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ABSTRACT

Two different neural network implementations for control scheduling are
presented: one with gaussian nonlinearities and the other with sigmoid
nonlinearities. For the implementations discussed here, the neural network is
supplied information about existing operating conditions and then responds by
supplying control law parameter values to the controller. For each design, the
neural network has two layers of weights, and the values of the weights and biases
are based on given operating points for the scheduler. By designing the neural
network's generalization behavior, specifications for the interpolation between the
given operating points are satisfied. The gaussian neural network performs best
when the operating points are equidistant and has some drawbacks when used 1o
implement multi-parameter schedulers. The sigmoid neural network performs
equally well for both equidistant and non-equidistant operating points and
overcomes the gaussian neural network's difficulties of the multi-parameter case.

As discussed in [Antsaklis92, Sartori91}, a neural network may be used as a control law
scheduler. In this capacity, the neural network can be viewed as a high level decision maker
operating outside the conventional control loop to provide a higher degree of autonomy to the
system. Given a set of operating points and the associated set of parameters values for the control
law, the neural network is designed to satisfy given specifications for the interpolation between the
provided operating points. Here, these requirements for the interpolation between operating points
are treated as specifications for the generalization behavior of the neural network, a topic of
importance in current neural network research. Two types of neural networks are presented here
for satisfying the specifications for the control law scheduler: one using gaussian nonlinearities and
a second using gaussian-type nonlinearities formed via the difference of sigmoid nonlinearities.
The gaussian neural network performs best when the operating points are equidistant and has some
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disadvantages when used to implement multi-parameter schedulers. The sigmoid neural network
performs equally well for both equidistant and non-equidistant operating points and overcomes the
gaussian neural network's difficuities with the multi-parameter case.

Of the numerous curves that satisfy the specifications for the interpolation between the
operating points, the two neural network design procedures presented in this paper represent two
possible classes. Clearly, there exist other methods besides the ones presented here to
(mathematically) describe the curve. For instance, the specific interpolation curve may be modelled
with polynomials or splines. The advantage of using the neural network approaches described
here instead of one of these schemes is that, in addition to straight forward design schemes, the
actual construction of the neural network in hardware would utilize the inherent paralielism of the
neural network and hence result in a fast processing time.

For the neural network scheduler implementation described in this paper, the neural
network is first given information on the system's operating conditions or its environment and then
supplies control law switching information to the controller. As depicted in Figure 1, the neural
network's inputs are the inputs and outputs of the plant together with the reference signal. The
output of the neural network is the control law adjustment signal sent to the controiler. The neural
network's inputs are not restricted to these signals; other signals such as the plant's states,
derivatives, environmental conditions, or delayed values of any of these can be used as inputs to
the neural network. Basically, any signal that is designed into the operation of the scheduler is
used as an input to the neural network. Furthermore, the plant and controller can operate in either
continuous or discrete time. If the neural network is implemented in analog hardware, both the
plant and the controller can operate in continuous time. However, if the neural network is to be
implemented in software, both the plant and the controller need to be discrete or discretized
versions of continuous ones. In either case, the designing of the neural network as discussed in
this paper remains unchanged.

Figure 1 Neural network used as a scheduler.
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In Section 1, the type of scheduler implementation considered in this paper is defined, and
the implementation using a gaussian neural network is presented for both single-parameter and
multi-parameter operating points and discussed in terms of equidistant and non-equidistant
operating points. In Section 2, the implementation of a scheduler with a sigmoid neural network is
considered and also described in terms of schedulers with single-parameter and multi-parameter
operating points. Finally, several examples demonstrating the two neural network scheduling
implementations presented in this paper are supplied in Section 3. In particular, three scheduling
problems are solved using both of the neural network implementations, and the results are
compared.

1 IMPLEMENTATION USING A GAUSSIAN NEURAL NETWORK

The gaussian neural network implementation of a scheduler is divided into two cases:
single-parameter operating points and multi-parameter operating points. The single-parameter case
is further divided into equidistant operating points and non-equidistant operating points.

1.1 Single-Parameter Gaussian Neural Network Scheduler

In this section, a neural network is constructed to implement a scheduler with operating
points defined for a single parameter. For each operating point, the scheduler provides one or
more parameter values to be used in controlling the system. For the given values of the scheduler,
let v(j) denote the j‘lﬁl operating point for 1 < j < p, and let v e IRPX! denote the vector of all
operating points arranged in ascending order, where v(j) > v(j-1) for 2 2 j 2 p. Let d;(j) denote the
i desired output (i.e., the given control law parameter value) of the scheduler for the j! operating
point for 1 <i<nand 1 <j<p,and let d(j) € R™! and D € RPX" denote the vector for 1 <j<p
and the matrix of desired outputs, respectively. Thus, the p pairs {v(j), d(j)} are the given
operating points. For the neural network, let u € R*! denote the neural network’s input, and let
the neural network have multiple outputs denoted by z € R™! Fora specific input u, let z;(u) for
1 €1 <n and z(u) denote the output of the neural network.

In constructing the neural network to implement the designed scheduler, three
specifications are made:

@ If u = v(j), then z(u) = d(j).
(i) Ifue [v() - €., v() +&;,] and u = v(j), then 2(u) € {d;() - ¥ij.. diG) + ¥ijal-
(i) If ue [v(), v(+1)1, then z;(u) € [di(j), di(+1)].

As an example, Figure 2 illustrates one way in which these specifications can be viewed. The dots
correspond to the operating points and the given controller parameter, and according to
specification (i), the interpolation curve must pass through these points. The boxes surrounding
the dots correspond to the boxes described in specification (ii), and the boxes between the dots
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correspond to the bounding of the interpolation curve per specification (iii). The interpolation
curve must pass correctly through both sets of boxes. Clearly, there exist numerous curves that
satisfy these three specifications. With the design scheme described here for the parameters of the
neural network, a particular class of curves is achieved that satisfy these specifications, and of the
three specifications, (i) and (ii) can be satisfied precisely using the proposed procedure, and (iii)
can be approximately satisfied.

z4

Figure 2 Illustration of interpolation curve specifications.

With z e R™Y, an individual output of the neural network is described by:
h
Zy= 3 Wik 8(xy) (1)
k=1

where 1 €1 <n, w;y is a weight of the i linear neuron in the output layer, and g(xy) is the output
of the k' neuron in the hidden layer. Let W e R™® denote the matrix of weights for the output
layer. Since the scheduler has a single parameter describing its operating points, the neural
network requires only a single input u € RL, The output of the kib gaussian neuron in the neural
network's hidden layer is described by:
gxy) = exp(-x*) (2)
and
Xie = SV - )2 3
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where 1 £k <h, g:R — R is the nonlinearity of the hidden layer neurons and the gaussian
function with the variable o describing its curvature, s is the weight (or "width" of the gaussian
function), and ¢y is the bias (or "center” of the gaussian function). Lets € R ! denote the vector
of widths, and ¢ € R™1 denote the vector of centers. With o = 1, the traditional bell-shaped
curve is achieved, but by allowing o to vary, a class of curves is possible, which ailows for
greater flexibility in the design of the interpolation curve. Thus, for a particular neural network
implementation of a scheduler, the parameters W, s, ¢, and o need to be selected. The choosing
of the gaussian neural network parameters is divided into two cases: when the operating points are
equidistant and when they are non-equidistant.

LL1_Desien with Equidistant Operatine Point

For the first case, the operating points v(j) for 1 £ j < p are considered to be equidistant.
For the p operating points, assume the distance between each operating point is T. The number of
hidden layer gaussian neurons is set equal to the number of operating points, that is h = p. This
choice is not unreasonable since for many scheduler applications the number of operating points is
not unusually large. The center ¢ for the k'™ neuron is set equal to the operating point value for
the k% operating point:

cx = v(k) 4)

for 1 <k <h. Since ¢y corresponds to the center of the gaussian nonlinearity, setting ¢ equal to
the operating point parameter corresponds to placing the center of each gaussian neuron at each
operating point and allows for a localized effect at the output of these neurons with the appropriate
choice for each width sy.

