
Implementations of Learning Control
Systems Using Neural Networks

Michael A. Sartori and Panos J. Antsaklis

The systematic storage in neural networks
of prior information to be used in the design
of various control subsystems is investigated.
Assuming that the prior information is avail-
able in a certain form (namely, input/output
data points and specifications between the
data points), a particular neural network and a
corresponding parameter design method are
introduced. The proposed neural network ad-
dresses the issue of effectively using prior
information in the areas of dynamical system
(plant and controller) modeling, fault detec-
tion and identification, information extrac-
tion, and control law scheduling.

Incorporating Prior Knowledge

In many practical control problems, there
exists substantial prior information about the
various subsystems of the control system. In
modeling these subsystems via neural net-
works, it is desirable to incorporate this prior
knowledge into a neural network. A particular
neural network architecture and an associated
design methodology are presented in this
paper to accomplish this for certain types of
prior knowledge. Using this procedure, prior
knowledge is directly and systematically
stored in the neural network with no training.
This has the advantage of having the informa-
tion in a neural network form, which can be
quickly accessed once implemented in
hardware. This neural network can be used as
an initial approximation to the system’s be-

An earlier version of this paper was presented
at the 1991 IEEE International Conference on
Intelligent Control Systems, Arlington, VA,
August 13-15, 1991. Michael A. Sartori was
with the Department of Electrical Engineer-
ing, University of Notre Dame, Notre Dame,
IN 46556. He is now with the David Taylor
Research Center, Code 1941, Bethesda, MD
20084. Panos J. Antsaklis is with the Depart-
ment of Electrical Engineering, University of
Notre Dame, Notre Dame, IN 46556, This
work was partly supported by the Jet Propul-
sion Laboratory under Contract 957856 and
the ALCOA Foundation under a Science Sup-
port Grant.

havior. As discussed later, a better approxima-
tion can be developed, for example, by adding
another neural network in parallel and using
training procedures to better approximate the
desired behavior.

With the proposed neural network
architecture, the following problems are inves-
tigated: dynamical system (plant and controller)
modeling, fault detection and identification, in-
formation extraction, and control law schedul-
ing. In all of these implementations, it is assumed
that a set of training points and certain specifica-
tions for the behavior between the training points
are provided. With this training set, the neural
network is designed to exactly satisfy the
specifications for the interpolation between the
operating points. The proposed neural network
has two layers of weights with sigmoid non-
linearities for the hidden layer and linear func-
tions for the output layer. The connection of the
hidden layer to the output layer and the specific
choices for the weights are unique aspects of this
neural network design approach.

The neural network design procedure
presented in this paper represents one possible
approach for satisfying the relationship be-
tween the input/output pairs of the training set.
Clearly, there exist other methods to (mathe-
matically) describe the desired curve and
solve the problem; for instance, polynomial or
spline approximations can be used to represent
the desired function. An advantage of using
the neural network approach described here
instead of one of these schemes is that the
actual construction of the neural network in
hardware would utilize the inherent paral-
lelism of the neural network and hence result
in a fast processing time. Compared to other
neural network techniques, the design scheme
here has several advantages. For one, there is
no training required; only the design time
needed to choose the appropriate function
parameters (i.e., the specifications for the in-
terpolation between the training pairs) is
necessary. Also, exact control of the general-
ization between the training points is guaran-
teed via the design scheme. Furthermore, the
number of layers and the number of neurons
needed to correctly implement the desired
function are known precisely.

0272- 1708/92/$03.000 1992IEEE

In the next section, the neural network and
the design of the neural network to approxi-
mate a desired function are presented. The
neural networkchosen here uses sigmoid non-
linearities, while an alternative approach
using Gaussian nonlinexities was introduced
in [I] , [2] to address the same problem. Neural
networks for plant and controller modeling,
fault detection and identification, information
extraction, and control law scheduling are dis-
cussed, and three examples are supplied to
illustrate the design scheme.

Neural Network Design

The neural network design procedure is
presented first for the implementation of a
si ngle-i n pu t- mu 1 ti -ou tpu t function and
second for the implementation of a multi-
input-multi-output function.

Single-lnput Neural Network

In all of the neural network implementa-
tions, the neural network is designed to
approximate a function given a specific set of
training pattems and a set of generalization
specifications. It is first assumed that the func-
tion to be approximated is a single-input func-
tion. For the training pattems, let v u) denote
the jth input pattern for 1 5 j 5 p , and let the
p-dimensional vector v denote the vector of all
input patterns arranged in ascending order,
where v(j)> v(j- 1) for2 2 j 2 p . Let diu) denote
the ith component of the jth desired output
pattern for IG ln and 1 5 j 5 p , and let the
n-dimensional vector du) and the p-by-n-
dimensional matrix D denote the vector for 1
5 j 5 p and the matrix of desired outputs,
respectively. Thus, the p pairs (vu), du)) are
the given training patterns.

With u as a scalar, let @ (U) be the n-dimen-
sional output of a function approximating the
relationship described by the training set [v u) ,
du] for 1 <: j 5 p. Let @i(u) denote the ith
component of the functions output for 1 I i 5 n.
Three specifications are made on the function $:
(i) If U = vu) , then $ (U) = d(j).
(ii) If U E [vu) - ~ j - , vu) + ~ j +] and U # v u) , then
$i(U) E [diu) - yij-, diQ) + ~ i j + l .

