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Reconfigurable control system design via perfect model following
ZHIQIANG GAOt and PANOS J. ANTSAKLIS?

A novel model-following approach is developed to design reconfigurable
control systems. The conventional state-space linear model-following approach
to control is first re-examined with emphasis on the conditions for perfect
model following and its application to reconfigurable control system design.
New frequency domain necessary and sufficient conditions for perfect model
following are then obtained and they are used to gain insight into the selection
of the reference model and to develop a new design approach. This novel
design approach yields fewer constraints on the reference model than before,
and provides much greater flexibility in specifying the state trajectories of the
impaired system.

1. Introduction

Reconfigurable control systems (RCSs) are control systems that possess the
ability to accommodate system failures automatically based upon a priori
assumed conditions. The research in this area is largely motivated by control
problems encountered in aircraft control system design. In that case, the ideal
goal is to achieve so-called ‘fault-tolerant’ or ‘self-repairing’ capability in the
flight control systems, so that unanticipated failures in the system can be
accommodated and the airplane can be, at least, landed safely whenever
possible. Owing to the time constraints in many failure scenarios, the control
law redesign process must be automated and the algorithms used should be as
numerically efficient as possible.

In the context of RCS, the idea of controlling the impaired system so that it
is ‘close’, in some sense, to the nominal system has been explored in numerous
publications. Proposed methods include, but are not limited to, linear-quadratic
(LQ) control methodology (Looze et al. 1985, Joshi 1987, Huang and Stengel
1990, etc.), adaptive control systems (Morse and Ossman 1990, Pogoda and
Maybeck 1989, Dittmar 1988, etc.), eigenstructure assignment (Gavito and
Collins 1987, Napolitano and Swaim 1991, etc.), knowledge-based systems
(Huang 1989, Handelman and Stengel 1989, etc.), among others. Furthermore,
it will be shown in this paper that a widely used design approach for RCS, the
pseudo-inverse method (PIM) (Caglayan et al. 1988, Huber and McCulloch
1984, Ostroff 1985, Raza and Silverthorn 1985, Rattan 1985) is in fact a special
case of classical linear model-following control (LMF).

The PIM is attractive because of its simplicity in computation and implemen-
tation. The objective in this method is to adjust the constant feedback gain,
assuming that such gain is used in the nominal system, so that the reconfigured
system approximates the nominal system in some sense. A measure of closeness
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between the systems before and after the failure is the Frobenius norm of the
difference in closed-loop ‘A’ matrices. It was shown by Gao (1990) and Gao and
Antsaklis (1989, 1991) that by minimizing this norm the bound on the variations
of the closed-loop eigenvalues due to failures is minimized. Note that a
drawback of this method is that the stability of the impaired system is not
guaranteed and this may lead to unacceptable behaviour in certain failure
scenarios. A modified version of PIM (MPIM) was proposed to address the
stability issue, by which the difference of the closed-loop ‘A’ matrices is
minimized subject to some stability constraints (Gao 1990, Gao and Antsaklis
1991).

The LMF control system has been studied for over a decade and can be
found in many text books on control (see, for example, Landau 1979). The
objective of such systems is to make the trajectories of the output or state of a
physical plant close to that of a reference model that exhibits desired behaviour.
The design process of such systems is straightforward and the resulting control
systems possess simple structures with only the constant gains to be implemented
in the feedback and feedforward path. This type of control configuration has
been widely used in model-reference adaptive control systems. Note that the
LMF approach has been mainly studied in the state-space domain (Erzberger
1968, Chen 1973, Landau 1979).

There is a similarity between the design objectives of the LMF and the PIM
in terms of making one system, the plant or the impaired system, imitate the
reference model (in LMF) or the nominal system (in PIM). In this paper, the
conventional LMF approach in control system design will be examined in the
context of RCS. An important characteristic of the LMF control system design is
whether the plant can follow the reference model exactly, which is referred to as
perfect model following (PMF). Obviously, PMF is desirable since it enables us
to specify the behaviour of a system completely. Without achieving PMF, the
LMF approach cannot specify in advance how close the trajectory of the plant to
that of the reference model should be and this arbitrariness may not be
acceptable in certain control applications such as the RCS. On the other hand,
in conventional LMF the conditions for PMF, known as Erzberger’s conditions,
put severe constraints on the reference model and therefore make it in many
cases impracticable to obtain the PMF.

In the following sections, new conditions are derived in the frequency
domain for the PMF that are necessary and sufficient, as opposed to Erzberger’s
conditions which are only sufficient. These new conditions give much insight and
intuition on how to choose the reference model. They also show the limitations
of the conventional LMF approach. Furthermore, based on these new conditions
of the PMF in the frequency domain, a new design approach is developed to
achieve PMF with many fewer constraints on the reference model and the plant.
In this approach, the compensators designed could be either static or dynamic
depending on the reference model chosen. The stability robustness of such a
system is also studied.