To aid in satisfying specifications (ii) and (iii), the widths s are chosen such that (1) can be
approximated by

j+l
zj(uw) = kZ Wik 8(xk) &)
=

when u € [v(j), v(j+1)]. This implies that the tails of the gaussian nonlinearities g(xy(u)) for k # j
and k # j+1 are small compared to those for k = j and k = j+1 when u € [v(§), v(j+1)]. The
approximation of (5) also implies that the gaussian neuron with its center ¢y closest to the input u
has a larger response compared to the other gaussian neurons signifying that the input is closest to
the kP operating point :

gxx(w)) 2 g(xg(w)) (6)
for 1 Sf<handforue [v(k) - Ap.y, v(k) + Ay] where Ay is defined such that g(xp(v(k) + Ay)) =
Z(Xk41(v(K) + Ay)). With (6), the localized effect of the hidden layer neurons is preserved. Also,
the interpolation curve passing through a box specified by specification (ii) assumes the general
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shape of the output of the kth gaussian neuron if €. < Ap.; and €, < Ay. To further aid in
satisfying specification (iii), the widths s are chosen such that

h
Y g(xg(u)) =1 )
k=1

for u € [v(1), v(p)]. In conjunction with (5) and (6), (7) implies that for u € [v(k), v(k+1)] the
sum of the outputs of g(x;(u)) and g(x,(u)) is constant, and the kth gaussian neuron contributes
more to the sum when u is close to v(k) and less when it is closer to v(k+1). Since all the
operating points are spaced apart by an equal distance T, the width sy for each neuron is selected
equivalent such that each neuron has an equal response halfway between any two neurons. By
setting g(xy) in (2) equal to 0.5,
4g71(0.5) @®)
T’.Z
where 1 £k < h and g'l(r) = (-ln(r))” %, Unfortunately, due to the nonlinear nature of the
gaussian function of (2), using (8) to determine s does not insure that (5), (6), and (7) are satisfied
exactly, but rather are satisfied approximately; with (8), a good approximation to a constant unit
signal is achieved as described by (7), and through experimentation, a possibly more appealing
signal may be found by slightly adjusting the widths.

Due to the use of the gaussian nonlinearity and the choice of function's center and width for
each of the hidden layer neurons, the output of the neural network is close to 0 if the input is
outside the region of the operating points. In other words, if u << v(1) or u >> v(p), thenz = 0.
This is a drawback if a value is needed from the scheduler for all possible inputs. However, this
behavior could be used in a fault detection scheme to identify when the inputs have exceeded the
design domain.

The choice of the exponent o in (2) clearly affects the shape of the interpolation curve, In
Figure 3, g(xy) = exp(-x;*) is shown for various values of o with ¢y =0 and s = 1. Ascan be
seen, the gaussian curve begins to better approximate a unit pulse function as o. is increased. By

k=

appropriately choosing o, the interpolation curve can be designed to pass though the box defined
in specification (ii). The exponent o also affects how well (7) is satisfied and the choice of the
widths s in (8). It is suggested here that in general o 2 1. Furthermore, unless stated otherwise, it
is assumed that each neuron's nonlinearity in the hidden layer has the same value for the exponent
o. Although, by choosing different values of o for different neurons, various interpolation curves
are possibie.

With the widths, centers, and the nonlinearity specified for the hidden layer, the weights
for the linear output layer are chosen next. Let G & RP*! denote the output of the hidden layer
neurons for each of the p operating points. Thus, the output layer weights are found by solving
the following linear system of equations:
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u
Figure 3 Family of gaussian-type curves for varied .
GW =D. ()

Since G is square and nonsingular ¢h = p), (9) has a unique solution W. Thus, if the neural
network's input u is exactly one of the operating points, the neural network's output is exactly the
desired output of the scheduler, which satisfies specification (i). Furthermore, since s is chosen
such that (5) and (6) are true, G is approximately the identity matrix, and W can be chosen as
W=D. (10)

For the second case, the operating points v(j) for 1 £ j < p are considered to be non-
equidistant. Two methods are proposed to cope with this situation: adding more gaussian neurons
to the hidden layer or using an optimization procedure to adjust the parameters of the hidden layer
neurons. It is assumed that there are p hidden layer neurons with centers ¢ chosen as in (4), and
that the weights W are chosen such that (9) is a unique system insuring that specification (i) is
satisfied.

First, by adding more gaussian neurons to the hidden layer, a situation in which the centers
of the gaussian neurons are equidistant occurs. This approach is useful if some of the operating
points are equidistant, and the others occur at specific intervals between the operating points.
First, p hidden layer gaussian neurons are formed with their centers equal to the operating points as
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specified in (4). Next, more hidden layer gaussian neurons are added, and their centers are chosen
such that the centers of the gaussian neurons are equidistant. For example, if
v=[1 152 3 4)

is the vector of operating points, five hidden layer gaussian neurons are formed with ¢ = v(k).
Two more gaussian neurons are added with centers of 2.5 and 3.5 such that h =7. Since all of the
centers of the gaussian neurons are equidistant and T = 0.5, the widths s are found via (8) with «
=2, and sp = 13.3209 for 1 <k <7. With the centers and the widths selected, the exponent & can
be varied to further satisfy the specifications of the interpolation curve. The weights for the output
layer are found by forming a linear system of equations similar to that of (9). To make the system
unique, the desired output associated with an added gaussian neuron is assigned either a specified
value of a close operating point or an interpolated value from nearby operating points.

Second, instead of adding neurons based on pseudo-operating points, an optimization
procedure may be used to find the gaussian neural network's parameters. In this paper, a gradient
descent procedure is proposed to cope with the case of non-equidistant operating points and to
adjust the parameters of the hidden layer. The hidden layer is constructed of h = p gaussian
neurons with exponent ¢ and with centers ¢ equal to the operating points of the scheduler as

described by (4). With the cost function
h h
=180 S et +L 3 (- 3 g, (11
2 2.
Al k=l Fl k=l

an approximate unit signal from the hidden layer as described by (7) is desired. The first sum
corresponds to the neural network's output for inputs equal to the operating points. The second
sum corresponds to the output of the neural network for q other values u(j) € [v(1), v(p)]. The
particular points in the second sum are not specified in order to leave this as a design consideration.
To apply the gradient descent approach, the widths s first need to be initialized. One possibility is
to initialize them to values similar to those described by (8):

4505
WO = D) - vio)?

(12)

4g71(0.5)
s(0) = 5
(v(K) - v(k-1))
Since the operating points are assumed to be not equidistant, the values for s;(0) given by (12) and

(13)

by (13) are presumably unequal. So, one, the other, or some combination can be used. To help
minimize F in (11), the exponent o for each neuron can be adjusted independently such that o is
the exponent for the k' neuron in the layer,

With the centers, widths, and exponents initialized, the following gradient descent rules are
used:
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OF
St ) = st -y - (14)

Sk
ci(t+l) = cp(t) - nc;i (15)

and

o(t+1) = og(t) - Ny — OF (16)

oy

where tis the iteration number and g, 1, and Ny are the step sizes. Rewriting the cost function
of (11) as

prq prg_ h
F= 3 F() =1 % (1- 3 gxuGM)? an
J=1 =1 k=1
where u(j) = v(j) for 1 <j <p and u(j) € {v(1), v(p)] for p+1 <j < p+q, the partial derivatives are
F
88 D _ o gxg) (1 - 2 gxp) %! () - e)? (18)
Sk
E
5&“) =20 g0 (1 - z g0 27 @) - cisi (19
k
and
Fi
20— 5000 (1 3 g0x0) )
Oy

The gradient procedure can be terminated when the cost function is decreased sufficiently or when
the output of the hidden layer is satisfactorily close to a unit signal. In practice, (14) can be
modified to

SEG)

21
55 ea))

s(t+l) = s () - ——

where the gradient in (14) is approximated by the partial derivative of (18), and the input points
u(j) are chosen randomly with an equal probability for each one. The same approximation can be
performed for (15) and (16). This approach may speed convergence as well as help to preserve the
local properties of the gaussian neurons in the hidden layer. Furthermore, not all of the parameters
need to be modified. For instance, perhaps only the widths s need to be adjusted via the gradient
descent procedure. Once the widths, centers, and exponents are found, the weights w;y of the
output layer are then uniquely determined per equation (9).

When the operating points are not equidistant, both of the methods proposed can also be
used to determine the parameters of the hidden layer gaussian neurons. Extra neurons can first be
added at desirable locations, and the gradient descent rules of (14) to (16) can then be used to find
the appropriate parameters of the hidden layer. To find the weights wy, of the output layer, extra
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desired outputs are needed as described previously to insure that the linear system of equations
described in (9) remains unique.

L13 Comparison to Qther Methods

Here, other methods proposed to determine the parameters of the gaussian neural network
are discussed, and in particular, the design procedure of [Moody89] and [Moody88] is closely
examined. In comparing the method proposed here and Moody's method, the following are the
same: h = p, the centers are chosen as in (4), and the output weights as in (9). The only
differences considered here are the choices of o = 1 and different widths s.

