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ABSTRAD 
Using neurons with gaussian nonlinearities, a neural network is 

designed to implement a control law scheduler. For the implementation 
discussed here, the neural network is supplied information about existing 
operating conditions and then responds by supplying control law 
parameter values to the controller. The neural network has two layers of 
weights, and the values of the weights and biases are based on given 
operating points for the scheduler. By designing the neural networks 
generalization behavior, specifications for the interpolation between the 
given operating points are satisfied. The neural network implementation 
performs best when the operating points are equidistant and has some 
drawbacks when used to implement multi-parameter schedulers. 

1 INTRODUCTION 
As discussed in [Antsaklis92, Sartori911, a neural network may be used as a 

conuol law scheduler. In this capacity. the neural network can be viewed as a high 
level decision maker operating outside the conventional control loop to provide a 
higher degree of autonomy to the system. Given a set of operating points and the 
associated set of parameters values for the control law. the neural network is 
designed to satisfy given specifications for the interpolation between the provided 
operating points. Here, these requirements for the interpolation between operating 
points are treated as specifications for the generalization behavior of the neural 
network, a topic of importance in current neural network research. The gaussian 
neural network presented here for satisfying the specifications of the control law 
scheduler performs best when the operating points are equidistant and has some 
disadvantages when used to implement multi-parameter schedulers. 

Of the numerous curves that satisfy the specifications for the interpolation 
between the operating points. the neural network design procedure presented in this 
paper represents one possible class. Clearly, there exist other methods besides the 
one presented here to (mathematically) describe the curve. For instance, the 
specific interpolation curve may be modelled with polynomials or splines. The 
advantage of using the neural network approach described here instead of one of 
these schemes is that, in addition to a straight forward design scheme, the actual 
construction of the neural network in hardware would utilize the inherent 
parallelism of the neural network and hence result in a fast processing lime. 

For the neural network scheduler implementation described in this paper, the 
neural network is fust given information on the system's operating conditions or 
its environment and then supplies control law switching information to the 
controller. As depicted in Figure 1, the neural network's inputs are the inputs and 
outputs of the plant together with the reference signal. The output of the neural 
network is the control law adjustment signal sent to the controller. The neural 
networks inputs are not restricted to these signals: other signals such as the plant's 
states, derivatives, environmental conditions, or delayed values of any of these can 
be used as inputs to the neural network. Basically, any signal that is designed into 
the operation of the scheduler is used as an input to the neural network. 
Furthermore. the plant and controller can operate in either continuous or discrete 
time. If the neural network is implemented in analog hardware, both the plant and 
the controller can operate in continuous time. However, if the neural network is to 
be implemented in software, both the plant and the controller need to be discrete or 
discretized versions of continuous ones. In either case, the designing of the neural 
network as discussed in this paper remains unchanged. 

In Section 2, the type of scheduler implementation considered in this paper is 
defined. The implementation using a gaussian neural network is presented for both 
single-parameter and multi-parameter operating points in Sections 2.1 and 2.2, 
respectively, and discussed in lerms of equidistant and non-equidistant operating 
points in Sections 2.1.1 and 2.1.2, respectively. In Section 2.1.3. a comparison 
to other neural network design methods is included. Finally, examples 
demonstrating the neural network scheduling implementation presented in  this 
paper are supplied in Section 3. 

Figure 1 N d  network used as a scheduler. 

2 GAUSSIAN NEURAL "ORK IMPLEMENTATION 
The gaussian neural network implementation of a scheduler is divided into two 

cases: single-parameter operating points and multi-parameter operating points. The 
single-parameter case is further divided into equidistant operating points and non- 
equidistant operating points. 

2.1 Single-Parameter Ga& Neural Nehwork Scheduler 
In this section, a neural network is constructed to implement a scheduler with 

operating points defined for a single parameter. For each operating point, the 
scheduler provides one or more parameter values to be used in controlling the 
system. For the given values of the scheduler, let vu) denote the jth operating 
point for 1 5 j 5 p. and let v Rpxl denote the vector of all operating points 
arranged in ascending order. where vu) > v(i-1) for 2 5 j 2 p. Let diu) denote the 
I* desired output (i.e.. the given control law parameter value) of the scheduler for 
the j* operating point for 1 S i S n and 1 S j S p. and let d(i) Rnxl and D I 
Rpxn denote the vector for 1 S j S p and the matrix of desired outputs, 
respectively. Thus, the p pairs (vu), d(j)) are the given operating points. For the 
neural network. let U c RIX' denote the neural networks input, and let the neural 
network have multiple outputs denoted by z I Rnxl. For a specific input U, let 
z,(u) for 1 S i S n and z(u) denote the output of the neural network. 