In §2, the standard state-space LMF approaches are discussed and the
conditions for PMF are analysed. In § 3, a new design approach is developed to
achieve PMF with fewer constraints on the reference model. This new approach
is shown to provide better performance for the reconfigured system. Examples
are included for illustration. Finally, concluding remarks are given.
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2. Standard linear model following methods

The linear model-following approach to control is a state-space design
methodology by which a control system is designed to make the output of the
plant follow the output of a model system with the desired behaviour. In this
approach the design objectives are incorporated into the reference model and
both feedback and feedforward controllers are used, which are typically of zero
order. By using a reference model to specify the design objectives, a difficulty in
control system design is avoided, namely that the design specifications should be
expressed directly in terms of the controller parameters.

Assume that the plant and the reference model are of the same order. Let
the reference model be given as

Xm= ApXm + Bnun
| »
Ym= CnXm
and the plant be represented by
X, = Apx, + Byu,
2
Yo = Cpp

where xp, x,€R", uy, u,eR™, Ay, Ape€ R™", Bn, Bp,eR™™, Cp,
C, € RP*". The corresponding transfer function matrices of the reference model
and the plant are

Tm(s) = Cu(sl — Ap) ' By 3)
P(s) = Cp(sl — A,)"'B, (4)

Let e(t) represent the difference in the state variables
e(t) = xm(t) = xp(1) (5)

To achieve the PMF, one must insure that for any up, piecewise continuous,
and e(0) = 0, we shall have e(¢) =0 for all 1 > 0. _

Next, we discuss under what conditions the PMF is possible and how to find
the feedback and feedforward controllers to achieve the PMF. In the cases when
the PMF cannot be achieved, it is shown how the error can be minimized. These
results have been described by Landau (1979).

2.1. Implicit LMF

In the control system configuration of implicit LMF, the reference model
does not appear explicitly. Instead, the model is used to obtain the control
parameters, k, and k,. From (1) and (2), by simple manipulation we have

é=Apne+ (Ay — Ap)x, + Bpuy — Byuy, (6)
From the control configuration, the control input u, has the form
u, = kpx, + kylip (7)

The PMF is achieved if the control parameter k, and k, are chosen such that

é= Ape (8)
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or, equivalently,

(Am — Ap)x, + Bpup — Boup =0 (9)
Note that if a solution u, of (9) exists, it will take the form
uy = By(Am — Ap)x, + By Bpun (10)

where B; represents the +pseudo-inverse of the matrix By. From (10) k, and &,
can be found as k, = By(An — A,), and k, = B;Bm. By substituting (10) in
(6), a sufficient condition for the existence of the solution of (9) is

(I — ByB YA — Ap) = 0}
(11)
(I — ByB,)Bn=10

Note that the equalities are known as Erzberger’s conditions (Erzberger 1968).
Clearly, these are rather restrictive conditions, since most systems have more
states than inputs, BPB; # I. Thus (11) can only be fulfilled when (/ — BPB;)
is in both the left null spaces of (A, — A,) and Bp. It seems that, for an
arbitrary plant, it is rather difficult to find an appropriate reference model that
represents the desired dynamics and at the same time satisfies (11).

It should be noted that even when the conditions for the PMF in (11) are not
fulfilled, the solution in (10) still minimizes the 2-norm of the last three terms in
the right side of (6), i.e. [[(Am — Ap)xp + By — Bpuylla = [lé = Apell,.

This particular method of choosing u, has the advantage of not involving xp,
in the feedback thus eliminating the need for running the model on line.
‘Therefore the complexity of the control system is relatively low. One of the
disadvantages of this method is that when the PMF is not achievable, the
trajectory of e¢ may not be desirable since we do not have control over the
location of the poles in the system. Another disadvantage with this approach is
that, when the conditions in (11) are not satisfied, the solution (10) may result
in an unstable system. This drawback will be further discussed in the next
section when the relationship between the implicit LMF and the PIM method is

explored.

2.2. Explicit LMF

A typical configuration of the explicit LMF is as illustrated in Figure 2. In
the configuration of the explicit LMF, the reference model is actually imple-
mented as part of the controller. To compare with the implicit LMF, let
€ =Xy — Xp, Or equivalently, assume C, =/ and C, = /. By manipulating (1)
and (2), ¢ can also be written as

é= A + (Ay — Agfty + Byt — Bya,y (12)
X v
| . [ ] p
[k ]
|

Figure 1. The control configuration of the implicit LMF.
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¥
model LB ey Rk

Figure 2. The control configuration of the explicit LMF.