April 1992 49

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

Fig. 1. Illustration of curve spec$cations.

(iii) If U E [v(j), v (j + l)], then $;(U) E [di(j),

As an example, Fig. 1 illustrates one way
in which these specifications can be viewed.
The dots correspond to the training points, and
according to specification (i), the approximat-
ing curve must pass through these points. The
boxes surrounding the dots correspond to the
boxes described in specification (ii), and the
boxes between the dots correspond to the
bounding of the interpolation curve per
specification (iii). The approximating curve
must pass correctly through both sets of boxes.
Clearly, there exist numerous curves that satis-
fy these three specifications. With the neural
network design scheme described here, a sub-
set of the class of curves described by $ is
achieved in which these three specifications
are exactly satisfied.

For the neural network, let the scalar U
denote the neural network's input, and let z
denote the neural network's n-dimensional
output. For a specific input U, let zi(u) for 1 5

d;(j + l)].

1

0.8

0.6

0.4

0.2

0

i I n and z(u) denote the output of the neural
network. An individual output of the neural
network is described by the weighted sum
Z i (U) where 1 I i 5 n, wik is a weight of the ith
linear neuron in the output layer, and gk is the
difference between two sigmoid functions:

Let W denote the (h + 1)-by-n-dimensional
matrix of weights for the output layer. The
output of the kth node in the neural network's
hidden layer is described by the following
where 1 5 k 5 h + 1, o is the sigmoid non-
linearity of the hidden layer neurons, ck is the
bias (or "center" of the sigmoid function), and
sk is the weight (or "slope" of the sigmoid
function):

and

For all U, let

and

Let c denote the n-dimensional vector of
centers, ands denote the n-dimensional vector
of slopes. With sk = 1, the conventional sig-

-3 -2 -1 0 1 2

Fig. 2. The Gaussian-typefunction gk(u) = O(u, -2, 5) - O(u, 1, 20).

50

moid curve is achieved, but by allowing sk to
vary, a class of sigmoid functions is possible,
which allows for greater flexibility in the
design of the interpolation curve. As an ex-
ample of the formation of a Gaussian-type
curve, Fig. 2 shows the output of gk(u) = o(u,
-2, 5) - ~ (u , 1, 20) which can be viewed as a
Gaussian-type curve centered at 0 with asym-
metric sides. This asymmetry has advantages
over the symmetrical Gaussian function used
in the other neural network approach
described in [l] and [2]; mainly, the sigmoid
formed function aptly handles nonequidistant
training sets.

Design for the Single-Inpui
Neural Network

In designing the neural network, its
parameters are chosen such that its output z is
in the class of functions $ described pre-
viously. The proposed neural network design
scheme is a selection process based on the
specifications for the interpolation between
the operating points and does not require train-
ing. With this approach, exact control of the
neural network's generalization behavior is
achieved, and the three specifications
described above are satisfied precisely, as will
be shown.

The number of hidden layer nodes is set
equal to one less the number of training pat-
tems, that is h = p - 1. The center ck for the kth
node is set equal to the value midway between
the kth and the (k + 1)th input training points
for 1 I k 5 h:

1 (6)
2

ck = - [v (k)+v (k + 1)].

Since Ck + 1 2 ck, gk here approximates a
Gaussian-type nonlinearity centered around
v(k), and this allows for a localized effect at
the output of the nodes gk with the appropriate
choice for each slope sk.

To aid in satisfying specifications (ii) and
(iii) for the output of the neural network, re-
quirements relating the neural network's out-
put to its parameters are made. First, the
widths s are chosen such that (1) can be ap-
proximated by the following weighted sum
when U E [v(j) , v (j + l)]:

k = j

This implies that the tails of the outputs gdu) for
k # j and k # j + 1 are small compared to those
fork = j and k = j + 1 when U E [dJ, v(j + l)].

/€E€ Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

The approximation of (7) also implies that
when the node gk has a larger response com-
pared to the other nodes, the input is closest to
the kth training pattern. In other words, for 1
If5 h + 1 and for U E [v(k) - Ak-i, v(k) + Ak]
where Ak is defined such that gk(v(k) + &) =
gk+l(v(k) + Ak),

Via (8), the localized effect of the hidden layer
neurons is shown. The output of the neural
network passing through a box specified by
specification (ii) assumes the general shape of
the output of the kth hidden layer node if Ek- I
Ak.1 and &k+ 5 Ak. To further aid in satisfying
specifications (ii) and (iii), the slopes s are
chosen such that for all U:

In conjunction with (7) and (8), (9) implies
that for U E [v(k), v(k + l)] the sum of the
outputs of gk(u) and gk +](U) is constant, the
and node gk contributes more to the sum when
U is close to v(k) and less when it is closer to
v(k+ 1). Thus, the choice of the slope sk clearly
affects the shape of the interpolation curve and
the localization properties of Gaussian-type
nodes gk.