In consbucting the neural network to implement the designed scheduler, three 
specifications are made: 

(i) If U = vu), then z(u) = du), 
(ii) If U E [vu) - E,.. vu) + Ej+] and U # vQ), then z,(u) E [diu) - yi,., 

(iii) If U E [vu), vfi+l)], then q(u) E [diu). 4u+I)]. 
As an example, Figure 2 illusmes one way in which these specifications can be 
viewed. The dots correspond to the operating points and the given controller 
parameter. and according to specification (i). the interpolation curve must pass 
through these points. The boxes surrounding the dots correspond to the boxes 
described in specification (ii), and the boxes between the dots correspond to the 
bounding of the interpolation curve per specification (iii). The interpolation curve 
must pass correctly through boa sets of boxes. Clearly. there exist numerous 
curves that satisfy these three specifications. With the design scheme described 
here for the parameters of the neural network, a particular class of curves is 
achieved that satisfy these specifications, and of the three specifications. (i) and (ii) 
can be satisfied precisely using the proposed procedure, and (iii) can be 
approximately satisfied. 

diCj) + ~ i j + I  3 

U 

Figure 2 IUusuation of interpolation curve specifications. 

Wilh z Rnxl, an individual output of the neural network is described by 
h 

where 1 5 1 5 n, W,k is a weight of the i* linear neuron in the oiltput layer, and 
g(xk) is the output of the k* neuron in the hidden layer. Let W c Rhxn denote 
the matnx of weights for the output layer. Since the scheduler has a single 
parameter descnbing its operaung pomts, the neural network requues only a single 
input U RIX' The output of the kth gaussian neuron in the neural networks 
hidden laycr is described by 
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= exd-xka) (2) 

Xk = sk(v ck)2 0) 
ad 

where 1 S k S h, g:R --t R is the nonlinearity of the hidden layer neurons and the 
gaussian function with the variable a describing its curvBture, q is the weight (or 
"width" of the gaussian function), and ck is the bias (or "center" of the gaussian 
function). Let s e Rhxl denote the vector of widths, and e s Rhxl denote the 
vector of centers. With a = 1, the traditional bell-shaped curve is achieved, but by 
allowing a to vary, a class of curves is possible, which allows for greate.1 
flexibility in the design of the interpolation curve. Thus. for a particular neural 
network implementation of a scheduler, the parameters W. s. e. and a need to be 
selected. The choosing of the gaussian neural network parameters is divided into 
two cases: when the operating points are equidistant and when they are non- 
equidistant 

2.1.1 Design with Equidistant Operating Points: For the first case, the operating 
points vu) for 1 S j S p are considered to be equidistant. For the p operating 
points. assume the distance between each operating point is T. The number of 
hidden layer gaussian neurons is set equal to the number of operating points. that 
is h = p. This choice is not unreasonable since for many scheduler applications the 
number of operating points is not unusually large.   he center ck for the kth 
neuron is set equal to the operating point value for the k* operating point 

ck = v@) (4) 
for 1 S k S h. Since ck corresponds to the center of the gaussian nonlinearity, 
setting ck equal to the operating point parameter corresponds to placing the center 
of each gaussian neuron at each operating point and allows for a l o c a l i d  effect at 
the output of these neurons with the appropriate choice for each width sk. 