Let the control input be

up = Uy + uy = (kee) + (kpxp + kyun) (13 a)
where u; = k.e is the stabilizing gain, and u, = kyx,, + k,uy is to be deter-
mined to minimize |[(An — Ap)xp + Bulim — Byuslly = [|é = (A, — Bykeellz.
From (12), it can easily be shown that the sufficient conditions for the PMF are
exactly the same as those given in (11) and the corresponding control gains are

ko= Bp(Am — Ap)
} (13 b)
ky= By, By

with k. any stabilizing gain. Substituting (13 a) and (13 b) in (12), the equation
of error is

¢ = (A, — Bokee + (I — ByBy)Y(Am — Apxm + (I — ByBy)Bruy (14)
When the conditions in (11) are met, we have
¢ = (A, — Byke)e (15)

In this approach, if the plant is stabilizable we can guarantee the stability of the
closed-loop system by choosing k. appropriately, regardless of whether the
conditions in (11) are met or not. This can be illustrated as follows. Since
{Ap, Bp} is stabilizable, k. can be chosen such that (A, — Byk.) has all its
eigenvalues in the left half-plane; furthermore, let

f(t)y = (I = ByBy)(Am — Ap)xn(t) + (I = ByB,)Byun(t)

then (14) can be expressed as é = (A, — B,k.)e + f(t). Because the reference
model in (1) is stable, x, will be bounded and therefore f(r) will be bounded
for any bounded up. This implies that (14) is bounded-input bounded-output
(BIBO) stable.

A challenging problem in the LMF approach is to choose the reference
model appropriately. Not only must it reflect the desired system behaviour, but
it also must be reasonably chosen so that the plant can follow its trajectory
closely. Erzberger’s conditions give indications on the constraints of the refer-
ence model for the PMF. It can be used to check whether the existing reference
model satisfies the PMF conditions. However, as we can see in (11), it does not
give much information on how to select (A,,, By, Cp). In the design process,
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what is needed is a guideline that can be used to select the reference model so
that it will satisfy the Erzberger’s condition. We shall look into the frequency
domain for explanations of the PMF conditions to gain additional insight to the
problem.

2.3. Using the explicit LMF in RCS design

The standard LMF control systems described above can be directly applied
to the RCS design. Here, the explicit LMF approach seems to have significant
advantages over the implicit one since it guarantees stability (if the plant is
stabilizable). In the following example, this method is used to reconfigure a
flight control system. Assume that the plant is the impaired open-loop system.
To begin the design process, one needs to choose a reference model first. In
general, the reference model represents the desired behaviour of the closed-loop
system. For RCS, it is convenient to use the state-space model of the nominal
closed-loop system as the reference model. That is, the goal of the control
reconfiguration is to make the state of impaired system, x,, as close to that of
the nominal system, x,, as possible. Once the reference model is chosen, there
are three feedback and feedforward gains, k,, k, and k., to be determined
(13).

Example 1: Let the nominal plant be

~0.0507 3861 00 ~32:17 0-0
4 =| —00012  -05164 10 00 | 5 _|=00717
= | 00001 14168 ~—04932 00 |° U 7| -1645
0-0 0-0 1-0 0-0 0-0
0-0
0-0
C=|,0l D=0
0-0

and the closed-loop nominal system is {4 — Bk, B, C, D}, where
k = [—0-0043, —3-872, —0-7186, —0-0988]
For a hypothetical impaired plant {A¢, By, C¢, D¢}, assume
0-0
-0-0717

—0-1645 |’
0-0

Af=A, Bf= Cf=C, Df=D

In failure accommodation, the reference model {A,,, By, Cn, Dy} is chosen as
the nominal closed-loop system, i.e. A, =A— Bk, Bp,=B, C,=C and
D,, = D. Now the remaining task is to assign the feedback and feedforward gain
matrices {k., k., kn}. In this example the open-loop plant is unstable, thus the
stabilizing gain, k., must be implemented. Such stabilizing gain was obtained
using the LQR control design approach; where ke =
[0-2925 —8-83 —13-86 —16-74] is such stabilizing gain. The feedforward gain
matrices, k, and k., are determined by k,, = B, (An — A,) and k, = B, By, as
in (13) and they are k, =[0-0367 33-16 6-15 0-85], and k, = 8:56. To simulate
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the closed-loop system, its state-space description is derived having the form

Xm | _ - 0 Xmo| o By "
xg By(km + k) Ay = Bpke || %p Bpk, | ™

The closed-loop system is simulated using the initial conditions
x,(0)=[0000 -1] and x,(0)=[000 0 -1], and zero input. The outputs of
the reference model and the plant are very close to each other, as shown in
Figure 3. Note that the performance of the reconfigured system achieved here is
much superior to that obtained by using the MPIM approach under exactly the
same conditions (Gao and Antsaklis 1991). The PIM approach, in this example,
results in an unstable closed-loop system. On the other hand, however, there is
no guarantee that the explicit LMF can always achieve the performance as good
as this one. In fact, it is shown in simulations for different failures that the
system response is very much dependent on the types of failure that occurred.