With the centers and the slopes specified
for the hidden layer, the weights for the linear
output layer are chosen next. Let G denote a
p-by-(h + 1)-dimensional output matrix of the
hidden layer nodes for each of thep operating
points. Thus, the output layer weights are
found by solving the following linear system
of equations:

G W = D . (10)

Since G is square (h = p - 1) and nonsingular
because of the particular choices for c and s,
(1 0) has a unique solution W . Furthermore,
due to the choice of s per (7) and (8), if the
neural network's input U is exactly the kth
operating point, the output of the kth hidden
layer node gk(u) is 1 while the outputs of the
other hidden layer Gaussian-type nodes are 0.
Hence, G can be assumed to be the identity
matrix, and W can be approximated by D .

Using (7), (8), and (10) and the simplify-
ing assumption that n = 1, it was shown in
[l] that to satisfy specification (ii) for all
operating points, the slope sk needs to be
chosen such that the following are met for 1
< k < h :

Wk + 1 - Wk C(k) =
d(k)-yk- - Wk'

and

If d(k) = d(k + l), then specification (iii) requires
zj(u)=d(k)=d(k+ 1) f o r u ~ [v(k),v(k+ l)],and
the solving of (1 1) and (12) for U = v(k + 1) -
~ (k + i) - and U = v(k) + &k+ is unnecessary.

Thus, the neural network parameters can
be chosen to exactly satisfy the three
specifications for the interpolation between
the training points. With h = p - 1, the centers
c are chosen per (6) and the weights W can be
approximated with D . Using (11) and (12),
limits for the widthss are found. Various selec-
tions fors can be made based on (1 1) and (1 2)
and the corresponding W can be recomputed
via (10) until a desirable curve is achieved.
The resulting neural network describes a func-
tion which is within the class of functions
described by O(u) and exactly satisfies the
specifications for the interpolation between
the training points.

Due to the way in which the neural network
parameters are chosen, the behavior of the
neural network is expressed in (1)-(3). How-
ever, the neural network can be reconfigured
in a more economical fashion, and (1) and (2)
are equivalent to the following where 1 I i I
n and o(u, c, s) is defined in (3):

Due to the choice of o(u, CO, SO) in (4) and
o(u, c h + i , sh+l) in (5) , when the neural
networks input is outside the design domain,
the neural network's output is equal to either
the first or last desired output from the training
set. In other words, if U < v(l) , z(u) = d(l), or
if U > v(p), then z = d(p). If instead it is desired
that if U <c v(1) or U >> v(p) then Z(U) = 0, the

choice of o(u, CO, so) and o(u, ch+l, sh+l) can
be modified to accomplish this.

Multi-Input Neural Network

Given a specific set of training pattems and
the three generalization specifications, the
design of a neural network to approximate a
multi-input-multi-output function is presented
in this section. For the training patterns, let the
m-dimensional vector v(j) denote the jth input
pattern for 1 5 j I p, and let the scalar v&) be
the rth component of vu) for 1 5 r I m. (Note
that it is not required to arrange these in an
order as with the single-input case.) Let the
n-dimensional vectord(j) denote the jth output
pattern for 1 5 j 5 p , and let the scalar diu)
denote the ith component of the jth desired
output pattem for 1 I i 5 n and 1 5 j 5 p . Let
the p-by-n-dimensional matrix D denote the
matrix of desired outputs. Thus, the p pairs
{ v (j) , d(j)] are the given training patterns.

For the m-dimensional vector U, let $(U) be
the n-dimensional output of a function ap-
proximating the relationship described by the
training set {vu), d(j) } for 1 I j I p. Let
denote the ith component of the functions
output for 1 I i <: n. Three specifications are
made on the function $:
(i) If u = vu), then o(u) = du).
(ii) If Ur E [V &) - Erj., V&) + E r J+] and U r f

v&), then @j(u) E [diu) - TI-, diu) +yo+].
(iii) If U is "between" any two immediate
training patterns, v u) and v(k), then @(U) is
"between" the corresponding output pattems
d&) and di(k).

The meanings of all the specifications are
the same as for the single-input case. How-
ever, descriptive language is used to state
specification (iii) for the multi-input case
since the indexing of the higher dimension
patterns becomes complex and may not be
needed, as is explained below.

For the neural network, let the n-
dimensional vector u denote the neural
network's input, and let z denote the neural
network's n-dimensional output. For a
specific input U, let zi(u) for 1 5 i I n and z(u)
denote the output of the neural network. For
the multi-input neural network, an individual
output of the neural network is given by the
following where 1 I i 5 n:

Apri/ 1992 51

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

For m = 1, (14) reduces to (1). The output of
the rkrth hidden layer node is described by the
following where 1 I k, I h, + 1, 1 I r I m, and
where o(u, c, s) is defined in (3):

grk,(ur) = ~ (u , cr(kr-l), s<k,-lj)

- o (U r , Crk,, Srk,).