To aid in satisfying specifications (ii) and (iii). the widths s are chosen such 
that (1) can be approximated by 

j+l  

k=j 
%(U)' Wjk g(xk) (5) 

when U E [v(j). v(j+l)l. This implies that the tails of the gaussian nonlinearities 
g(xk(u)) for k f j and k # j+l are small compared to those for k = j and k = j+l 
when U E [v(j), vO+l)]. The approximation of ( 5 )  also implies that the gaussian 
neuron with its center Ck closest to the input U has a larger response compared to 

the other gaussian neurons signifying that the input is closest to the k* operating 
point 

g(xk(u)) dxt(U)) (6) 
for 1 S f < h and for U E [V@) - Ak-1. V(k) + Ak] where Ak is defined Such that 
g(xk(v(k) + Ak)) = g(xk+l(v(k) + Ak)). with (6), the l d i Z e d  effect Of the hidden 
layer neurons is preserved. Also, the interpolation curve passing through a box 
specified by specification (ii) assumes the general shape of the output of the kth 
gaussian neuron if &k-  < Ak-l and &k+ S Ak. To further aid in satisfying 
specification (iii), the widths s are chosen such that 

h 

k= 1 
g(xk(u)) E 1 0 

for U E [v(l), v@)]. In conjunction with ( 5 )  and (6). (7) implies that for U E [v(k), 
v ~ + 1 ) 1  the sum of the outputs of &(U)) and g(Xk+l(u)) is constant, and the k* 
gaussian neuron contributes more to the sum when U is close to v(k) and less when 
it is closer to v(k+l). Since all the operating points are spaced apart by an equal 
distance T, the width sk for each neumn is selected equivalent such that each 
neumn has an equal response halfway between any two neurons. By setting g(xk) 
in (2) equal to 0.5, 

(8) 

where 1 C k < h and g'(r) = (-ln(r))l'a. Unfortunately, due to the nonlinear 
nature of the gaussian function of (2). using (8) to determine s does not insure that 
(5). (6). and (7) are satisfied exactly, but rather are satisfied approximately; with 
(8). a good approximation to a constant unit signal is achieved as described by (7). 
and through experimentation, a possibly more appealing signal may be found by 
slightly adjusting the widths. 

Due to the use of the gaussian nonlinearity and the choice of function's center 
and width for each of the hidden layer neurons. the output of the neural network is 
close to 0 if the input is outside the region of the operating points. In other 
words, if U << v(1) or U >> v(p), then z 0. This is a drawback if a value is 
needed from the scheduler for all possible inputs. However, this behavior could be 
used in a fault detection scheme to identify when the inputs have exceeded the 
design domain. 

The choice of the exponent a in (2) clearly affects the shape of the 
interpolation curve. In Figure 3, g(xk) = e&-xka) is shown for various values of 
a with ck = 0 and sk = 1. As can be seen, the gaussian curve begins to better 
approximate a unit pulse function as a is increased. By appropriately choosing a, 
the interpolation curve can be designed to pass though the box defined in 
specification (ii). The exponent a also affects how well (7) is satisfied and the 
choice of the widths s in (8). It is suggested here that in general a 5. 1. 

4f1(0.5) 
T2 

sk = 

" 
Figure 3 Family of gaussian-type curves for varied a. 

Furthermore, unless stated otherwise, it is assumed that each neuron's nonlinearity 
in the hidden layer has the same value for the exponent a. Although, by choosing 
different values of a for different neurons, various interpolation curves are 
possible. 

With the widths, centers, and the nonlinearity specified for the hidden layer. 
the weights for the linear output layer are chosen next. Let C RPh denote the 
output of the hidden layer neurons for each of the p operating points. Thus, the 
output layer weights are found by solving the following linear system of equations 

(9) 
Since C is square and nonsingular (h = p), (9) has a unique solution W. Thus, if 
the neural network's input U is exactly one of the operating points, the neural 
networks output is exactly the desired output of the scheduler, which satisfies 
specifgation (i). 

2.1.2 Design with Non-Equidistant Operating Points: For the second case, the 
operating points vu) for 1 S j S p are considered IO be non-equidistant. TWO 
methods are pposed to cope with this situation: adding more gaussian neurons to 
the hidden layer or using an optimization procedure to adjust the parameters of the 
hidden layer neurons. It is assumed that there are p hidden layer neurons with 
centers e chosen as in (4). and that the weights W are chosen such that (9) is a 
unique system insuring that specification (i) is satisfied. 