It seems that the explicit LMF is more computationally efficient than the
MPIM since the stability issue is resolved directly by using the stabilizing gain
k.. In contrast, to guarantee the stability of reconfigured systems using MPIM
when the PIM solution cannot stabilize the system, a stabilizing gain must be
determined first. Then, the stability bounds of the parameters in the gain matrix
must be found, which is quite time consuming. Finally these bounds are used to
adjust the feedback gains to obtain better performance. In general, it seems that
the explicit LMF approach is well suited for the reconfigurable control problem.

2.4. Properties of the LMF control systems

The state-space model-following approaches shown above seems to have a
simple control structure and their design philosophy seems to fit into the
framework of reconfigurable control quite well. For these approaches, simple
constant feedback controllers are used to regulate the state trajectories of the
plant so that they follow the state of the reference model. To use it effectively in
reconfigurable control, we need to gain better understanding of the LMF
method. One of the vital properties of such systems is the system stability: is the

x10-3

-10
0

10 20 30 10 50 60 70 80
Figure 3. The outputs of the nominal and reconfigured closed-loop system using the explicit
LMF approach.



790 Zhigiang Gao and P. J. Antsaklis

system stability always guaranteed and does it have robust stability properties
with respect to uncertainties in the plant model?

It is also of interest to see how the perfect match can be achieved between
the plant and the reference model. The PMF is important because it enables us
to specify the system behaviour completely. In this section, the frequency
domain interpretation of the conditions of the PMF is studied. It is shown that,
in contrast to Erzberger’s conditions, the conditions in the frequency domain can
be used directly in choosing the reference model in the design process. The
stability robustness of the linear model-following system is also analysed.

Lemmal: Assume Cp, =1, C,= 1. A necessary and sufficient condition for the
PMF is that the reference model T, be obtained from the model of the plant
using constant state feedback u, = fx, + gr.

Proof: In the configuration of the explicit LMF, it is straightforward to find
that the transfer function matrix between u, and e is:

e= (I +Pk) W (Tp — PlkuyT i + ku))thpn (16)
where T, and P are defined in (3) and (4). This is derived as follows:
e=xy = XxXp=Tnuuy — P(kee + kyTrun + kylty)
therefore
(I + Pke = Tpuym — Plhpy Ty + kug)
(Tyy =~ PlkyTm + &)

thus giving (16).
From (16), clearly e = 0 for all u,, if and only if

Ty — P(kyThy + k) =0 (17)

which implies
T e = ~ Pl - Pl (18)
and we have f = k, and g = k,. O

Compare Lemma 1 to Erzberger’s conditions (11), Lemma 1 gives necessary
and sufficient conditions for the PMF which show exactly how to select the
reference model. It makes good practical sense in that if a plant is designed to
follow an artificial system exactly via constant state feedback, the artificial
system must have the same basic structure as that of the plant. In fact, the
Erzberger conditions can be seen as a special case of Lemma 1 since they are
simply the sufficient conditions for A, = A, + Bykp, and By = B,k,. It also
shows the limitation of this state-space approach in that the reference models a
plant can follow exactly in this configuration are those which have the same zero
structures as those of the plant. This is because the system zeros cannot be
changed by state feedback unless they are cancelled by the closed-loop poles.

For a successful implementation of PMF, it is important that k. provides
robust stability with respect to plant parameter uncertainty. Note that k. is the
only design parameter that affects the stability robustness as shown below. Here,
robust stability means that if the real plant is P instead of P, where
P = P + AP for some small AP, the closed-loop system should still be stable. In
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the following, the stability robustness is examined for the closed-loop system
designed by using the explicit LMF to achieve the PMF.

Lemma2: For the control gains {k., kn, k,} obtained by using the explicit
LMF described in (13), the closed-loop system from uy to e is stable if, for the
real plant P =P + AP, (I — Pk.) ' AP is stable.

Proof:
e=(+ Pk) W Ty — PlkpnTrn + ky))tim

= (I + Pk.) "N ((I — Pky)Ty — Pky))ttm

= (I + Pk) Y ((I = Pkyy) Ty — APk Ty — Pky))up

= (I + Pk.) Y (Pky, — APkyTy — Pky))tin

= (I + Pk) W (=APYknTn + kyun (19)
If (I + Pk.)"'AP is stable, then the transfer function matrix from u,, to e is
stable. O

Note that when there is no uncertainty in the plant, i.e. when AP =0, (19)
shows that the transfer matrix from wu, to e is zero, which agrees with the
original PMF design objective. When there is an uncertainty in the model of the
plant, Lemma 2 shows that, although the PMF is no longer valid, the system
stability will be maintained if k., provides robust stability. This implies that for
bounded u,, the error e will always be bounded; if u, is a constant, then it will
go to zero. Equation (19) also shows that to minimize the effect of system
uncertainty, the error (I + Pk,.) ' AP should be made small.