(15)

For 1 I r I m and for all U,, let

and

o (~ r , cr(hr+-+l 1, Sr(hr+l j) = 0. (1 7)

Let Cr denote the hrdimensional vector of
centers, and let sr denote the h,-dimensional
vector of slopes for 1 5 r 5 m. Since the sizes
of Cr andsr are not restricted to be the same for
1 I r I m, the formation of a matrix of centers
and a matrix of slopes may not be possible. In
(14), the outputs of the Gaussian-type nodes
are multiplied together, which is unusual when
compared to conventional neural networks.
With the multiplications, the specification of
the centers and the slopes for the sigmoid
neurons corresponds to the specification of
hyper-rectangles around the operating points.
By appropriately choosing these parameters,
the entire input space can be mapped to par-
ticular desired outputs of the neural network
scheduler. However, a drawback is the added
complexity of the neural network due to the
required multiplications.

Design for the Multi-Input
Neural Network

The selection of the multi-input neural
network's centers, slopes, and weights is
divided into the two cases of equidistant input
patterns and nonequidistant input patterns
with the case of equidistant input pattems
considered first. The term "equidistant" for the
m-dimensional case refers to the input pattems
being an equal distance apart in each dimen-
sion. Instead of denoting the input pattems as
v u) for 1 I j I p, the set of all equidistant input
pattems is considered to be comprised of ele-
ments from vectors containing information on all
the values of all the input pattems. Letp, denote the
number of values for the rth dimension such that

denote thep,-dimensional vector of values of
the input pattems for the rth dimension such
thatvr(kr+i) 2 vrk, for I 5 r I m and 1 I k , I pr.
The counting of the p input pattems is not
important; rather, their location in the input
space is important. The number of hidden layer
nodes in the rth dimension is set equal to one
less the number of input pattems, that is h, =
p r - l , f o r l I r I m . F o r l I r I m a n d f o r l I
k , I h,, the center c,k, is set equal to the
distance halfway between the rk,th and the r(kr
+ 1)th input pattems

Since

approximates a Gaussian-type nonlinearity
centered around vrk,, and this allows for a
localized effect in the shape of a hyper-rec-

tangle at the output of the node n g r k , (U r) with

the appropriate choice for each slope srk,.

In choosing the slopes to satisfy the
specifications for the interpolation between
the training pattems, the multidimensional
equivalents of (7) to (9) need to be satisfied.
For (7) , this implies that for any input U the
output is dependent only on the closest Gaus-
sian-type nodes. For 1 I f, I hr + 1 and for
u r E [Vrk, - Ar(k, - I), Vrk, + Ark, 1 where Ark,
is defined such that

-1

for 1 5 r I m and 1 I k , I h,, the multidimen-
sional equivalent of (8) is

Furthermore, the interpolation curve pass-
ing through a box described by specification
(ii) assumes the general shape of the output of

and
E l k , , 5 Ark,

for 1 I r I m. For (9) and for all U,

With the centers and slopes chosen to satis-
fy (19) and (20), which aid in satisfying
specification (iii), the weights w;k I .. k, can
be found. Forming the p-by-[(hi + 1) ...(hm +
l)] matrix G from the outputs of the Gaussian-
type nodes, (10) is solved for the unique [(hi
+ 1) ...(hm + l)]-by-n matrix W. Furthermore,
(11) and (12) can be extended to the multi-
dimensional case with the appropriate chan-
ges to the indices. Thus, a neural network can
be designed to satisfy the specifications for its
generalization behavior in the multi-input
case.

If the input pattems are not equidistant, two
possible design choices are considered here: ad-
ding extra pseudo-input pattems such that equi-
distance occurs or locating the boundaries of the
hyper-rectangles for each input pattem such that
the entire input space is covered. The f i s t pos-
sibility is more viable when most of the input
pattems are equidistant, and only a few extra
pattems are needed. Once this is accomplished,
the above procedure for choosing the centers
for equidistant input pattems is followed for
the set of input pattems and added pseudo-
input patterns. When solving (I O) , extra
pseudo-desired outputs are added such that W
is a unique solution. These added outputs can be
chosen to be the same as nearby ones orextrapo-
lated values from surrounding ones.

For the second possibility when the input
patterns are not equidistant, hyper-rectangles
are found for the given input patterns such that
the entire input space is covered. Since the
locations of the input pattems are no longer
equidistant, (14) can be replaced by the fol-
lowing where I I i I n:

For low dimensional inputs, the selection of the
hyper-rectangles may be performed manually.
However, for higher dimensions, this may be-
come impractical. In [3], this problem is ad-
dressed as the "CRm" problem (or "CRd using
their notation). The CR, problem is known to
have a high computational complexity, and Gon-
zalez presents algorithms for obtaining a subop-
timal solution. Once the hyper-rectangles are
found (either manually or algorithmically), the
centers of the sigmoid neurons are chosen as the
boundaries between them. The slopes are chosen
to satisfy the specifications, and the output layer
weights are found via (IO). Thus, through a
selection of the hyper-rectangles around the
input pattems, the parameters for the neural net-
work are chosen, and the specifications for the
neural network's output are satisfied.

52 /€E€ Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

Neural Network Implementations

In this section, the use of the neural net-
work architecture introduced in the preceding
section is described for the following four
problems: dynamical system modeling, fault
detection and identification, information ex-
traction, and control law scheduling.