First, by adding more gaussian neumns to the hidden layer, a situation in 
which the centers of the gaussian n e m s  are equidistant occurs. This approach is 
useful if some of the operating points are equidistant, and the others occur at 
specific intervals between the operating points. First, p hidden layer gaussian 
neurons are formed with their centers equal to the operating points as specified in 
(4). Next, more hidden layer gaussian neurons are added, and their centers are 
chosen such that the centers of the gaussian neurons are equidistant. For example. 
if 

is the vector of operating points, five hidden layer gaussian neurons are formed 
with ck = vQ). Two more gaussian neurons are added with centers of 2.5 and 3.5 
such that h = 7. Since all of the centers of the gaussian n m n s  are equidistant and 
T = 0.5, the widths s are found via (8) with a = 2, and sk = 13.3209 for 1 S k 5 7. 
With the centers and the widths selected, the exponent a can be varied to further 
satisfy the specifications of the interpolation curve. The weights for the output 
layer are found by forming a linear system of equations similar m that of (9). To 
make @e system unique, the desired output associated with an added gaussian 
neuron is assigned either a specified value of a close operating point or an 
interpdated value from nearby operating points. 

Second. instead of adding neurons based on pseudo-operating points, an 
optimization procedure may be used to find the gaussian neural network's 
parameters. In this pper,  a gradient descent procedure is proposed to cope with the 
case of non-equidistant operating poino and to adjust the parameters of the hidden 
layer. The hidden layer is conshucted of h = p gaussian neurons with exponent a 
and with centers E equal to the operating points of the scheduler as described by (4). 
With the cost function 

CW = D. 

V =  [ I  1.5 2 3 41' 

I P  9 h  
= (1 - g(xk(vU))))' -t ' - g(xk(U(i))))'. (lo) 

k= 1 ' j=1 k=l 
an approximate unit signal from the hidden layer as described by (7) is desired. The 
first sum corresponds to the neural networks output for inputs equal to the 
operating points. The second sum corresponds to the output of the neural network 
for q other values u(j) E [v(l), v@)]. The particular points in the second sum are 
not specified in order to leave this as a design consideration. The gradients of (IO) 
are computed with respect to Sk. ck. or even a, and the parameters of the gaussian 
neural network are adjusted via an iterative gradient descent procedure. The details 
of this approach are in [SaRori91]. 

When the operating points are not equidistant, both of the methods proposed 
can also be used to determine the parameters of the hidden layer gaussian neurons. 
Extra neurons can first be added at desirable locations, and the gradient descent 
procedure can then be used to find the appropriate parameters of the hidden layer. 
To find the weights w k  of the output layer, extra desired outputs are needed as 
described previously to insure that the linear system of equations k r i b e d  in (9) 
remainsunique. 
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2.1.3 Comparison to Another Method: Here, the design procedure of m y 8 9 1  
and [Moody881 is compared to the approach presented here. In comparing the 
method proposed here and Moody's method, the following are the same: h = p. the 
cen" are chosen as in (4). and the output weights as in (9). The only diffmmes 
considered here are the choices of a = 1 anddifferent widths s. 

The design procedure Proposed by Moody is presented next. To choose the 
centers, Moody proposes to use the standard k-means clustering algorithm since it 
is assumed that the number of mining pairs p is large, which is not the 
assumption made here for the scheduling problem. However, the case when the 
centers are chosen equal to the training inputs as in (4) is ueated in Moody's 
examples. The exponent a of the gaussian nonlinearities is specified as 1. The 
widths s are determined by a "P nearest neighbor" heuristic, which in ~ o O a y 8 8 1  is 
described as using the root mean square value of the Euclidean distance to the P 
nearest neighbor centers to determine the widths. Using the notation here and P = 
2, 

(1 1) 
2 

2 2 sk = 
(ck - Ck-1) + ('&+I - Ck) 

for 1 5 k I h. The weights of the output layer are determined via a LMS 
algorithm. If h = p and the centers are chosen as in (4). the LMS iterative 
procedure is not needed and the unique system of (9) can be solved instead. In 
comparing the method proposed here and Moody's method. the following are the 
same: h = p. the c e n m  are chosen as in (4). and the output weights as in (9). The 
only diffexences considered hem are a = 1 and the widths chosen as in (11). 