The design procedure proposed by Moody is presented next. To choose the centers,
Moody proposes to use the standard k-means clustering algorithm since it is assumed that the
number of training pairs p is large, which is not the assumption made here for the scheduling
problem. However, the case when the centers are chosen equal to the training inputs as in (4) is
treated in Moody's examples. The exponent ¢ of the gaussian nonlinearities is specified as 1. The
widths s are determined by a "P nearest neighbor” heuristic, which in [Moody88] is described as
using the root mean square value of the Euclidean distance to the P nearest neighbor centers to

determine the widths. Using the notation here and P =2,
2

(e - ck-1)% + (a1 - )7
for 1 <k £h. The weights of the output layer are determined via a LMS algorithm. If h = p and
the centers are chosen as in (4), the LMS iterative procedure is not needed and the unique system
of (9) can be solved instead. In comparing the method proposed here and Moody's method, the
following are the same: h = p, the centers are chosen as in (4), and the output weights as in (9).
The only differences considered here are o = 1 and the widths chosen as in (22). Application of

Sk = (22)

Moody's method for selecting the neural network's parameters are recorded in {Leonard90] and
[Ya090], which both address the problem of fault detection and identification.

In [Moody89] and [Moody88], the use of gradient descent procedures to determine the
neural network's centers, widths, and output layer weights are discussed. The cost function
considered uses the sum of the squares of the errors:

=1 § 46y - 262 23)
J=1

which can be compared to the one proposed in (11). In (23), the neural network is assumed to
have only one output. The gradients of (23) with respect to the centers, widths, and weights are
formed and used to update the centers, widths, and weights, respectively, such that (23) is
minimized. However, as pointed out in [Moody89], the use of a gradient descent procedure to
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determine the widths of the gaussian nonlinearities may reduce the local effect of the hidden layer
neurons,

In [Poggio90], a practical algorithm is provided to determine the centers, widths, and
weights of the neural network which involves a gradient descent procedure after initializing the
neural network's parameters to specific values. Gradient descent procedures to determine the
neural network's parameters are also discussed in [Huang89], which addresses the identification of
firing patterns of neuronal signals, and in [Farrell90], which uses the neural network to control the
depth of a submarine.

1.2 Multi-Parameter Gaussian Neural Network Scheduler

In this section, a neural network is constructed to implement a scheduler with operating
points that vary for more than one parameter. For the given values of the scheduler, let v, (j) denote
the r'f parameter of the scheduler for the jLh operating pointfor l Sr<mand 1 €£j<p. Let v(j) €
R™*! denote the operating point vector for 1 $j <p. As described previously, d(j) € R™! and D
e RP™ denote the vector for 1 <j <p and the matrix of desired outputs, respectively. Thus, the p
pairs {v(j), d(j)} are the given operating points. For the neural network, letu e R™*! denote the
neural network's input, and let the neural network have multiple outputs denoted by z € R™!,
For a specific input u, let z;(u) for 1 <i < n and z(u) denote the output of the neurai network.

The output of the gaussian neural network is given by:

h
zi= 3 Wik 8(Xy) (24)
k=t
where 1 <i <n. The outputs of the hidden layer gaussian neurons are described by:
g(xp) = exp(-x%) (25)
and
B 2
Xk = Y Sl Ve - Cip) (26)
=1

where 1 Sk<h. LetS ¢ RM™™ denote the matrix of widths, and C € RI*™ denote the matrix of
centers. Compared to the gaussian neurons proposed by [Moody89], the widths sy, in (26) vary
for the different r, which allows the gaussian nonlinearity to assume an ellipsoid shape for higher
dimensions of operating point parameters and not just a circular shape.

In choosing the values for the centers, widths, and the gaussian variable c, it is once again
desirable to satisfy the three design specifications stated in Section 1.1. In addition, the two cases
considered previously for the spacing of the operating points are applicable here: when the
operating points are equidistant and when they are non-equidistant. For the multi-parameter case,
equidistance is considered for each individual direction and not as a norm over all the directions.
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For the first case when the operating points are equidistant, the previous results are directly
extended. A two layer neural network is formed with h = p hidden layer gaussian neurons and
output linear neurons. The center ¢y, for each gaussian neuron is set equal to the corresponding
parameter for each operating point:

Cir = V(k) 27
for1 <r<mand I <k <h. With T, denoting the distance between the two operating points for
the i parameter, the width s for each neuron is given by:

457105
e 28)
for1 <r<mand 1 <k <h. The gaussian variable o is chosen to satisfy specification (ii), and the

weights wy, for the output layer are found by solving the unique linear system of equations in (9).

Spr =

For the second case when the operating points are not equidistant, the results from Section
1.1.2 extend directly. If the operating points are well placed, extra gaussian neurons can be added
to the hidden layer such that with the extra gaussian neurons the centers of all the gaussian neurons
are equidistant. Also, similar to the approach described previously, an optimization procedure may
be used to determine the widths, centers, and exponents ¢. In addition, both adding extra
gaussian neurons and using an optimization procedure can be combined to satisfy the design
specifications.

As the number of parameters for the operating points increases, one potential disadvantage
of adding extra neurons is the possibility for a large number of neurons to result; if extra neurons
are added for a multi-parameter scheduler of high dimension, the size of the neural network may
become unwieldy. However, for the examples provided in the Section 3, this is not the case.
Another drawback with this approach is that “valleys" develop in the interpolation curve due to the
multi-dimensional ellipsoid described by (25) and (26). This is illustrated in Example 3.1.4.

2 IMPLEMENTATION USING A SIGMOID NEURAL NETWORK

Instead of using hidden layer neurons with gaussian nonlinearities to implement a scheduler
as in Section 1, gaussian-type nodes formed by the difference of sigmoid nonlinearities are used in
this section for the hidden layer neurons. Several of the drawbacks of the gaussian neural network
implementation of the previous section are eliminated using the sigmoid neural network of this
section. For a scheduler with single-parameter operating points, the operating points do not need
to be equidistant for satisfactory results. For a designed scheduler with multi-dimensional
operating points, the unwanted "valleys" are no longer prevalent, and the potentially large number
of hidden layer nodes may be avoided. Furthermore, the specifications for the scheduler's
interpolation curve are fully satisfied.
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The sigmoid neural network implementation of a scheduler discussed in this section is
divided into two parts: the single-parameter scheduler discussed in Section 2.1 and the multi-
parameter scheduler described in Section 2.2.

2.1 Single-Parameter Sigmoid Neural Network Scheduler

The same notation as in Section 1.1 is used here to denote the scheduler's operating points
and the neural network's inputs and outputs. In addition, the same three specifications as
described in Section 1.1 for the interpolation curve need to be satisfied.

An individual output of the sigmoid neural network is described by:

z;(u) = :élwik g (w 29
where 1 £i <n, wy is a weight of the i'® linear neuron in the output layer, and g is considered to
be the output of the k! gaussian-type node in the hidden layer. Let W ¢ R®+D*0 genote the
matrix of weights for the output layer. The output of the k'™ node in the neural network's hidden
layer is described by:

grl{u) = o(u, cg.1, Sk-1) - o(u, Cy, Si) 30

and
1

L+ es-0 eh

o(u, c,s) =

where 1 £k Sh+1, 6:R — R is the sigmoid nonlinearity of the hidden layer neurons, ¢y is the
bias (or "center” of the sigmoid function), and sy is the weight (or "slope” of the sigmoid
function). Let
o(u, ¢g, sp) =1 (32)

and

o, Chyis She1) = 0. (33)
for all u. Let ¢ € R™! denote the vector of centers, and s € RP*! denote the vector of slopes.
With sy = 1, the conventional sigmoid curve is achieved, but by allowing sy to vary, a class of
sigmoid functions is possible, which allows for greater flexibility in the design of the interpolation
curve. Thus, for a particular neural network implementation of a scheduler, the parameters c, s,
and W need to be selected.

Due to the choice of o(u, cq, sg) and 6(u, Chyj, She1), When the neural network's input is
outside the design domain, the neural network's output is equal to the designed scheduler's outputs
associated with either the first or last operating points. In other words, if u < v(1), z =d(1), orif u
> v(p), then z = d(p). If instead it is desired that if u << v(1) or u >> v(p), then z = 0, the choice
of a(u, g, sg) and 6(u, Cp,1, Sp4+1) can be modified to accomplish this.
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The number of hidden layer gaussian nodes is set equal to one less the number of operating
points, that is h =p - 1. The center ¢, for the k'™ node is set equal to the distance halfway between
the k™ and the k+1)P operating points:

o =3 [v(K) + v(k+1)]. (34)
for 1 Sk <h. Since ¢y, 2 ¢y, g approximates a gaussian-type nonlinearity centered around v(k),
and this allows for a localized effect at the output of the nodes gy with the appropriate choice for
each slope si.