Dynamical System Modeling

The neural network proposed in this paper
can be used to model the plant’s or controller’s
dynamics. In [4], known linear information is
used to assist in the identification of the plant,
yet prior nonlinear knowledge may also be
used in the plant identification process. With
the proposed neural network architecture, cer-

tain types of knowledge can be implemented
as a neural network. Specifically, if the the
nonlinear information can be expressed within
the framework of the training set and the three
specifications for the interpolation between
the training patterns, the design scheme
proposed here can be used. Constructing a
neural network to describe the known non-
linear behavior of the plant and using it as part
of the plant identification process, a second
neural network may be trained using learning
algorithms to modify the plant’s estimated
dynamics. Such a scheme i s shown in Fig. 3
and can be viewed as modeling the known
dynamics with one neural network and train-
ing another neural network to leam the un-
known dynamics. This general approach is
discussed in IS]. By using a neural network to

I
I

Neural Network
I Prior Information
I
I

I
I
I I f

I

I
I
I

+ I 7
Fig. 3. Training a neural network for plant modeling.

I I

Fig. 4. Training a neural nehuork controllev.

April 1992

model the plant’s known nonlinear behavior,
it is anticipated that less time will be required
to train the second neural network. In par-
ticular, the tens of thousands of back-propaga-
tion iterations that are normally required to
train such a network may be reduced.

Further, by modeling the known nonlinear
dynamics of the plant with a neural network,
a total neural network plant identification
structure is formed. This has the advantage of
being able to be incorporated into the training
of a neural network controller, which is one of
the purposes of training a neural network plant
estimator as described in [SI and as used in [4].
This controller training scheme is shown in
Fig. 4. Since the desired plant input is un-
known, the desired output of the neural net-
work controller is unknown. However, the
desiredoutputofthe plantis known. Substitut-
ing the actual plant with aneural network plant
estimator, a multi-layer neural network may
be trained with the back-propagation algo-
rithm, or another gradient descent algorithm
to minimize a plant output error cost function.
Via the chain rule, the derivative of the cost
function with respect to the plant estimator’s
input is used in the computation of the deriva-
tive of the cost function with respect to the
neural network controller’s weights. Next, in
reference to Fig. 4, this gradient is computed
assuming a SISO plant for simplicity.

The cost function i s a sum of the squares
of the plant output errors for the p training
patterns:

To compute the weight change in the neural
network controller, 6F/6u is required. So,

and

53

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

c

I2 c a
7J
N .- c
9?
5:
6

10

9 -

8-

7 -

6-

5 -

4 -

3 -

2-

1 -

I I I I I I I I I

O ' i i i i b i i t i b i o

Fig. 5. Neural network output of the A D converter of Example 1.

Computing 6yn(i)/6u and assuming 6yr(i)lGu is
determined, the gradient 6F/6u is found.
Relaxing the assumption of a SISO plant, the
extension to the multi-input case is straight
forward since each grk in (14) is dependent
on only one input and not the entire input
vector. Thus, the neural network architecture
and design scheme proposed in this paper can
be used both to implement a plant estimator
and train a neural network controller.

Fault Detection and Identi3cation

The described neural network architecture
may be used for fault detection and identifi-
cation. As described in [I] , [SI, the neural
network in this case operates outside the main
loop and receives the appropriate signals from
the plant: for instance, outputs, inputs, or en-
vironmental conditions. The neural network
then responds by declaring either a fault, no-
fault condition, or, with the neural network
design proposed here, a partial membership
signal. If fault patterns are known to occur for
specific patterns, this information can be
stored in the neural network by choosing the
training set of the neural network to coordinate
with the known faults. Valid fault regions for
each fault can next be determined and stored
using the centers c of the sigmoid non-
linearities. By choosing the slope of the sig-
moid nonlinearities small, a "gray scale", or
partial membership, of the fault region can be
included in the fault detection system design.
By choosing the slope of the sigmoid non-
linearities large, clearly definable fault and
no-fault regions develop.

A drawback of this approach is that for
multi-input failure detection systems, the
valid fault regions are restricted to hyper-rec-
tangles. If irregular shaped fault regions
defined by straight lines are desired, the
method initially described in [6] and further
developed in [I] may be employed. If it is
desired that the neural network failure detec-
tion system detect, identify, and diagnose the
failure, the scheme described in [7], which is
illustrated using a JPL space antenna model,
is one possible approach.

Information Extraction

The neural network architecture described
in this paper may also implement the general
control function of numeric-to-symbolic con-
version. As considered here, numeric-to-sym-
b o k conversion is the task of processing data
that can be used by the controller as informa-
tion. One such example of numeric-to-sym-
bolic conversion is fault detection and
identification as discussed in the previous sub-
section. Here, the numeric data consists of the
detection system's inputs: the plant's inputs
and outputs, their derivatives, and the environ-
mental conditions. The symbolic data is the
occurrence of a fault or no-fault condition and
the identification of the fault.

Another example, as discussed extensively
in [6], is the task of converting numeric data
to a form usable by a discrete event controller.
The discrete event controller requires sym-
bolic information describing the state of the
plant. However, the output of the plant is in a
numeric form, unusable to the discrete event
controller. By describing the regions of inter-

est to the discrete event control law, the boun-
daries of the regions are transformed into
design specifications for the centers of the
neural network's sigmoid functions. By
changing the slopes of the sigmoid functions,
membership in a region can be made specific
(i.e., a large slope) or non-specific (i.e., a small
slope) depending on the type of information
required by the discrete event control law.