In [Moody891 and Floody881, the use of gradient descent procedures to 
determine the neural network's centers, widths, and output layer weights are 
d i s c d .  The cost function considered uses the sum of the squares of the e ~ w s  

Amplitude 
2.0 
2.5 
3 .O 

which can be compared to the one proposed in (10). In (12). the neural network is 
assumed to have only one output, while the gaussian neural network here may 
have more than one. 

2.2 M u l t i - p p " e t e r G ~ N c u r a l ~ s c h e d u l e r  
In this section, a neural network is constructed to implement a scheduler with 

operating points that vary for more than one parameter. For the given values of the 
scheduler, let v,(J denote the r* parameter of the scheduler for the j* operating 
point for 1 5 r I m and I 5 j I p. Let vu) s Rmxl denote the operating point 
vector for 1 I j I p. As described previously, du) R" and D s Rpxn denote 
the vector for 1 I j 5 p and the mamx of desired outputs, respectively. Thus, the 
p pairs (vu), du)) are the given operating points. For the neural network. let U 

R" denote the neural networks input, and let the n d  network have multiple 
outputs denoted by z Rnxl. For a specific input U, let %(U) for 1 I i I n and 
z(u) denote the output of the neural network. 

The output of the gausshn neural network is given by 
h 

cl 9 L i 
0.093 10.05 49000.0 119703.96 
0.302 7.35 44046.1 145910.16 
0.307 15.79 37325.7 183327.84 

_ _  
where 1 I i I n. The outputs of the hidden layer gaussian neurons are described by 

where 1 I k I h. Let S Rhxm denote the matrix of widths, and C Rhxm 
denote the matrix of centers. Compared to the gaussian neurons proposed by 
[Moody89], the widths sb in (15) vary for the different r, which allows the 
gaussian nonlinearity to assume an ellipsoid shape for higher dimensions of 
operating point parameters and not just a circular shape. 

In choosing the values for the centers. widths, and the gaussian variable a. it 
is once again desirable to satisfy the three design specifications stated in Section 
2.1. In addition, the two cases considered previously for the spacing of the 
operating poinu are applicable here: when the operating points are equidistant and 
when they are nonequidistant. For the multi-parameter case, equidistance is 
considered for each individual direction and not as a norm over all the directions. 

For the fust case when the operating points are equidistant, the previous 
results are directly extended. A two layer neural network is formed with h = p 
hidden layer gaussian neurons and output linear neurons. The centa c b  for each 
gaussian neuron is set equal to the corresponding parameter for each opaating 
point 

for 1 5 r I m and 1 I k I h. With Tr denoting the distance between the two 
o p t i n g  points for the r* parameter. the width sLo for each neuron is given by 

C b  = VI@) (16) 

for 1 S r S m and 1 < k I h .  The gaussian variable a is chosen to satisfy 
specification (ii), and the weights w k  for the output layer are found by solving the 
unique linear system of equations in (9). 

For the second case when the operating points are not equidistant, the results 
from Section 2.1.2 extend directly. If the operating points are well p k e d ,  extra 
gaussian neurons can be added U) the hidden layer such that with the extra gaussian 
neurons thecentersofallthegaussian neurons areequidistant Also, similar to plc 
approach desaibed previously,an optimization procedure may beused to deremune 
the widths, centers, and exponents ak In addition, both adding extra gaussian 
neuronsandusingan Optimization pocedurecan be combined to satisfy &&sign 
specifications. 

As the number of patametas for the operating points increases, one potential 
disadvantage of adding extra neurons is the possibility for a large numbex of 
neumnstoresult;ifextranellronsareaddedforamulti-parameterscheduleroflugh 
dimension, the size of the neural network may become unwieldy. However, for the 
examples pviM in the Section 3, this is not the case. Another drawback with 
this appoach is that "valleys" devebp in the interpolation curve due to the mulri- 
dimensional ellipsoid described by (14) and (15). This is illustrated in Example 
3.3. 

