-V has  a  solution. Note that the 
existence of solutions to BH, + H2A = Z is,  generally,  only  a  sufficient 
condition for the  existence of solutions to (13). 

[ $1 
- V  A 

[ 3 

Problem 3 

Stabilizing  a linear system  via output feedback  is  one of the  most 
important problems  in  linear control theory. It is known that if a  system 
is stabilizable and detectable, then an output feedback  compensator C 
can always  be found such that the  closed-loop  system is stable [ 111. 
Here, it will be  assumed, for convenience, that the given  system is 
controllable and observable, and the whole  class of stabilizing output 
feedback  compensators will be derived. 

Let 
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where T is the given  system and C the desired  compensator. If A,z  = u; 
y = E , t ,  with transfer matrix T=B,A;',  is the given  system, then the 
closed-loop  system is described by [ 1 I] 

(QJI+PcBl)z=av;  .=BIZ ( 14) 

where the compensator C is a z c = P g ;  e=zc and lQcAl+PcBII is the 
closed-loop  characteristic  polynomial. 

Let 

(zA1+pcB1=Qk (15) 

where Q, is any stable polynomial  matrix,  i.e., lQkl is a stable poly- 
nomial. In view  of (7, (15)  is  equivalent to 

[ ~ , P ~ I = Q , [ X I , Y I I + P ~ [ - B , A I  (16) 

where XIAl + YIB,  = I ,  [-B,A] =O with B,A rlp and Pk any 

polynomial matrix. Equation (16) can be written as 
[ t:] 

Clearly, in view  of Lemma 1, is unimodular and [ s e e  (3)] 
[ - B  A I  

Relation (13, where  is any stable matrix and P, any polynomial 
matrix, generates the whole class of stabilizing compensators 
(C  : {a, PC, I,O})! Note that in view  of  (17) [and (IS)] a, PC are rlp iff 
Qk, Pk are rlp. 

Let [ ~ :: ] be such that [Q,, P,] [ =O. Postmultiply (18)  by 

[ and let 

Note that (19) could have been  derived  directly (as (17) was) if dual 
representations  had  been used to describe T and C ;  that is, if T: 
A.F=Bu; y = Z  and C: QlcFc=y; e=Pl,Zc. If Q l k  is any stable matrix 
and P , ,  is any polynomial  matrix, it is clear that (19) also gives the class 
of stabilizing  compensators (C:  { QIc,I ,Plc ,O}) .  

Remark: If C L a - ' P c =   P l , Q G 1  and K &-'Pk=  PlkQ,kl, then 
the  following  relations can be derived  from (13, (18),  (19), and (20): 

Similarly, in (19), I Q l , l S O  for almost any PI, .  
can be shown using minors that given any stable Q,, lQJr0 for  almost any Pk. 

K=~-'P,=(~A,+P,B,)-'(P,X-~Y)=(CB,+A,)-'(CX- Y) 

=p, ,Q,k1=(Xd'1 , -   YIQI , ) (AQI,+BPI, ) - '  

= ( X , C -  YI)(EC+A)-' .  (22) 

Note that some of the  relations  involving K and C were  derived in [15] 
and were used in [5] and [ 151, where  they  greatly  simplified the study of 
the problem. 

It should  be  noted at this point that the problem of characterizing the 
stabilizing output feedback compensators of a linear system is equivalent 
to the problem of extending a nonsquare polynomial matrix to obtain a 
square matrix with an arbitrary determinant. In particular, assume that 
the given  system is A Iz = u; y = B,z with T= BIA ; and the compensa- 
tor is described by QlcZc =y; e = Pl,Fc. Then the closed-loop  system  is 
given by 

with I t: -:rc I as its characteristic polynomial.  Observe that 

and let AQl, + BP,, = e l k .  Then, in view  of (7) and  part 3) of the  same 
remark, (19) is directly derived,  which  gives the values of Plc ,  Q,, such 

that I Ag: -:rc I = lQIkl, a  desired  polynomial.  Similarly,  using dual 

representations  for T and C, (17) gives the values of PC and Q, such that 
a  desired  polynomial. Note that the above prow 

derivations of P,,  and Qlc ,  has been  used in 
[ 131 and 131 to derive  stabilizing  compensators. 

IV. CONCLUSION 

It was  shown that relations (4) are useful  mathematical  tools  when 
problems  involving  polynomial matrices are being studied. Although  a 
number of new results  were  derived, it should  be  pointed out that 
Problems 2 and 3 are not completely  resolved. In particular, in Problem 
2, "if and only if' conditions for the  existence of solutions to the general 
equation BG1 + G2A = V, similar to the ones derived for the  special cases 
of Theorem 4 (V= I )  and Theorem 5 (V,A rrp), are yet to be found. 
Furthermore, a simple method to choose K (Problem 3), such that C is a 
proper transfer matrix, is st i l l  lacking, although a  method to choose K 
involving  Smith  forms [5] and a method to find a proper stabilizing 
compensator C directly,  involving the coefficients of the  polynomial 
entries of ( A  I,  B,)  [ 1 I], exist. 
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The Optimal Linear-Quadratic  Time-Invariant 
Regulator with Cheap Control 

BRUCE A. FRANCIS, MEMBER, IEEE 

Abstmei-lXe infiitime linear-quadratic regulator is c o n s i d e r e d  as 
the weighting on the control energy tends to zero (cheap control). F i i  a 
study is made of the qualitative behavior of the limiting optimal state and 
control trajectories. In particular, the orders of initial singularity are found 
and related to the ex- of poles over zeros in the plant. Secondly, it is 
found for which initial conditions the limiting minimum eost is zero 
(perfect regulation). This generalizes  an  earlier result of Kwakernaak and 
Sivan. Finally, a simple extension is made to the steady-state LQG 
problem  with cheap control and accurate observations. 