To aid in satisfying specifications (ii) and (iii), statements similar to those in (5) - (7) are
made. The widths s are chosen such that (29) can be approximated by

_ il
%) 2 3 wik g(v) (35)
=]

when u € [v(j), v(j+1)]). The approximation of (35) implies that when the node gi has a larger
response compared to the other nodes, the input is closest to the k' operating point:

gx(u) 2 gg(u) (36)
for1<f<h+1andforue [v(k)- Apq, v(k) + Ag] where Ay is defined such that gy (v(k) + Ay)
= gr+1(v(k) + Ay). To further aid in satisfying specifications (ii) and (iii), the slopes s are chosen

such that
h+1

Y gg(u) =1 (37
k=1
for all u. In conjunction with (35) and (36), (37) implies that for u € [v(k), v(k+1)] the sum of the
outputs of gy (u) and gy, ;(u) is constant, and the node g; contributes more to the sum when u is
close to v(k) and less when it is closer to v(k+1).

The choice of the slope sy clearly affects the shape of the interpolation curve and the
localization properties of gaussian-type nodes g,. In Figure 4, o(u, 0, s) is shown for various
values of s. As can be seen, by increasing s, the sigmoid function curve begins to better
approximate a unit step function. As an example of the formation of a gaussian-type curve, Figure
5 shows the output of gy (u) = 6(u, -2, 5) - 6(u, 1, 20) which can be viewed as a gaussian-type
curve centered at 0 with asymmetric sides. Furthermore, by appropriately choosing sy as
discussed below in Theorems 2.1 and 2.2, the interpolation curve can be designed to pass though
the boxes defined in specification (ii).

With the centers and the slopes specified for the hidden layer, the weights for the linear
output layer are chosen next. Let G € RP*™1) denote the output of the hidden layer nodes for
each of the p operating points. Thus, the output layer weights are found by solving the following
linear system of equations:

GW =D. (38)
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Since h = p - 1, (38) describes a unique linear system of equations. Thus, if the neural network's
input u is exactly one of the operating points, the neural network's output is exactly the desired
output of the scheduler, which satisfies specification (i). Furthermore, due to the choice of s per
(35) and (36), if the sigmoid neural network's input u is exactly the pLh operating point, the output
of the p“‘ hidden layer gaussian-type node is 1 while the outputs of the other hidden layer
gaussian-type nodes are 0. Hence, G can be assumed to be the identity matrix, and W can be
approximated by
WwW=D. (39)
With the next lemma, the choice of the slope sy is related directly to specification (ii).
Assume the centers ¢ are chosen as in (34). Since s needs to satisfy (35) and (36), it is assumed
W is found via (38), or (39). For simplicity, it is assumed thatn = 1.

Lemma2.1;
With u € [v(k) - &, v(k)] for 0 <g_ < Ay, if z(u) € [d(k) - ¥, d(K) + i, ], then

Sgg 2 -1 ln[mu-{ o kel Pk - kel } - 1]. (40)
v(k) - €g_ - cx.1 d(k) - Y. - wg.1 d(k) + Vg4 - Wi g
Proof:

From (35),

Z(u) = wy_18k-1(0) + wig(u).
Since the sigmoid output o(u, ¢y, sy.1) of node gy is the same as the sigmoid output o(u, ¢i_1,
sx-1) of node gy and due to the localized effect properties of these nodes as described by (35) and

(36), the neural network output depends only on this sigmoid:
Wk - Wk.1
o Sk-1{U - Cic-1)’

Z(IJ) = Wk-l(1 - G(ll, Ck-1» Sk-l)) + WkG(l], Cr-1» Sk-l)) = W1 + .
+

So,
_ z(u) - Wi.]

o(u, Ck.1, Sk.1) = Wi - We1
Using z(u) = d(k) - ¥,. and z(u) = d(k) + ¥, two bounds for 6(u, cy_;, si.;) are found, and
depending on the relationship between d(k) and d(k-1) (i.e, d(k) > d(k-1) or d(k) < d(k-1)) and
due to the sharing of the sigmoids between gy_; and gi, one of these values will be larger than 1
and the other will be less than 1. Due to the nature of the sigmoid function, 0 < o(u, ¢y_1, S¢.1) <

1, and one of the bounds is useless. Hence,

d(k) - Y. - wk.1 d(k) + Yy - Wi g }
Wk - Wkl 7 Wk Wk '

o(u, Cy.1, Sk-1) S min{
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Figure 5 The gaussian-type function gy (u) = ¢(u, -2, 5) - o(u, 1, 20).
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So,

c'sk-l(u'ck-l)smi"{ Wi Wil | Wk- W) } 1,
d(k) - Y. - wk.1 d(k) + Yy - Wit

k127 --:k 1“‘[miﬂ{d ko el Tk Tkl } - 1].
- (k) - Yk - w1 d(k) + Yiep - Wiog

since u - ¢y_; > 0 because u 2 v(k) - €. > ¢y.1. Choosing u = v(k) - g, the endpoint of specified
region, (40) results. ¢

The next lemma addresses the case when u € [v(k), v(k) +g,].

Lemma2.2:
With u € [v(k), v(k) + €.} for 0 <, <Ay, if z(u) € [d(k) - Y., d(k) + ¥y, ], then

i 2 -1 ]n{ Wkl - Wk , Wk+1 - Wk } . 1]_ (41)
v(k) + €py - Ck !d(k) - Yk- - Wk d(k) + Yiey - Wi
Proof;

Similar to the proof of Lemma 2.1. ¢

Thus, to satisfy specification (ii) for all operating points, the slope s; needs to be chosen

such that
o> -1 m[ . { Wkl - Wk
k - »
v(k+1) - €(k+1)- - Ck d(k+1) - Y(k+1)- - Wk
Wieel - Wi } . 1] (42)
d(k+1) + Yge1)s - Wi
and
5 2 -1 ln’:max{ Wil - Wk ’ Wgke1 - Wk } . 1] (41)
v(k) + €xy - Ck d(k) - Y- - wg d(k) + Vg4 - Wi

are bothmetfor 1 <k <h,andif n> 1 for 1 £i<nas well. If d(k) = d(k+1), then specification
(iii) requires z;(u) = d(k) = d(k+1) for u € [v(k), v(k+1)], and the solving of (42) and (41) foru =
v(k+1) - €x41)- and u = v(k) + €, is unnecessary. To satisfy specification (iii) under this
condition, the slope sy is chosen such that (35), (36), and (37) are satisfied.

Due to the way in which the neural network parameters are chosen, the behavior of the
neural network is expressed in equations (29) to (33). However, the neural network can be
reconfigured in a more economical fashion, and equations (29) to (33) are equivalent to the
following:
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h-1
zi(u) = kzl(Wi’k+1 - Wi_k)O'(ll, Ck» Sk) + wj1 - WihO'(u, Ch» Sh) 43)
and
1
o(u,c,s) = m 31

where 1 €i<n,

2.2 Multi-Parameter Sigmoid Neural Network Scheduler

The same notation as in Section 1.2 is used here to denote the scheduler's operating points
and the neural network's inputs and outputs. In addition, the same three specifications as
described in Section 1.1 for the interpolation curve need to be satisfied.

For the multi-parameter scheduler case, the output of the neural network is given by:
hl-l-l hm+1
zi(w) = k;‘.;l-o-krfl:iwikl...km 81k, (W) - mk,(Um) (44
where 1 €£i <n. For m = 1, (44) reduces to (29). The output of the rkrth hidden layer gaussian-

type node is described by:

&k (Ur) = O(Up, Cre-1)s Se(-1)) - O(Ups Crics Seic) (45)
and
o, ¢, 9 = ——; (31)
where 1Sk <h,+land1<r<m. Let
o(uy, €0, Sr0) = 1 46)
and
O(Up, Crfhy+1)» Se(h,+1)) =0 @7

forl1 Sr<mandforallu. Lete, e R"™*! denote the vector of centers, and S € R"*! denote
the vector of slopes for I Sr<m. Since the sizes of ¢, and s, are not restricted to be the same for
1 <r < m, the formation of a matrix of centers and a matrix of slopes may not be possible. In
(44), the outputs of the gaussian-type nodes are multiplied together, which is unusual when
compared to conventional neural networks. With the multiplication, the specification of the centers
and the slopes for the sigmoid neurons corresponds to the specification of hyper-rectangles around
the operating points. By appropriately choosing these parameters, the entire input space can be
mapped to particular desired outputs of the neural network scheduler, and no "valleys" develop
between the gaussian-type nodes, as was the case in Section 1.2.