When the Erzberger condition is not met, an extra term will be added to é
besides the homogeneous part. Since we have two different expressions for é
and u, in the derivation of the implicit and explicit LMF, ¢ takes two different
forms. For the implicit LMF:

é = Ape + g(1) (20)

where g(t)=( — BF,B;)(Am = As)xy &L~ BPB;,')Bmum and for explicit
LMF: ,
é = (A, — Bpk.)e + f(1) (21)

where f(1) = (I = ByBy ) (Am — Ap)xm + (I = ByBy) Byl

Clearly, when Erzberger’s conditions are satisfied, f(z) = g(t) =0, and we
have perfect model following. When the condition is not met, f(¢) and g(t) are
nevertheless minimized in terms of the Frobenius norm and e will diminish in
the steady state if the system is stable. The key difference between these two
formulations is that, for the closed-loop system to be stable, it is required that
the plant be stable in the implicit LMF, while in the explicit LMF it only
requires the plant to be stabilizable and k. to be the stabilizing gain. This is
because for e to be bounded for a bounded input u,, under the conditions that
Ay and (A, — Bpk,.) are stable matrices, g(f) and f(¢) must be bounded. Since
the reference model is a stable system, x, is always bounded for a bounded
input u,,; therefore f(¢) is always bounded. On the other hand, g(¢) is bounded
only when x, is bounded, which requires that the plant be stable. It has also
been shown (Chen 1973) that the upper bound on absolute value of e, |e|, is
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minimized by the explicit LMF when Erzberger’s conditions are not fulfilled. It
seems that the explicit LMF has a clear advantage over the implicit LMF in this
sense. In the following it is shown that the PIM is only a special case of the

implicit LMF.

Linear model following and its relation to the pseudo-inverse method (PIM)

The PIM is a method that can be used to accommodate system failures that
are formulated as follows. Let the nominal plant be

X = Ax + Bu
} (22)

y = Cx
Assume that the nominal closed-loop system is designed by using the state
feedback u = kx, and the closed-loop system is

x= (A + Bk)x
(23)

y=Cx

where k is the state feedback gain. Suppose that the model of the system, in

which failures have occurred, is given as ‘

X.'f = Afo + Bfuf
} (24)
ye= Cexg
and the new closed-loop system is
X¢= (Af + Bek)xg
(25)
yi= Cpxg

where k¢ is the new feedback gain to be determined. In the PIM, the objective
is to find a k¢ so that the system A-matrix in (25) approximates in some sense
that in (21). For this, A + Bk is equated to A+ Bik; and in approximate
solution for k; is given by

ki = B{ (A — A¢ + Bk) (26)

where B{ denotes the pseudo-inverse of B;, and the resulting input to the
impaired plant is
us = B{ (A — A + Bk)x; (27)

Clearly, this is just a special case of (10) in the implicit LMF where u,, is set to
zero.

Since the PIM and the implicit LMF are essentially the same, our main
interests are in the case of the explicit LMF. From the above discussion, the
explicit LMF has the advantages of guaranteed stability and pre-specified error
trajectory. Note that in terms of control reconfiguration the reference model can
be selected as the nominal closed-loop system while the plant is the impaired
open-loop system. Once the failures are identified and the new model obtained,
the control gains {k., k,, k,} can be immediately reconfigured according to the
new model of the plant and the explicit LMF algorithm. The stabilizing gain k.
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can be found via many available computer algorithms such as the pole
placement or the LQ routine; the only non-trivial part in the determination of
k, and k., is the calculation of the pseudo-inverse of B, which can be found via
various methods in the numerical analysis literature.

In general, it is felt that the explicit LMF is a practical approach that can be
utilized in control reconfiguration. It seems that explicit LMF offers better
tracking than implicit LMF or PIM, since it is the difference of the states that
are being minimized. A disadvantage is that the closed-loop system is more
complex since the reference model must be implemented on-line.

A common shortcoming among many RCS design methods, including the
PIM and the LMF approaches, is the severe constraints needing to be satisfied
for a perfect match between the nominal system and the impaired system.
Although the output of the reconfigured system can be made very close to that
of the nominal system as shown in Example 1, there are always cases, at least
mathematically, in which the explicit LMF cannot achieve satisfactory perform-
ance for the reconfigured system. This is because the feedforward gains, k, and
k, are determined using a pseudo-inverse type approach to minimize a cost
function, f(t) = (Am — Ap)Xm + Bmlm — Byus. The cost function f(¢) will be
made small if (I — B,B,) is close to the zero matrix, as shown in (14), or
BPB; is close to an identity matrix. Therefore, we cannot prespecify how close
the nominal and the impaired systems should be because we do not have any
control over By, which is part of the model of the plant.