I. INTRODUCTION 

The linear multivariable  regulator  problem  recently studied (e.g., [I] 
and the  references  therein) is one of steady-state control in that regula- 
tion is demanded  only  asymptotically. It is  desired  now  to incorporate 
transient response  requirements into the  problem. We  would  like to 
know, first, what  systems  present inherent difficulties in transient control 
and, second,  what control structures could overcome  them. In this paper 
we obtain some  preliminary  answers to the  first  question. 

Our approach is to  take  the  integral-square-error as the  performance 
measure of transient  response and to study both when this measure can 
be  made  arbitrarily  small and what  the qualitative nature of the optimal 
state and control trajectories is as this measure is reduced. In this way  we 
are led to pose the following cheap optimal  control  problem. We 
consider  the  time-invariant  system  modeled by  the equations 

i = A x  + Bu, x ( 0 )  = x, ( la) 

z = D x  ( W  

along with the  associated functional 
30 

J,(x,,)= +l, (Ilzl12+c211uI12)dr, € > O .  (2) 

Here u, x, and z are the  real  finite-dimensional control, state, and output 
vectors, and the minimirration is over an appropriate class of control 
laws.' 

Our first  result  deals  with  the nature of the  optimal state and control 
trajectories, say x,(t) and u,(t), as €10. Briefly,  these  limiting  trajectories, 
say x( t )  and u(r), behave as follows. There is a  subspace of the state 
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space called a  singular hyperplane and, no matter what the initial 
condition x,,, x(O+) is on this singular hyperplane and thereafter x( t )  
drifts along it. Thus, near t=O, x(r) is singular: it is either a step, an 
impulse,  a  doublet, or some  higher order singularity. The optimal control 
u(r) is, of course,  correspondingly  singular at t = 0: if x is a step, then Y is 
an impulse,  etc. The qualitative optimal behavior  thus  has the feature of 
two time-scales,  the  initial fast response followed  by  the  slow  evolution 
on the  singular  hyperplane. This two time-scales  phenomenon is also 
characteristic of singularly perturbed differential equations.  Awareness 
of this fact  led  O'Malley and Jameson to explore the totally  singular 
optimal control problem  via  singular perturbations [3]-[q, and they 
determined the order of singular behavior of x and u for a  sequence of 
special cases. A  different approach was  taken  by Francis and Glover [7]. 
Following Friedland [SI,  who studied the optimal stochastic control 
problem,  they  studied the Laplace transform i J s )  of x,(t) as a&O, thereby 
determining  when x( t )  is bounded, that is, at most  step-like near r=O. In 
this paper we follow the latter line and find the orders of singular 
behavior  in  general. 

Our second  result  deals  with  perfect  regulation: for which  initial 
conditions x. does Jc(xo) tend to zero as c&O? Kwakemaak and Sivan [9] 
first  treated this problem for the  special case when the plant transfer 
matrix 

G(s)  2 D ( s - A ) - ' B  

is square and invertible.  They  showed that 

limJ,(xo)=O for all x. 
4 0  

(3) 

if and only if c(s) is minimum phase. This is, of course, a multivariable 
generalization of the  well-known fact that nonminimum phase systems 
present  definite  performance limitations in classical analytical control 
design [IO, Section 6.31. Subsequent to [9], Godbole pointed out [ 1 11 that 
(3) is equivalent to the existence of a stable right-inverse of as). 
Analogously, in solving  the  perfect  regulation  problem we shall prove it 
equivalent to a  special  feedforward control problem of Bengtsson [12]. 

Section I1 contains some  preliminary notation and assumptions. In 
Section I11 we present the first  result,  showing  that, not surprisingly,  the 
orders of singulanty of x and u are related to the excess of poles  over 
zeros of G(s). We present the second  result  in  Section IV, and then give a 
simple  extension to the  problem of perfect stochastic control in Section 
V. To make  the  main  results  more  accessible,  the  proofs are collected in 
three Appendices. 

11. PRELlMINARlEs 

We regard A ,  B,  and D as linear transformations on real, finite-dimen- 
sional,  linear spaces 'X, b, and Z as follows: A :  'X+%, B: %+'X, 
D :  X+%. 

Vector  spaces are denoted by script capitals. For a  linear map B: 
b +?X and a  subspace Y c %, ImB or 9 is the  image of B, kerB its 
kernel, and BIY the  restriction of B to Y. Transpose  is denoted by ', 
complex  conjugate  transpose.  by +, and Laplace transform by -. Re 
denotes  real  part. 

Natural assumptions  for  the  problem  (1)-(2) are that ( A , B )  is stabiliz- 
able and (&A)  is detectable. Furthermore, no generality is lost if we 
assume that B has  linearly independent columns and D has linearly 
independent rows. These four conditions are assumed throughout the 
remainder of the  paper. 

Finally, recall that the optimal control law  is u = < x  where 

F = - - 3 ' p  1 
€2 

and P, is the  unique,  positive  semidefinite solution of the algebraic 
Riccati equation 
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