The selection of the neural network's centers, slopes, and weights for the multi-parameter
scheduler is divided into the two cases of equidistant operating points and non-equidistant
operating points with the case of equidistant operating points considered first. The term
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"equidistant” for the m-dimensional case refers to the operating points being an equal distance apart
in each dimension and is not defined as a norm over all the dimensions. Instead of denoting the
operating points as v(j) for 1 <j < p, the set of all equidistant operating points is considered to be
comprised of elements from vectors containing information on all the values of all the operating

m
points. Let p; denote the number of values for the ' dimension such that p = [] p,. Let v, = [vyy,
r=1

ooy v,.pr]' e RP™! denote the vector of values of the operating points for the ' dimension such
that Vi(k+1) 2 Vik, forl<r<mand 1<k, <p,. The counting of the p operating points is not

important; rather, their location in the input space is important. The number of hidden layer

gaussian-type nodes in the ™ dimension is set equal to one less the number of operating points,
thatis h, =p,- 1, for 1 St <m. The center Crk, is set equal to the distance halfway between the

rk,.lh and the r(kl.+1)th operating points:

Crk, =3 [Vek, + Vek 1)) (48)
forl1 sSr<mandforl <k <h, Since Cr(k,+1) 2 Crk_for 1 <r<m, gy approximates a gaussian-
type nonlinearity centered around Vrk » and this allows for a localized effect in the shape of a hyper-

m
rectangle at the output of the node [] &k (uy) with the appropriate choice for each slope Srk -
=l

In choosing the slopes, the multi-dimensional equivalents of (35) to (37) need to be
satisfied. For (35), this implies that for any input u the output is dependent only on the closest
gaussian-type nodes. For (30),

grkr(ur) 2 grfr(ur) (49)
for 1 Sfr<h; +1andforu;e [V - Ay 1y Vek + Ak ] where Ay is defined such that gq (Ve
+ A'kr) = gr(k,+1)("rk, + Ark,) for 1 <r<mand 1 <k, <h,. Furthermore, the interpolation curve

passing through a box described by specification (ii) assumes the general shape of the output of

m
u) if €4 . € A .1y and €Ay forl £r<m. For (37),
Tlga (up) if €n < Arge-1) 0d €y € A, @37
h+l hp+lm

... I grk,.(ur) =1 (50)
k=l k=11

for all u.
With the centers and slopes chosen to satisfy (49) and (50), which aid in satisfying
specification (iii), the weights wi i can be found. Forming a matrix G e R+ (b 1))

from the gaussian-type node's outputs, (38) is solved for the matrix W e ]R[(h‘“)"'(h“""l)]x".

m
Since hy =p; - 1 for 1 £ r < m and since p = [] p,, (38) describes a unique linear system of
r=1
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equations. Furthermore, the results of Theorems 2.1 and 2.2 can be extended to the muld-
dimensional case with the appropriate changes to the indices.

If the operating points are not equidistant, two choices are possible: adding extra pseudo-
operating points such that equidistance occurs or locating the boundaries of the hyper-rectangles
for each operating point such that the entire input space is covered. The first possibility is more
viable when the operating points are close to being equidistant, and a few extra points are needed to
achieve the equidistance property. Once this is accomplished, the above procedure for choosing
the centers for equidistant operating points is followed for the set of operating points and added
pseudo-operating points. When solving (38), extra pseudo-desired outputs are added such that
(38) remains unique. These added outputs can be chosen to be the same as nearby ones or
extrapolated values from surrounding ones.

For the second possibility, hyper-rectangles are found for the given operating points such
that the entire input space is covered. Since the locations of the operating points are no longer
equidistant, equation (36) can be repiaced by

p
zi(u) = kglwik g1k(uy) - Emk(p) (51)

where 1 <i £ n. For low dimensional operating point parameters, the choosing of the hyper-
rectangles may be performed manually. However, for higher dimensions, this may become
impractical. In [Gonzalez90], this problem is addressed as the "CR,," problem (or "CR4" using
the notation of [Gonzalez90]). For the CR, problem, it is desired to to find m-dimensional hyper-
rectangles of fixed size and orthogonal to the coordinate axes such that all the p operating points are
covered. The problem CR,, is known to be NP-hard, and Gonzalez presents algorithms for
approximating a solution to the problem. Once the hyper-rectangles are found, the centers of the
sigmoid neurons are chosen as the boundaries between them. The slopes are chosen to satisfy the
specifications, and the output layer weights are found via (38).

3 EXAMPLES
The examples are divided into two sections: those pertaining to the gaussian neural network
described in Section 1 and those illustrating the sigmoid neural network of Section 2.

3.1 Gaussian Neural Network Examples
Example 3.1.1;

In [Peek90], a parameter learning method is presented and used to define the region of
operation for an adaptive control system of a flexible space antenna. In one of the experiments
described, an initial pulse disturbance is applied to the plant, and the adaptive controller is required
to follow a zero-order reference model. The goal of the parameter learning system is to find values
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for the four adaptive controller parameters (61, Gy, L, and L) for varied amplitudes of the initial
pulse such that a defined performance index based on the output of the plant is small. In Table 1,
the values found for the controller parameters for different pulse amplitudes are repeated. Using
this table, the goal here is to construct a neural network scheduler such that a smooth interpolation
is achieved between the 9 operating points. Since only the amplitude of the pulse disturbance
specifies which values the adaptive controller should use for its 4 parameters and since all the
amplitudes are equidistant, the results of Section 1.1.1 for the single-parameter scheduler with
equidistant operating points of distance T = 0.5 are applicable. In reference to Figure 1, there is
only one input to the neural network, which receives the amplitude of the disturbance, and the
neural network's output sends 4 parameter values to the adaptive controller.

Table 1 Inital Disturbances and Parameter Sets.

Amplitude o1 Gy L L
2.0 0.093 10.05 49000.0 119703.06
2.5 0.302 7.35 44046.1 145910.16
3.0 0.307 15.79 37325.7 183327.84
3.5 0.876 9.556 44046.1 175092.19
4.0 0.808 10.48 29114.0  203493.90
4.5 1.767 10.48 32025.4  203493.90
5.0 3.924 8.70 48450.7 140073.75
5.5 6.928 7.73 41567.5 138395.55
6.0 11.08 10.05 41567.5 138395.55

For the two-layer gaussian neural network scheduler, the centers of the gaussian neurons in

the hidden layer are set equal to the operating points per (4):
c¢={2.0 2.5 3.0 3.5 40 4.5 5.0 5.5 6.0].

Applying (8), the weights of the gaussian neurons in the hidden layer are sy = 13.3209 fora. =2
and for 1 £k £9. With the outputs g(xy) of the individual gaussian neurons for 1 <k €9 shown
in Figure 6, the localized properties of the gaussian neurons are evident and (6) is satisfied. With
wig=1forl1 £i<4and 1<k <9, the output z = z; satisfies (7) and is shown in Figure 7. For
comparison, the resulting graph when the scale of the ordinate axis is increased is shown in Figure
8. Clearly, as desired in (7), an approximate unit signal is achieved. Forming the matrix G e
R from the outputs of the hidden layer and forming the matrix D € R4 of the desired outputs
of the neural network scheduler from the entries in Table 1, the weights W for the linear neurons in
the output layer are found by solving (9), and after examining the weights, the approximation of
(10) is true. Figures 9 to 12 show the outputs of the gaussian neural network scheduler, which are
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the 4 parameter values sent to the adaptive controller. For comparison, the straight line
approximations between the operating points are included in the four figures as dotted lines. As
can be seen, zj(k) = dj(k) for 1 <k <9 and 1 £1i < 4, and specification (i) is satisfied. In the
regions nearby the operating points, the adaptive controller parameter values specified by the neural
network scheduler are close to those specified by Table 1 satisfying specification (ii) for very thin
and wide boxes. In regions between operating points, a swift yet smooth transition occurs
between the value specified by Table 1, and specification (iii) is almost met. Between 4.0 and 4.5
in Figure 10, as well as in other places, specification (iii) requires a straight line, and this is almost
satisfied.

For comparison, another set of interpolation curves is produced for an exponent value of o
= 20, instead of o = 2, in Figures 13 to 16. Specification (i) is completely satisfied, and the areas
around the operating points form plateaus and satisfy specification (ii) for very small &, and large

8. Specification (iii) is also approximately satisfied.

As another comparison, the design procedure suggested by [Moody89] and [Moody88] is
used. With h = p, the centers are chosen as in (4). With o = 1, the widths are chosen as s, = 4
for 1 £k £9. The weights W are found by solving for W in (9). Figure 17 depicts the individual
hidden layer neuron outputs, and (6) is not satisfied. With the curve from Figure 8 as a reference,
Figure 18 shows the outputz =z; for wy = 1for 1 i< 4 and 1 £k <9, and (7) is not satisfied.
In Figures 19 to 22, the 4 interpolation curves are displayed along with the straight line
approximations. Specification (i) is met due to the solving of (9) for W. However, specification
(ii) can only be satisfied for small boxes, and specification (iii) is not met at all.
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Figure 6 Individual hidden layer outputs with o = 2 for Example 3.1.1.
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M. A. Sartori and P. J. Antsaklis, "Neural Network Implementations for Control Scheduling,” Technical
Report #91-04-02, Dept. of Electrical Engineering, University of Notre Dame, April 1991.