3 EXAMPLES 

In [PeelBo]. a parameta learning method is presented and used to define the 
region of Operation for an adaptive control system of a flexible space antenna. In 
one of the experiments described, an initial pulse disturbance is applied to the 
plant, and the aaaptive controller is requugd U) follow a zeroorder reference modeL 
The g d  of the parameter leaming system is to f d  values for the four adaptive 

controller parameters (01. u2. L, and L) for varied amplitudes of the initial pul~e 
such that a defmed pexformance index bawd on the outplt of the plant is small. In 
Table 1. the values found for the conmller parameters for different pulse 
amplitudes are repeated. Using this table, the goal here is to construct a neural 
network scheduler such that a smooth interpolation is achieved between the 9 
operating points. Using the results of Section 2.1.1 for the single-parameter 
scheduler with equidistant Operating points of distance T = 0.5, a gaussian "I 
network is designed to implement the controller scheduler. 

Table 1 Initial Disturbances and Para" Sets. 

3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

0.876 9.556 44046.1 175092.19 
0.808 10.48 29114.0 203493.90 
1.767 10.48 32025.4 203493.90 
3.924 8.70 48450.7 140073.75 
6.928 7.73 41567.5 138395.55 
11.08 10.05 41567.5 138395.55 

For the two-layer gaussian neural network scheduler. the centers of tne 
gaussian nwmns in the hidden layer are set equal to the operating points per (4) 

c = [2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.01'. 
Applying (8). the weights of the gaussian neurons in the hidden layer are 4 = 
13.3209 for a = 2 and for 1 I k I 9. With the outputs g(xk) of the individual 
gaussian neurons for 1 < k I 9 shown in Figure 4. the localized properties of the 
gaussian neurons are evident. Forming the matrix G s R9x9 frwn the outputs of 
the hidden layer and forming the matrix D R9x4 of the desired outpuu of the 
neural network scheduler from the entries in Table 1, the weights W for the linear 
neurons in the output layer are found by solving (9). Figure 5 shows the output of 
the gaussian  network scheduler for 02. and for comparison the straight line 
approximations between the opeFdting points are included. As can be seen, q(k) = 
d#) for 1 I k I 9 and 1 I i 9 4, and specification (i) is satisfied. In the regions 
nearby the operating points, the adaptive controller parameter values specified by 
the neural network scheduler are close to those specified by Table 1 satisfying 
specification (ii) for very thin and wide boxes. In regions between operating 
points, a swift yet smooth transition occm between the value specified by Table 
1, and specification (iii) is almost met 

0.8 

E 
0.6 

P 

~ n I d e O f ~  

Figm 4 Individual hidden layw outputs for Example 3.1. 
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A m p l i n K i c o f ~  

Figm 5 Gaussian neural network output for a2 for Example 3.1. 

For ca!varkm. the design procedure s u e  by ~Moody891 and p ~ 8 8 1  
is used. With h = p. the centers are chosen as in (4). With a = 1, the widths are 
chosen as Sk'4 for 1 5 k 5 9 .  'Ihe weights W m found by solving for W in (9). 
In Figures 6, the neural network output for a2 is displayed along with the straight 
line approximation (dotted l i ) .  Specification (i) is met due to the solving of (9) 
for W. However, specification (ii) can only be satisfied for small boxes, and 
specification (iii) is not met at all. 

16 

N 15 A I 
I 

Amplitude 
2.25 

4 I 

o1 02 L i fim 9 Gaussian neuIifl network output for Example 3.3. 
0.213 7.04 39200.0 131674.35 

9 13t J 

a 121 / "\ I 
1 

7 '  L' 1 

Aolplitudc of DisDnbana 

2 2.5 3 3.5 4 4.5 5 5.5 6 

Rgure 6 Moody's "I network output for a 2  for Example 3.1. 