3. Explicit LMF with dynamic compensators

In RCS, the ideal goal is to develop a control system that is able to
accommodate a large class of different system impairments so that the recon-
figured systems behave exactly as prespecified. The explicit LMF approach
described above is an approach that makes the output of a plant follow that of a
reference model to a certain extent using constant feedback and feedforward
gains. The exact match only happens for a particular class of the reference
models that have been chosen to satisfy the severe constraints illustrated in
Lemma 1. In the control reconfiguration to accommodate system failures, these
constraints seem to be too restrictive. In this section we investigate the use of
dynamic compensators, instead of constant ones, to loosen the restrictions on
the reference models.

In the proof of Lemma 1, it is shown that for PMF a necessary and sufficient
condition is that the transfer function matrix from u, to e is zero. Lemma 1
applies only to the reference models and plants where Cp, = C,=1. In the
following, the transfer function matrix is derived for the general case where Cp,
and C, are not necessarily identities.

€=Yn— Yp
= Tty — Puy

Ty — Plkee + kypxm + ko)

= —Pkoe + Toty — Plkn(s] = Ap) ' Butty + kytin)

(I + Pke) M [Tm — Plkn(sI — Ay) "By + ky]]um (28)

]
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Clearly, a necessary and sufficient condition for the PMF is that
[Tm - P[km(SI - Am)_le T ku]] = (29)

Now it remains to solve (29) with respect to k, and k,. Note that there are
many solutions of (29). A simple solution is

[kma ku] = [0, Pn’Tm] (30)

where P, is defined as the right inverse of P, i.e. PP, = I, assuming it exits. It
is known that the conditions for &k, to be proper and stable is that the reference
model T, is chosen such that it is ‘more proper’ than the plant and it has as its
zeros all the RHP zeros of P together with their zero structures (see, for
example, Gao and Antsaklis 1989). It is also known that the right-inverse of P
can be calculated using a state-space algorithm which has good numerical
properties (Patel 1982). Note that the complexity of the compensator k, is
dependent on how different the reference model T, is from the open-loop
plant, P. This can be seen clearly from (30), where k, = P;T,,. For example, if
only a pair of open-loop poles are undesirable, i.e. the poles and zeros of P and
T, are the same except for one pair of poles, then k, is a second-order
compensator since all the poles and zeros of P, and T, are cancelled except
one pair of zeros of P and one pair of poles of T,. In case of failures, perhaps
all open-loop zeros and poles will be shifted. However, only the unstable poles
and dominant poles are of major concern in surviving the failures since their
locations dominate how the system will behave in general. Therefore, in order
to produce a fast and simple solution to keep the system running, 7, should be
chosen close to the impaired plant P with the exception of only a few critical
poles.

The main advantage of this approach is that there are fewer restrictions on
the reference model than before. The only restrictions are on the zeros of the
reference model, which are much more manageable than before. If the plant
does not have RHP zeros, or its RHP zeros are unchanged after the failure,
then the reference model is almost arbitrary except that it should be at least as
‘proper’ as P so that the compensator k, is proper. The disadvantage of this
approach is the increased complexity of the control system due to the higher-
order compensators required. This is a trade-off between the performance and
complexity of the control system.

Note that there are many control configurations, other than that of the
explicit LMF, that can be used for dynamic compensators. Here the same
configuration is used for both constant and dynamic compensators because it is
felt that the dynamic compensator can be used in conjunction with the constant
compensators for reconfigurable control purposes. As mentioned earlier, there
are two steps in the accommodation of failures. First, the impaired system must
be stabilized. In the explicit LMF approach, this is accomplished via the
implementation of the stabilizing gain k.. This must be executed quickly to
prevent catastrophic results from happening. Once the system is stabilized, it
gives time to the control reconfiguration mechanism to manipulate the compen-
sators to obtain better system performance. Assuming, by this time, that the
model of the impaired system is available, a reference model should be chosen
that has the desired behaviour for the system under the specific system failure.
Once the reference model is chosen, either the constant or the dynamic
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compensators can be computed and implemented as explained above. The
choice of the types of the compensator depends on the performance require-
ments and the limitations on the complexity of the compensators.

Next, the stability robustness is analysed. Let the real plant be P and the

nominal transfer matrix of the plant be P, where P= P + AP for some small
AP.

Lemma 3: For the control gains {k., kn, k,} obtained by using the explicit
LMF with the dynamic compensator described above from (28) to (30), the
closed-loop system from u,, to e is stable if, for the real plant P= P + AP,
(I + Pk.)"'AP is stable.

Proof: From (28) and (30)

e= (I + Pk) " (~AP)k,up (31)
If (I + Pk.) AP is stable, then the transfer function matrix from u, to e is
stable. [

Note that when there is no uncertainty in the plant, i.e. AP =0, (30) shows
that the transfer matrix from u, to e is zero, which agrees with the original
design objective. When there is an uncertainty in the model of the plant,
Lemma 3 shows that the system stability will be maintained if k. provides robust
stability. This is because, by design, k, is a stable compensator; therefore the
closed-loop system is stable if (I — Pk.) ‘AP is stable.