-2

Neural Network Output for Si

‘7 i . . N 2 M "
2 2.5 3 3.5 4 4.5 5 5.5 6
Amplitude of Disturbance

Figure 10 Neural network output for o, with & = 2 for Example 3.1.1.
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Figure 18 Summation of hidden layer outputs with Moody's method for Example 3.1.1.
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Figure 20 Neural network output for o, with Moody's method for Example 3.1.1.

104
5.5 : : : . . . 1

Neural Network Output for L

2.5

2 25 3 35 4 45 5 55 6
Amplitude of Disturbance

Figure 21 Neural network output for L with Moody's method for Example 3.1.1.
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Figure 22 Neural network output for L with Moody's method for Example 3.1.1.

Example 3.1.2:

In Table 2, two more disturbances and the appropriate adaptive controller parameter values
found by the parameter learning system of [Peek90] are shown. With the addition of these
disturbances to those in Table 1, the operating points for the scheduler are no longer equidistant,
and the results of Section 1.1.2 are applicable. The new scheduler operating points are

v=[2.0 2.25 2.5 3.0 3.5 40 45 5.0 55 6.0 7.0
To cope with the disturbance amplitudes not being equidistant, extra gaussian neurons are added to
the hidden layer. First, 11 gaussian neurons are formed with centers equal to the amplitudes of the
disturbances from Tables 1 and 2. Next, 10 extra gaussian neurons are added with 7 placed such
that their centers are between 2.75 and 5.75 in increments of 0.5 and 3 with centers of 6.25, 6.50,
and 6.75. By doing this, the resulting 21 neurons have centers which are equidistant:
¢ =[2.002.25 2.50 2.75 3.00...6.00 6.25 6.50 6.75 7.007.

Applying (8) with T = 0.25 and with a = 2, the weights of the gaussian neurons in the hidden
layer are sy = 53.2835 for 1 Sk £21. Withwy =1forl<i<4and 1 Sk <2], theoutputz=z;
is shown in Figure 23 to approximate (7). Next, so that the linear system of (9) remains unique,
extra desired outputs for the neural network associated with the inputs equal to the new centers are
specified. For the inputs between 2.75 and 5.75 in increments of 0.5 and for the input 6.5, the
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desired neural network outputs are chosen to be halfway between the appropriate adaptive
controller parameters specified in Tables 1 and 2. For the input of 6.25, the desired cutputs are
chosen to be the same as those for 6.00, and for the input of 6.75, the desired outputs are chosen
to be the same as those for 7.00. The matrices G € R2*21 and D e R21** are formed, and the
unique linear system of equations in (9) is solved for W, For the neural network scheduler
formed, Figures 24 to 27 show its outputs, which are the 4 parameter values sent to the adaptive
controller. Once again, specification (i) is satisfied exactly, and specification (iii) is satisfied
approximately. Specification (ii) can be satisfied for smaller boxes compared to those boxes
possible when the points are equidistant, as in Example 3.1.1.

Table 2 Extra Initial Disturbances and Parameter Sets.

Amplitude I o 5 L i
2.25 ‘ 0.213 7.04 39200.0  131674.35
7.0 14.41 19.10 41567.5  110716.44
1.005 : :
1-
. VAR BTN ER TR N DT
E
30.995-
2
[F]
Z 099} I
i $
Z
0.985H |
0.98, 3 4 5 6 7
Amplitude of Disturbance

Figure 23 Summation of hidden layer outputs for Example 3.1.2.



M. A. Sartori and P. J. Antsaklis, "Neural Network Implementations for Control Scheduling,” Technical
Report #91-04-02, Dept. of Electrical Engineering, University of Notre Dame, April 1991.

16 L] 1 L L)

- 14}
-U:, 12+
< 10t

=

g
5 8

o

: oo

[V]

<

g Y

z  2F

2 3 4 5 6
Amplitude of Disturbance
Figure 24 Neural network output for ¢, for Example 3.1.2.

a

a

E=)

&

5

s

-

z

2

;

6 L
2 3 4 5 6

Amplitude of Disturbance

Figure 25 Neural network output for 64 for Example 3.1.2.

33



M. A. Sartori and P. J. Antsaklis, "Neural Network Implementations for Control Scheduling,” Technical
Report #91-04-02, Dept. of Electrical Engineering, University of Notre Dame, April 1991.

104
s X
>
&
=1
B
=
@]
=
]
§
Z
:
2.5 -
2 3 4 5 6 7
Amplitude of Disturbance
Figure 26 Neural network output for L for Example 3.1.2.
105
2.2 x L) T F L]
d
=]
-
&
B
=)
=
v
8
2
Z
;
1

Amplitude of Disturbance

Figure 27 Neural network output for L for Example 3.1.2.
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Example 3.1.3:

In another of the experiments described in [Peck90], in which a parameter learning method
is used to define the region of operation for an adaptive control system of a flexible space antenna,
a command step input is applied as the reference signal of the system, and the adaptive controiler is
required to follow a highly damped second-order reference model. Once again, the goal of the
parameter learning system is to find values for the four adaptive controller parameters (Gy, G5, L,
and L) for varied amplitudes of the command step input such that a defined performance index
based on the output of the plant is small. In Table 3, the parameters found for the controller for
different step amplitudes are repeated. Using this table, the goal here is to construct a neural
network scheduler such that a smooth interpolation is achieved between the 8 operating points and
such that the three specifications are satisfied. Since only the amplitude of the step input specifies
which values the adaptive controller requires for its 4 parameters and since all the amplitudes are
not equidistant, the results of Section 1.1.2 for the single-parameter scheduler with non-equidistant
operating points are applicable. In reference to Figure 1, there is only one input to the neural
network, which receives the amplitude of the step input, and there are four outputs from the neurat
network's output sends 4 parameters to the adaptive controller.

With the vector of scheduler operating points, 8 gaussian neurons are formed with centers
equal to these step input amplitudes. Since all of the operating points are equidistant except for
1.00 and 1.10, an additional gaussian neuron is added with a center of 1.05 such that the vector of
centers is

¢=[1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40].
Applying (8) with T = 0.05 and with o = 2, the weights of the gaussian neurons in the hidden
layer are sy = 1332.0874 for 1 £k <9. Withwy =1for1 <i<4and 1 <k <9, the output z = z;
is shown in Figure 28 to be approximately a unit signal and satisfies (7). Next, so that the linear
system of (9) remains unique, pseudo-desired outputs for the neural network associated with the
input of 1.05 are chosen to be halfway between the appropriate adaptive controller parameters
specified in Table 3 for the inputs of 1.00 and 1.10. The matrices G € R** and D ¢ R%** are
formed, and the unique system in (9) is solved for W. For the neurai network scheduler formed,
Figures 29 to 31 show the smooth interpolation curves formed, which are the parameters Gy, G2,

and L sent to the adaptive controller. The plot for L is not shown since the designed scheduler in
Table 3 specifies that this parameter is 0 for most of the operating points. As in the previous
interpolation curves, the straight line approximations are included for comparison and denoted as a
dashed lines. For the derived interpolation curves, specification (i) is satisfied exactly, and
specification (iii) is satisfied approximately. Specification (ii) can be satisfied for thin wide boxes.
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Table 3 Step Input Commands and Parameter Sets.

1.4

Amplitude o) Oy L L
1.00 -0.098 -15.0 0.409 0.0
1.10 -0.091 -3.0 0.383 0.0
1.15 -0.084 -3.0 0.350 0.0
1.20 -0.078 13.0 0.322 0.0
1.25 -0.072 -15.0 0.297 0.0
1.30 -0.066 -15.0 0.274 0.0
1.35 -0.062 13.0 0.254 0.001
1.40 -0.057 -3.0 0.236 0.0
1-005 | i ] L) ¥ L) 1
1
: |\ A
MO
S
_,éo.995- -
g
Z 099} ,
50
2
Z
ot | | 11V} Rinl
0.98 . . - . . . :
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Figure 28 Summation of hidden layer outputs for Example 3.1.3.
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Figure 29 Neural network output for 6 for Example 3.1.3.
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Figure 30 Neural network output for ¢, for Example 3.1.3.
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Figure 31 Neural network output for L for Example 3.1.3.