For a digital controller, the neural network
architecture proposed here can perform the
function of analog-to-digital (AD) conver-
sion. The centers of the sigmoid function are
chosen to correspond to the quantization
regions. For a clear distinction between
regions, the slopes are chosen larger. This
feedforward neural network design can be
compared to the feedback neural network
design of Tank and Hopfield in [8] and to its
improved design described in [9]. In compar-
ing the feedforward design to the feedback
design, no time is required to wait for the
output of the feedforward neural network to
settle, as is required for the feedback neural
network design. The problems with determin-
ing and designing the regions of attraction for
the neural network's minima in the feedback
design do not occur whatsoever with the feed-
forward design; the "regions of attraction" are
known exactly and can be easily designed
according to specifications. Comparing the
number of neurons required for an n-level A/D
converter, the feedback design requires n
neurons, while the feedforward design re-
quires 3n neurons. Next, an A/D converter is
implemented with a neural network designed
using the method proposed here.

Example 1

It is desired to convert analog signals in the
range of 0 to IO to all 11 discrete levels be-
tween 0 and IO. In addition, any signal less
than 0 is mapped to 0, and any signal greater
than 10 is mapped to 10. The discrete regions
are divided midway between the integer values.
The training set becomes the 11 matched pairs
of the input and output integer values. Using
the single-input neural network design proce-
dure in this paper, h = 10 and form (6),

c = [OS 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.51'.

The slopes for the hidden layer neurons are
chosen large: sk = 500 for 1 I k S 10. Solving
(1 0), the output layer weights are determined.
The output of the resulting neural network is
shown in Fig. 5. The transitions between the
regions are sharp due to the high gain chosen
for the sigmoid nonlinearities.

54 /€€E Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

Control Law Scheduling

A neural network may be used to imple-
ment a control law scheduler. In this capacity,
the neural network can be viewed as a high
level decision maker operating outside the
conventional control loop to provide a higher
degreeofautonomy to the system [11,[51,[10].
Given a set of operating points and the as-
sociated set of parameters values for the con-
trol law, the neural network is designed to
satisfy given specifications for the interpola-
tion between the provided operating points.
The operating points become the training set,
and the specifications for the interpolation
between the operating points become the three
specifications discussed in the design of the
neural network.

In its operations as a control law scheduler,
the neural network is first supplied with infor-
mation about the system and its environment;
it then produces control law switching infor-
mation to the controller. The neural network‘s
inputs are the inputs and outputs of the plant
together with the reference signal. The output
of the neural network is the control law adjust-
ment signal sent to the controller; in this paper,
this signal represents parameter values for the
controller. The neural network’s inputs are not
restricted to these signals; other signals such
as the plant’s states, derivatives, environmen-
tal conditions, or delayed values of any of
these can be used as inputs to the neural net-
work. Basically, any signal that may be
designed into the operation of the scheduler is
used as an input to the neural network. Fur-
thermore, the plant and controller can operate
in either continuous or discrete time. If the

4.5 -
1

P -
3
_a 4 - a
p 3.5-

Amplitude

2.0

2.25

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

7.0

Table I
Initial Disturbances and Parameter Sets

~

__

-
L L 0 1

0.093

0.213

0.302

0.307

0.876

0.808

1.767

3.924

6.928

11.08

14.4 1

0 2

10.05

7.04

7.35

15.79

9.556

10.48

10.48

8.70

7.73

10.05

19.10

neural network is implemented in analog
hardware, both the plant and the controller can
operate in continuous time; in this case, the
neural network may supply the parameter
values to the controller as continuous vari-
ables. However, if the neural network is to be
implemented in software, both the plant and
the controller need to be discrete or discretized
versions of continuous ones. In either case, the
designing of the neural network as discussed
in this paper remains unchanged.

I p,
i

2.5‘ I L I
2 3 4 5 6 7 8

Amplitude of Disturbance

Fig. 6. Neural network output for L for Example 2.

49000.0

39200.0

44046.1

37325.7

44046.1

29114.0

32025.4

48450.7

41567.5

41567.5

4 1567.5

119703.96

13 1674.35

1459 10.16

183327.84

175092.19

203493.90

203493.90

140073.75

138395.55

138395.55

110716.44

Two examples, one for a single-input
neural network and one for a multi-output
neural network to implement, are presented
next to illustrate the design of aneural network
implemented control law scheduler.

Example 2

In [11], a parameter learning method is
presented and used to define the region of
operation for an adaptive control system of a
flexible space antenna. In one of the experi-
ments described, an initial pulse disturbance
is applied to the plant, and the adaptive con-
troller is required to follow a zero-order refer-
ence model. The goal of the parameter
learning system is to find and store values for
the four agaptive controller parameters ((31,

(32, L, and L,) for vaned amplitudes of a pulse
disturbance (system initial conditions) such
that a defined performance index based on the
output of the plant is minimized. In Table I,
the values found for the controller parameters
for different pulse amplitudes are repeated.
Using this table, the goal here is to construct
a neural network scheduler such that a smooth
interpolation is achieved between the 11
operating points using the design method of
this paper.