In Table 2, two more disturbances and the appropriate adaptive controller 
parameter values found by the parameter learning system of IpW] are shown. 
With the addition of these disturbances to those in Table 1, the o p e d n g  points for 
the scheduler are no longer equidistant, and the results of Section 21.2 are 
applicable. To cope with the disturbance amplitudes not being equidistant, extra 
gaussian neuronsare added to tk hidden layer,and the vector of mmis 

c = [2.00 2.25 2.50 2.75 3.00..  . 6.00 6.25 6.50 6.75 7.001'. 
Applying (8) with T = 0.25 and with a = 2, the weights of the gaussian neurons 
in the hidden layer are sk = 53.2835 for 1 i k 5 21. Adding pseudodesired 
outputs, the matrices G R2lx2l and D R2Ix4 are formed, and the unique 
linear system of equations in (9) is solved for W. 'Ihe gaussian neural network's 
output for 42 is shown in Figure 7. Once again, specification (i) is satisfied 
exactly, and specification (iii) is satisfied approximately. Specification (U) can be 
satisfied for smaller boxes compared to those boxes possible when the points are 
equidistant, as in Example 3.1. 

Table 2 Extra Initial Disturbances and Parameter Seu. 

In [Haclmey77]. linear models of a FlOO engine are developed for various 
flight mints based on altitude and mach number. In Table 3, 6 of t h e  flight 
poh-are listed with fictitious controller parameters, and in Figure 8, thesc six k 
diagrammed. It is desired to develop a neural network scheduler for interpolation 
betwm these flight points. The scheduler desired is a multi-parameter one, and 
the results of Section 2.2 are applicable. Since the operating points are not 
equidistant, the method of adding extra gaussian neurons to the hidden layer is 
chosen, and 6 extra gamsian neurons are ad&d to achieve equidistance. With r = 1 
camsponding to the altitude and with r = 2 correq"g  to the mach number, the 
matrix of centers is 

c =  [ 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.251 
and the vector of outputs for equation (9) is 

d = [ l  2 3 4 1 1 1 1 1 5 6 61'. 
Applying (28) with a = U), TI = .25. and T2 = 10, Sk] = 62.8378 and 4 2  = 
0.0393 for 1 S k .4 12. Solving (9) for w, the interpolation curve is shown in 
Figure 9. The lowest corner corresponds to the point (8,0.4), the most left cuner 
to (32.0.4). and the most right corner to (8, 1.35). Specifications (i) and (ii) are 
clearly satisfied, but due to the elliptical nature of the multidimensional gawh 
function. Specification (iii) is not met and unwanted "valleys" are fonned io the 
interpolation curve. 

Table 3 Selected Flight Points for FlOO Engine. ?;I z; Con;ller 
lKFeet Numbez Parameters 

10 IO 10 10 20 20 20 20 30 30 30 30 

10 3 
10 
20 0.50 1 
30 0.75 5 
30 1.00 1 6 

MachNumbcr 

Figure 8 Selected FlOO flight points for Example 3.3. 

I 
3 4 5 6 7 

Amplitudeof- 

Figure 7 Gaussian neural network output for u2 for Example 3.2. 

-~ 
l/Tz2 = 0.01 for 1 i k i 12. Note that two widths are used instead of one as 
suggested by Moody. Solving for w in (9). the resulting interpolation curve is 
shown in Figme 10. The lowest comer corresponds to the point (8.0.4). the maa 
left comer to (32.0.4). and the most right comer to (8, 1.35). After examining the 
actual values for the curve, specification (i) is met Specifmtion (ii), however, 
can not be satisfied for small thin boxes around the operating points, and in 
comparison to the curve in Figure 9. specification (iii) is be- satisfied by the 
curve of FigUte 10. 
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Figure 10 Moody's neural network output for Example 3.3. 

4 CONCLUDING REMARKS 
Using a neural network with gaussian nonlinearities, a method is described 

hen for scheduler implementation. Given the operating points and the control law 
parameter values to be sent to the controller. several specifications are made 
concerning the shape of the interpolation curve. The neural network 
implementation provides a class of curves to satisfy these SpecifrationS. which is 
accomplished by designing the generalization behavior of the neural network. The 
method performs well for a designed scheduler with onedimensional equidistant 
operating points but not as well when the operating points are not equidistant. For 
designed schedulers with multidimensional operating points. the method has some 
drawbacks a potentially large number of hidden layer neurons and the elliptical 
shape of the multi-dimensional gaussian function contributing to unwanted 
"valleys" in the interpolation curve. Currently, methods to alleviate these 
problems are being investigated. 

The results reported in this paper also appear in [Sartori91], where the design 
procedure is explained in more detail and extended examples are described. 
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