Example 2: To show the effectiveness of the new approach, we use the same
nominal system as in Example 1 except that the C matrix is changed to
[0-0241 —135-0 —103-9 21-0]. C is chosen as such for the convenience of the
simulation, since now the output stabilizing gain is simply k. = 1. The impaired
plant { Ay, B¢, C¢, Dy) is as follows:

0-0
-0-0717
-0-1645 |’
-1-0

Af=A, Bf= Cf=C, Df=D

The dynamic compensator obtained from (30) is k,, = 0, and
sT 4+ 27s% + 0-65° — 1.95* — 0-095% — 1-452 — 0-0016s — 0-0025
sT + 6-465% + 21-15° + 39-0s* + 35-65° + 11-852 + 0-51s + 0-1

The impulse responses of both the reference model, which is the nominal
closed-loop system, and the reconfigured system are shown. They match exactly,
as expected. This is compared with the response of the system reconfigured with
the standard explicit LMF method.

Here, the exact match is attained at the expense of having a seventh-order
compensator. This compensator can be implemented, together with the refer-
ence model, in the real-time aircraft control environment via flight control
computers. The complexity of these compensators may or may not be an issue in
the implementation depending on the capacity of the computers. If it is, then
the reference model has to be chosen close to the open-loop plant, as discussed
above, so that the poles and zeros of P and T, cancel each other except for
the critical poles. The standard explicit LMF has a very simple system structure

k, = 312
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Figure 4. The impluse responses of the reference model and the system reconfigured using
new and standard explicit LMF methods.

where only the constant gain matrices are to be adjusted for different failures. It
should be used whenever the performance of the reconfigured system is
acceptable. However, difficulty may arise when it does not provide satisfactory
performance and the dynamic compensator cannot be used due to the limitations
on the system complexity. Such problems will be investigated in future research.

4. Concluding remarks

The linear model-following methods in control system design were studied in
the context of reconfigurable control. The necessary and sufficient conditions for
perfect model-following were obtained using a transfer function approach, which
yields simple and intuitive constraints on the reference model. A new approach
was developed to design the reconfigurable control system so that the state
trajectories of the reconfigured system follow those of the reference model
exactly. This was achieved at the expense of increased system complexity due to
the use of dynamic compensators.

The advantages of using the LMF control methodology in reconfigurable
control system design can be summarized as follows. First, the widely used
pseudo-inverse method is only a special case of the LMF. By examining the PIM
in the context of LMF, it helped us understand the characteristics and the
limitations of the PIM. Secondly, like the PIM, the LMF control system is
simple in terms of design and implementation. More importantly, it guarantees
the stability of the reconfigured system assuming the impaired plant is stabiliz-
able. Thirdly, the new design approach proposed in this paper enables us to
achieve the PMF, and thus completely specify the behaviour of the reconfigured
system, with many fewer constraints on the performance specifications. Finally,
since the adaptive model reference control systems have been developed based
on LMF systems, it is possible to extend the results in this paper to adaptive
control systems. This may be necessary in certain cases since it could make the
reconfigurable control systems less dependent on the fault detection and
identification systems.

For convenience, it was assumed that the input, output and state of the
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reference model and the plant, or the nominal and impaired systems, are of the
same dimension. It can be shown quite easily that the approaches developed
here are valid even if the dimension of the input changes due to actuator
failures. In particular, the methods of determining the feedforward gains, (13 b)
and (30), will not be affected by the change in the number of columns in B, as
long as B, is a non-zero matrix, i.e. there is at least one actuator remaining
effective. Moreover, the only constraint for the explicit LMF approach is that
the states of the nominal and impaired systems have the same dimension. This is
necessary since the trajectories of every state in the reconfigured system can be
specified and manipulated only when the error is defined as e = xy — xp.
Meanwhile, the only constant for the LMF with dynamic compensator is that the
outputs of the nominal and impaired systems have the same dimension. For the
reconfigured system to be stable, the impaired system must be stabilizable
regardless of what method is to be used.

REFERENCES

CacrLavan, A. K., ALLen, S. M., and WeumuLLer, K., 1988, Evaluation of a second
generation reconfiguration strategy for aircraft flight control systems subjected to
actuator failure/surface damage. Proceedings of the IEEE 1988 National Aerospace and
Electronics Conference, pp. 520-529.

CHANDLER, P. R., 1984, Self-repairing flight control system reliability and maintainability
program executive overview. Proceedings of the IEEE 1984 National Aerospace and
Electronics Conference, pp. 586—590.

CHen, Y. T., 1983, Perfect model following with a real model. Proceedings of the Joint
American Control Conference, pp. 287-293.

DirtMAR, C. J., 1988, A hyperstable model-following flight control system used for recon-
figuration following aircraft impairment. Proceeedings of the American Control Confer-
ence, pp. 2219-2224.