For the neural network, the centers of the
sigmoid neurons in the hidden layer are set
halfway between the operating points accord-
ing to (6):

April 1992 55

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

Table I1
Selected Flight Points for FlOO Engine

Amplitude Mach Controller
(1K ft) Number Parameters

10 0.75 2

10 I .00 3

10 1.25 4

20 0.50 I

30 0.75 5

30 1 .OO 6

c = [2.125 2.375 2.75 3.27 3.75 4.25
4.75 5.25 5.75 6.51’.

The slopes for the hidden layer neurons are
c h o s e n a s s k = 7 5 f o r I I k I lO.With(lO),the
unique weights Ware found. Fig. 6 shows the
output of the sigmoid neural network
scheduler for adaptive controller parameter L
along with the straight line approximation be-
tween the operating points (dotted line). As
can be seen, z3(k) = d3(k) for 1 I k I 11, and
specification (i) is met. In the regions nearby
the operating points, the adaptive controller
parameter values specified by the neural net-
work scheduler are close to those specified by
Table I satisfying specification (ii) for very
thin and wide boxes. In regions between
operating points, a swift yet smooth transition
occurs between the operating points, and
specification (iii) is met. Between 5.5 and 6.0,
specification (iii) requires a straight line, and
this is clearly satisfied. Thus, all specifications
can be shown to be satisfied.

Example 3

0 1 2

Mach Number

Fig. 7. Selected FlOOflightpoints for Example
3.3.

and

d = [l 2 3 4 1 1 1 1 1 5 6 61’.

The resulting vectors of operating points are

V I =[I0 20 301’

and

v 2 = [OS0 0.75 1.00 1.25]’,

where r = 1 corresponds to the altitude and
with r = 2 corresponds to the Mach number.
The equivalent to (16) for this example is

Using (20), the vectors of centers are

C I = [15 251’

and
cz = [0.625 0.875 1.1251’.

In [12], linear models of a FlOO engine are
developed for various flight points based on
altitude and mach number. In Table 11, 6 of
these flight points are listed with fictitious
controller parameters, and in Fig. 7, these six
are diagrammed. It is desired to design a
neural network control law scheduler for the
interpolation between these flight points using
the architecture and design approach of this
paper. Since the operating points are non equi-
distant, it is decided to add 6 pseudo-operating
points such that equidistance is achieved, and
p = 12. Now,

10 10 10 10 20 20 20 20 30 30 30 30 regions for the in-
terpolation curve, 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25
which are shown in

The slopes are chosen as SI k , = 20 for 1 5 ki
I 2 and s2 k = 400 for I I k2 I 3. The weights
w are found by solving (1 0), and the interpola-
tion curve produced is shown in Fig. 8. The
lowest comer corresponds to the point (8,0.4),
the most left comer to (32,0.4), and the most
right corner to (8, 1.35). Specifications (i) and
(iii) are clearly satisfied, and specification (ii)
is satisfied for small thin boxes for a rectan-
gular region around the operating points.

Instead of adding extra operating points
such that equidistance is achieved, it is
decided to hand pjck the generalization

Fig. 8. Neural network output for the first
scheduler of Example 3.

Fig. 9 and are assigned values according to
Table 11. The equivalent to (21) for this ex-
ample is

Only 4 sigmoids are needed to form the 6
regions, and the vectors of centers are

C] = [20]

and

c2 = [0.625 0.875 1.1251’

where r = 1 corresponds to the altitude and r
= 2 corresponds to the Mach number. By
choosing S l k = 20 and s2k = 400 for 1 I k 5 6
and by solving (10) for w , the interpolation
curve formed is shown in Fig. 10 with the
same comer coordinates as the previous two-

- c
a, U.
(I)

? a
t
0 -c

a, U

c c ._ - a

40

30

20

10

0
0 1 2

I Mach Number

Fig. 9. Selected localized regions for the F I O O
flight points of Example 3.

56 /€E€ Control Systems

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

Fig. 10. Neural network output for the second
scheduler of Example 3.

dimensional plots. Specifications (i) and (iii)
are clearly satisfied, and specification (ii) is
satisfied for small thin boxes for rectangular
regions around the operating points.

Concluding Remarks

A part icular neu ra l ne twork a n d a
systematic design methodology are intro-
duced so that prior information about the
system's behavior can be directly and easily
incorporated into the control design. The
four uses investigated for the proposed
neural network architecture are dynamical
system (plant and controller) modeling,
fault detection and identification, informa-
tion extraction, and control law scheduling.
Another approach to address this problem is
presented in [13] using neural networks
with Gaussian non!inearities and not sig-
moid nonlinearities. The two methods are
compared in [I 1, [2] , and it is shown that the
sigmoid neural network implementation has
certain advantages over the Gaussian neural
network implementation. In particular, the
sigmoid neural network easily implements
training patterns that are nonequidistant,
which is a problem for the Gaussian neural
network approach. However, for the multi-
input case, the sigmoid neural network has
an added complexity due to the multiplication
in (14).