Example 3.1.4;

In [Hackney77], linear models of a F100 engine are developed for various flight points
based on altitude and mach number. In Table 4, 6 of these flight points are listed with fictitious
controller parameters, and in Figure 32, these six are diagrammed. It is desired to develop a neural
network scheduler for interpolation between these flight points. The scheduler desired is a multi-
parameter one, and the results of Section 1.2 are applicable. Since the operating points are not
equidistant, the method of adding extra gaussian neurons to the hidden layer is chosen, and 6 extra
gaussian neurons are added to achieve equidistance. With r = 1 corresponding to the altitude and

with r = 2 corresponding to the mach number, the matrix of centers is

C._[ 100 10 10 10 20 20 20 20 30 30 30 30
~ L 0.500.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25

and the vector of outputs for equation (9) is

d=[1 23411111356 6].
Applying (28) with & = 20, T} = .25, and T = 10, 53 = 62.8378 and s9 =0.0393 for 1 £k <
12. Solving (9) for w, the interpolation curve is shown in Figure 33. The lowest corner
corresponds to the point (8, 0.4), the most left corner to (32, 0.4), and the most right corner to (8,
1.35). Specifications (i) and (ii) are clearly satisfied, but due to the elliptical nature of the multi-
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dimensional gaussian function, Specification (iii) is not met and unwanted "valleys" are formed in
the interpolation curve.

For comparison, the design procedure suggested by [Moody89] and [Moody88] is used.
There are 12 neurons used with centers as specified above. The exponent o is changed to 1, and
the widths are chosen per (22): s = 1/T;2 = 16 and sy = 1/T,% = 0.01 for 1 <k < 12. Note that
two widths are used instead of one as suggested by Moody. Solving for w in (9), the resulting
interpolation curve is shown in Figure 34. The lowest corner corresponds to the point (8, 0.4), the
most left comer to (32, 0.4), and the most right corner to (8, 1.35). After examining the actual
values for the curve, specification (i) is met. Specification (ii), however, can not be satisfied for
small thin boxes around the operating points, and in comparison to the curve in Figure 33,
specification (iii) is better satisfied by the curve of Figure 34.

Table 4 Selected Flight Points for F100 Engine.

Amplitude (Thousands Feet) Mach Number Controller Parameters
10 0.75 2
10 1.00 3
10 1.25 4
20 0.50 1
30 0.75 5
30 1.00 6

40
3
_‘fé 30 On®
3
5 20 ®
<
al * 9o
<
0
0 1 2
Mach Number

Figure 32 Selected F100 flight points for Example 3.1.4.
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Figure 34 Neural network output with Moody's method for Example 3.1.4.
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3.2 Sigmoid Neural Network Examples
Example 3.2.1:

In Examples 3.1.1 and 3.1.2, gaussian neural networks were used to impiement
interpolation curves between adaptive controller parameters, which were derived in [Peek90]. In
Table S, which is a combination of Tables 1 and 2, the parameters for the controller for different
pulse amplitudes are repeated. Using this table, the goal here is to construct a sigmoid neurai
network scheduler such that a smooth interpolation is achieved between the 11 operating points.
Since only the amplitude of the pulse disturbance specifies which values the adaptive controller
should use for its 4 parameters, the results of Section 2.1 for the single-parameter scheduler are
applicable.

Table 5 Initial Disturbances and Parameter Sets.

Amplitude o1 147 L I:
2.0 0.093 10.05 49000.0 119703.96
2.25 0.213 7.04 39200.0 131674.35
2.5 0.302 7.35 44046.1 145910.16
3.0 0.307 15.79 37325.7 183327.84
3.5 0.876 9.556 44046.1 175092.19
4.0 0.808 10.48 29114.0 203493.90
4.5 1.767 10.48 32025.4 203493.90
5.0 3.924 8.70 48450.7 140073.75
5.5 6.928 7.73 41567.5 138395.55
6.0 11.08 10.05 41567.5 138395.55
7.0 14.41 19.10 41567.5 110716.44

For the two-layer sigmoid neural network, the centers of the sigmoid neurons in the hidden

layer are set halfway between the operating points according to (34):
c=[2.1252.375 2.75 3.27 3.75 425 475 525 5.75 6.5].

The slopes for the hidden layer neurons are chosen as sy = 75 for 1 £k < 10. In Figure 35, the 10
sigmoid functions are plotted. As shown in Figure 36, the localized properties of the gaussian
nodes g; are evident and (35) and (36) are satisfied. Notice the asymmetrical gaussian-type node
formed for the operating point v(10) = 6.0. Withwy, =1for1<i<4and 1<k £ 10, the outputz
= z; satisfies (37) and is shown in Figure 37. Forming the matrix G e R1%%10 from the outputs of
the hidden layer and forming the matrix D R1%% of the desired outputs of the neural network
scheduler from the entries in Table 5, the weights W for the linear neurons in the output layer are
found by solving (38), and examining the values, (39) is rue. Figures 38 to 41 show the outputs
of the neural network scheduler, which are the 4 parameter values sent to the adaptive controller.
For comparison, the straight line approximations between the operating points are included in the
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four figures. As can be seen, z;(k) = d;(k) for I £k <11 and 1 £1i < 4 satisfy specification (i). In
the regions nearby the operating points, the adaptive controller parameter values specified by the
neural network scheduler are close to those specified by Table 5 satisfying specification (ii) for
very thin and wide boxes. In regions between operating points, a swift yet smooth transition
occurs between the value of Table 5, and specification (iii) is met. Between 4.0 and 4.5 in Figure
39, as well as in other places, specification (iii) requires a straight line, and this is clearly satisfied.
Comparing these interpolation curves to those developed in Examples 3.1.1 and 3.1.2, the ones

derived here better satisfy the design specifications.
For comparison, the slopes are changed from s, = 75to s = 10 for 1 £k < 10. The

outputs of the gaussian-type nodes g for 1 Sk < 11 are plotted in Figure 42. The requirements of
(35) are not satisfied, yet those of (36) and (37) are. The resulting set of interpolation curves are
shown in Figures 43 to 46. Specification (i) is satisfied since (38) was solved uniquely. The areas
around the operating points do not form plateaus and only satisfy specification (ii) for very small g,
and very large ;. Specification (iii) is violated in numerous places, for example in Figure 44
between 2.25 and 2.5. In addition, specification (iii) requires a straight line between 4.0 and 4.5
in Figure 46, as well as other places, and this is not met.

1 L L ¥ T T L
[ ! 7 L !
I’ | I | |
0.8} | | | ! | i
%’ I I [ [
g‘ | I I | |
o 0.6 ! I \ ! -
3 | | | | !
= l | | | |
'6 0-4 — I I I -1
& ! ! | | |
- | - !
0.2} I : : | : |
| .
j I ! ! | I
0 J N, J . N ) ! .
1 2 3 4 5 6 7 8

Amplitude of Disturbance

Figure 35 Sigmoid neuron outputs with s, =75 for Example 3.2.1.
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Figure 36 Gaussian-type node outputs with sy = 75 for Example 3.2.1.
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Figure 37 Summation of hidden layer gaussian-type nodes with s; = 75 for Example 3.2.1

43



M. A. Sartori and P. J. Antsaklis, "Neural Network Implementations for Control Scheduling,” Technical
Report #91-04-02, Dept. of Electrical Engineering, University of Notre Dame, April 1991.

16 L} 1 T T T ]

14}

-1

12

10

Neural Network Output for Si

Amplitude of Disturbance

Figure 38 Neural network output for o with si = 75 for Example 3.2.1.
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Figure 39 Neural network output for 6, with s = 75 for Example 3.2.1.



M. A. Sartori and P. J. Antsaklis, "Neural Network Implementations for Control Scheduling,” Technical
Report #91-04-02, Dept. of Electrical Engineering, University of Notre Dame, April 1991.

Neural Network Qutput for L

Neural Network for L-bar

x104

LI
3t ‘\/
2.5 :
1 2 3 4 S 6 7
Amplitude of Disturbance

Figure 40 Neural network output for L with s, = 75 for Example 3.2.1.
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Figure 41 Neural network output for L with sx =75 for Example 3.2.1.
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Figure 42 Gaussian-type node outputs with s, =10 for Example 3.2.1.
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1 2 3 4 5 6 7 8

46



M. A. Sartori and P. J. Antsaklis, "Neural Network Implementations for Control Scheduling,” Technical
Report #91-04-02, Dept. of Electrical Engineering, University of Notre Dame, April 1991.

Neural Network Qutput for Sigma-2

Neural Network for L.

1 2 3 4 b 6 7 8

Amplitude of Disturbance
Figure 44 Neural network output for o, with s, = 10 for Example 3.2.1.
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Figure 45 Neural network output for L with sy = 10 for Example 3.2.1.
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Figure 46 Neural network output for L with s = 10 for Example 3.2.1.
Example 3.2.2;

In another of the experiments described in [Peek90], a command step input is applied as the
reference signal of the system, and the adaptive controller is required to follow a highly damped
second-order reference model. In Table 3, the parameters found for the controller for different step
amplitudes are repeated. In Example 3.1.3, interpolation curves between these points were formed
using a gaussian neural network. The goal here is to construct a sigmoid neural network such that
a smooth interpolation is achieved between the 8 operating points. Since only the amplitude of the
step input specifies which values the adaptive controller requires for its 4 parameters, the results of
Section 2.1 for the single-parameter scheduler are applicable.