ERrRzZBERGER, H., 1968, Analysis and design of model following control systems by state-space
techniques. Proceedings of the Joint American Control Conference, pp. 572~581.
EsLINGER, R. A., and CHANDLER, P. R., 1988, Self-repairing flight control system program
overview. Proceedings of the IEEE 1988 National Aerospace and Electronics Confer-

ence, pp. 504-511.

FrIEDLAND, B., 1986, Control System Design (New York: McGraw-Hill).

Gao, Z., 1990, Reconfigurable control: theory and applications. Ph.D. dissertation.

Gao, Z., and ANTsakLis, P. J., 1989 a, On the stability of the pseudo-inverse method for
reconfigurable control systems. Proceedings of the IEEE 1989 National Aerospace and
Electronics Conference, pp. 333-337; 1989b, On stable solutions of the one- and
two-sided model matching problems. IEEE Transactions on Automatic Control, 34,
978-982; 1991, On the stability of pseudo-inverse method for reconfigurable control
systems. International Journal of Control, 53, 717-729.

Gavrro, V. F., and Coruins, D. J., 1987, Application of eigenstructure assignment to self
reconfiguring aircraft MIMO controllers. Proceedings of the AIAA Guidance and
Control Conference, pp. 1-12.

Gir, P. E., Murray, W., and Wricur, M. H., 1981, Practical Optimization (London:
Academic Press).

Gorus, G. H., and Va~ Loan, C. F., 1983, Matrix Computations (Baltimore, Maryland:
Johns Hopkins University Press).

Gross, H. W., and Micvanko, B. S., 1988, Application of supercontroller to fighter aircraft
reconfiguration. Proceedings of the American Control Conference, pp. 2232-2237.

HanpeLman, D. A., and Stencer, R. F., 1989, Combining Expert System and Analytic
Redundancy Concepts for Fault Tolerance Flight Control. Journal of Guidance,
Control and Dynamics, 12, 39-45.



798 Reconfigurable design via perfect model following

Howerr, W. E., Bunpick, W. T., HuescHen, R. M., and OstrOFF, a. J., 1983, Restructur-
able controls for aircraft. Proceedings of the AIAA Guidance and Control Conference,
pp. 646-651.

Huang, C. Y., and StenceL, R. F., 1990, Restructurable control using proportional-integral
implicit model following. Journal of Guidance, Dynamics and Control, 13, 303-339.

Husegr, R. R., and McCurLocH, B., 1984, Self-Repairing Flight Control System. Society of
Automotive Engineers Technical Paper Series, 841552, Aerospace Congress & Exposi-
tion, Long Beach, California.

Josui, S. M., 1987, Design of failure—accommodating multiloop LQG-type controllers. IEEE
Transactions on Automatic Control, 32, 740-741.

Lanpau, Y. D., 1979, Adaptive Control: the Model Reference Approach (New York: Marcel
Dekker).

Looze, D. P., Wesss, J. L., Eterno, J. L., and Barrerr, N. M., 1985, An automatic
redesign approach for restructurable control systems. Control Systems Magazine.

McMamnan, J., 1978, Flight 1080, Air Line Pilot.

Morse, W. D., and Ossman, K. A., 1990, Model following reconfigurable flight control
system for the AFTI/F-16. Journal of Guidance, Dynamics and Control, 13, 969-976.

NarporLitano, M. R., and Swamm, R. L., 1991, Redesign of the feedback structure following a
battle damage and/or a failure on a control surface by eigenstructure assignment.
Proceedings of the AIAA Guidance and Control Conference, pp. 247-254.

NTSB, 1979, National Transportation Safety Board Accident Report of the American Airlines
DCI10 Crash at Chicago—O’Hare International Airport, May 25, 1979, NTAB-AAR-
79-17.

OstrOFF, A. J., 1985, Techniques for accommodating control effector failures on a mildly
statically unstable airplane. Proceedings of the American Control Conference, pp.
906-903.

PateL, R. V., 1982, Construction of stable inverses for linear systems. International Journal of
Systems Science, 13, 499-515.

Pocopa, D. L., and Mayseck, P. S. 1989, Reconfigurable flight controller for the STOL F-15
with sensor/actuator failures. Proceedings of the IEEE 1989 National Aerospace and
Electronics Conference, pp. 318-324.

Ratran, K. S., 1985, Evaluation of control mixer concept for reconfiguration of flight control
system. Proceedings of the IEEE 1985 National Aerospace and Electronics Conference,
pp. 560-569.

Raza, S. J., and SiLvertHOrRN, J. T., 1985, Use of pseudo-inverse for design of a
reconfigurable flight control system. Proceedings of the AIAA Guidance and Control
Conference, pp. 349-356.



	101 1
	101 2
	101 3
	101 4
	101 5
	101 6
	101 7
	101 8
	101 9
	101 10
	101 11
	101 12
	101 13
	101 14
	101 15
	101 16