References

[I] M.A. Sartori, "Feedforward neural networks and
their application in the higher level control of sys-

tems," Ph.D. diss., Dept. Elec. Eng., Univ. Notre
Dame, Apr. 199 1.

121 M.A. Sartori and P.J. Antsaklis, "Neural network
implementations for control scheduling," Tech.
Rep. #91-04-02, Dept. Elec. Eng., Univ. Notre
Dame, Apr. 199 1.

[3] T.F. Gonzalez, "Covering a set of points with
fixed size hypersquares and related problems, in
Proc. 1990 Annuul Allerton Con$ Communicution,
Control, and Computing, pp. 838-847, 1990.

[4] K.S. Narendra and K. Parthasarathy, "Identifi-
cation and control of dynamical systems using
neural networks," IEEE Trans. Neural Networks,
vol. 1, no. I , pp. 4-27, Mar. 1991.

[5] P.J. Antsaklis and M.A. Sartori, "Neural net-
works in control systems," Systems and Controls
Encyclopedia, Supplement I / , to be published.

[6] Passino K.M., Sartori M.A., and P.J. Antsaklis,
"Neural computing for numeric to symbolic conver-
sion in control systems," IEEE Control Syst. Mag..
Apr. 1989, pp. 4&52.

171 P.J. Antsaklis and M.A. Sartori, "Autonomous
control of large spacecraft using neural networks,"
Final Rep., Jet Propulsion Laboratory Contract
957856 Mod. 4, Nov. 1991.

181 D.T. Tank and J.J. Hopfield, "Simple "neural"
optimization networks: an a/d converter, signal
decision circuit, and a linear programming circuit",
lEEE Trans. Ciruits Syst., vol. 33, no. 5, pp. 533-
541, May 1986.

[9] D.L. Gray, "Synthesis procedures for neural
networks," Master's Thesis, Dept. Elec. Computer
Eng., Univ. Notre Dame, Notre Dame, IN, July
1988.

[I O] P.J. Antsaklis, K.M. Passion, and S.J. Wang,
"An introduction to autonomous control systems,"
IEEE Control Syst. Mug., vol. 1 I , no. 4, pp. 5-13,
June 1991.

[1 I] M.D. PeekandP.J. Antsaklis, "Parameterleam-
ing for performance adaptation," IEEE Control Syst.
Mug., vol. IO, no. 7, pp. 3-1 1, Dec. 1990.

[121 R.D. Hackney and R.J. Miller, "Engine criteria
and models for multivariable control system
design," in Proc. 1977 h t . Forum on Altematives
,for Multivariable Control, pp. 14-28, 1977.

11 31 M.A. Sartori and P.J. Antsaklis, "A Gaussian
neural network implementation for control schedul-
ing," in Proc. 1991 IEEE In?. Symp. Intelligent
Control, Aug. 13-15, 1991.

Michael A. Sartori received the B.S., M.S., and
Ph.D. degrees in electrical engineering from the
University of Notre Dame in 1987, 1989, and 1991,

respectively His Ph D. dis-
sertation addressed the train-
ing of feedforward neural
networks and their applica-
tion to the higher level con-
trol of systems. He worked
for the McDonnell Douglas
Electronics Company during
the summers of 1986 and

1987 and for the McDonnell Douglas Missile Sys-
tems Company during the summer of 1989. During
the summer of 1991, he was a Post Doctorate Re-
search Associate at the University of Notre Dame.
He is now employed by the U.S. Navy's David
Taylor Research Center. His research interests in-
clude neural networks, image processing, and
autonomous systems.

Panos J. Antsaklis received
the diploma in mechanical
and electrical engineering
from the National Technical
University of Athens,
Greece, in 1972,andtheM.S.
and Ph.D. degrees in electri-
cal engineering from Brown
University, Providence, RI,

in 1974 and 1977, respectively. After holding facul-
ty positions at Brown University, Rice University,
and Imperial College, University of London, he
joined the University of Notre Dame where he is
currently Professor of Electrical Engineering. His
research interests have been in multivariable system
and control theory, primarily using the differential
operator and fractional representations, more
recently also in autonomous intelligent control sys-
tems, and in particular in discrete event systems and
neural networks, in adaptive and learning control,
and in the reconfigurable control of systems. He is
currently an elected member of the Board of Gover-
nors in the IEEE Control Systems Society and the
Group Leader of the Working Group on Control
Systems in the Technical Committee on Intelligent
Control. He was also the Program Chair of the 30th
IEEE Conference on Decision and Control, which
took place in the United Kingdom in December
1991. He has served as an Associate Editor of the
IEEE Transactions on Automatic Control and as
Chair of the Technical Committee on Theory of the
IEEE Control Systems Society. He is an Editor of
the IEE Control Engineering Book Series, and an
Associate Editor of the IEEE Transactions on
Neurul Netcvorks, having been founding Associate
Editor for Letters. He has also served as the Guest
Editor for Neural Networks for IEEE Control Sys-
tems Maguzine. He is an IEEE Fellow.

April 1992 57

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems'
Vol.12, No.2, pp. 49-57, April 1992.