With the vector of scheduler operating points, 7 sigmoid neurons are formed with centers
asin (34):

¢={1.05 1.125 1.175 1.225 1.275 1.325 1.375]"
With the slopes set to s = 400 for 1 <k £ 7, the marrices G € R™7 and D e R™* are formed,
and the unique system in (38) is solved for W, which can be approximated by (39). The outputs
of the gaussian-type nodes are plotted in Figure 47. Notice the asymmetrical gaussian-type node
formed for the operating point v(2) = 1.10. For the neural network scheduler formed, Figures 48
to 50 show its outputs, which are values for the adaptive controller parameters G;, G, and L. The
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plot for L is not shown since the designed scheduler in Table 3 specifies that this parameter is O for
most of the operating points. Specifications (i) and (iii) are satisfied and specification (ii) is
satisfied for very thin and wide boxes. These plots can be compared to the interpolation curves
developed using the gaussian neural network of Example 3.1.3, and the curves derived here can be
seen to better satisfy the design specifications.

Example 3.2.3;

In this example, the application of equations (41) and (42) are illustrated. In Table 6,
parameters for specification (ii) for the output 6, from Table 5 are presented. Solving (41) and
(42) for W = D, the lower bounds for sy are in Table 7. For the slope s, = 75 chosen in Example
3.2.1, most of specification (ii) can be satisfied. The entry -5.1986 implies that any positive s
satisfies the bound of (41). The entries "x" imply that specification (it) is not applicable since d(6)
=d(7). As another illustration, the parameters for specification (ii) for the output 6, from Table 3
are presented in Table 8. Solving (41) and (42) for W = D, the lower bounds for s are in Table
9, and the choice of s = 400 for 1 <k <7 in Example 3.2.2 satisfies most of the bounds.

Table 6 Specification (ii) for o of Table 5.

k v(k) it & ) Yt Y
1 2.0 0.1 0.1 10.05 0.5 0.5
2 2.25 0.1 0.05 7.04 0.01 0.3
3 25 0.1 0.01 735 0.2 0.2
4 3.0 0.15 005 1579 005 0.1
5 3.5 0.05 005  9.556 0.2 0.2
6 2.0 0.2 0.2 10.48 0001  0.001
7 4.5 0.2 0.2 1048 0001  0.001
8 5.0 0.1 0.1 8.7 0.1 0.1
9 55 0.1 0.1 773 0.05 0.04
10 6.0 0.45 0.2 1005  0.01 0.01
1 7.0 0.45 0.45 19.1 0.01 0.01
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Figure 47 Gaussian-type node outputs with s, =400 for Example 3.2.2.
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Figure 48 Neural network output for ¢; with s, = 400 for Example 3.2.2.
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Figure 49 Neural network output for 65 with sy = 400 for Example 3.2.2.
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Figure 50 Neural network output for L with s; = 400 for Example 3.2.2.
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Table 7 Bounds for 6, in Table 5.

k Bound from (42) Bound from (41)
1 76.0504 64.5372
2 -5.1986 136.0479
3 22,1182 24.7896
4 17.0342 41.1643
5 136.7681 6.5010
6 X X

7 18.8092 149.6761
8 19.4157 14.4222
9 108.8484 25.4367
10 136.1366 136.1366

Table 8 Specification (ii) for 65 of Table 3.

v(k)

d(k)

Table 9 Bounds for 65 in Table 3.

k Bound from (42) Bound from (41)
1 104.7 313.5

2 X X

3 253.5 291.3

4 246.7 563.1

5 X X

6 1587.4 1587.4

7 201.3 14754

k Ek+ Ex. Yi+ k-
1 1.00 0.04 0.01 -15 0.5 0.5
2 1.1 0.01 0.015 -3 0.3 0.01
3 1.15 0.01 0.01 -3 0.2 0.2
4 1.2 0.015 0.005 13 0.1 0.05
5 1.25 0.005  0.005 -15 0.2 0.2
6 1.3 0.02 0.02 -15 0.05 0.01
7 1.35 0.02 0.02 13 0.01 0.01
8 1.4 0.01 0.01 -3 0.1 0.2
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Example 3.2.4;

In [Hackney77], linear models of a F100 engine are developed for various flight points
based on altitude and mach number. In Table 4, 6 of these flight points are listed with fictitious
controller parameters, and in Figure 32 these six are diagrammed. In Example 3.1.4, two
interpolation curves were developed using gaussian neural networks. It is desired here to form an
interpolation curve between these flight points using a sigmoid neural network. Since the given
scheduler desired is a multi-parameter one, the results of Section 2.2 are applicable. Since the
operating points are not equidistant, it is decided to add 6 extra pseudo-operating points such that

equidistance is achieved andp 12 Now,
16 20 20 20 20 30 30 30 30
050075100125050075100125050075100125

and
d=[1 23411111356 6],
which are the same as the pseudo-desired outputs added in the implementation of Example 3.1.4.
The resulting vectors of operating points are
vy =[10 20 307
and
vy, =[0.50 0.75 1..00 1.25],
where r = 1 corresponds to the altitude and with r = 2 corresponds to the mach number. The
equivalent to (44) for this is example is

2 3
z(u) = 21 kZ Wik, 81k, (1) B2k, (U2)-
=

Using (48), the vectors of centers are
cg ={15 25}
and
¢ = [0.625 0.875 1.125].

The slopes are chosen as S1k, = 20 for 1 <k; <2 and spy, =400 for 1 <k < 3. The weights w
are found by solving (9), and the interpolation curve produced is shown in Figure 51. The lowest
corner corresponds to the point (8, 0.4), the most left corner to (32, 0.4), and the most right corner
to (8, 1.35). Specifications (i) and (iii) are clearly satisfied, and specification (ii) is satisfied for
small thin boxes for a rectangular region around the operating points.

Instead of adding extra operating points such that equidistance is achieved, it is decided to
hand pick the generalization regions for the interpolation curve, which are shown in Figure 52 and
are assigned values according to Table g The equivalent to (51) for this example is

z(u) = 3, wy g1x(uy) gox(u2)
k=1
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Only 4 sigmoids are needed to form the 6 regions, and the vectors of centers are
¢ = [20]

and

¢y =[0.625 0.875 1.125]
where r = 1 corresponds to the altitude and r = 2 corresponds to the mach number. By choosing
$1x = 20 and sy, = 400 for 1 £k < 6 and by solving (38) for w, the interpolation curve formed is
shown in Figure 53. Once again, the lowest corner corresponds to the point (8, 0.4), the most left
comer to (32, 0.4), and the most right corner to (8, 1.35). Specifications (i) and (iii) are clearly
satisfied, and specification (ii) is satisfied for small thin boxes for a rectangular region around the
operating points. This interpolation curve is only one possible curve, as is the one in Figure 51,
and many other are possible. In comparing the curves in Figures 51 and 53 to the curve developed
using a gaussian neural network in Figure 33, the "valleys" present in the previous work are no
longer evident here, and the number of hidden layer nodes is considerably reduced using the
implementation shown in Figure 53. Specification (iii) is also clearly met using the design
methods of this chapter. In comparing the two interpolation curves developed for this example
with the one produced using Moody's method in Figure 34 of Example 3.2.4, the curves here are
better able to satisfy specification (ii).
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Figure 51 Neural network output for equidistant operating points.
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Figure 52 Selected localized regions for the F100 flight points of Example 3.2.4.
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Figure 53 Neural network output for selected localized regions.
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4 CONCLUDING REMARKS

Using neural networks with either gaussian nonlinearities or gaussian-type nonlinearities
formed by combining sigmoid functions, two methods are described here for scheduler
implementation. Given the operating points and the control law parameter values to be sent to the
controller, several specifications are made concerning the shape of the interpolation curve. The
neural network implementations provide two classes of curves to satisfy these specifications,
which is accomplished by designing the generalization behavior of the neural network. The first
method using gaussian nonlinearities works well for a designed scheduler with one-dimensionai
equidistant operating points but not as well when the operating points are not equidistant. For
designed schedulers with multi-dimensional operating points, the method has some drawbacks: a
potentially large number of hidden layer neurons and the elliptical shape of the multi-dimensional
gaussian function contributing to unwanted "valleys" in the interpolation curve. The second neural
network implementation using sigmoid nonlinearities eliminates these problems; the method works
well for a designed scheduler with either equidistant or non-equidistant operating points and for
cither one-dimensional or multi-dimensional operating points. However, the problem of a
potentially large number of hidden layer neurons still exists for the multi-parameter case.

The results reported in this paper also appear in [Sartori91].
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