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The systematic storage in neural networks 
of prior information to be used in the design 
of various control subsystems is investigated. 
Assuming that the prior information is avail- 
able in a certain form (namely, input/output 
data points and specifications between the 
data points), a particular neural network and a 
corresponding parameter design method are 
introduced. The proposed neural network ad- 
dresses the issue of effectively using prior 
information in the areas of dynamical system 
(plant and controller) modeling, fault detec- 
tion and identification, information extrac- 
tion, and control law scheduling. 

Incorporating Prior Knowledge 

In many practical control problems, there 
exists substantial prior information about the 
various subsystems of the control system. In 
modeling these subsystems via neural net- 
works, it is desirable to incorporate this prior 
knowledge into a neural network. A particular 
neural network architecture and an associated 
design methodology are presented in this 
paper to accomplish this for certain types of 
prior knowledge. Using this procedure, prior 
knowledge is directly and systematically 
stored in the neural network with no training. 
This has the advantage of having the informa- 
tion in a neural network form, which can be 
quickly accessed once implemented in 
hardware. This neural network can be used as 
an initial approximation to the system’s be- 
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havior. As discussed later, a better approxima- 
tion can be developed, for example, by adding 
another neural network in parallel and using 
training procedures to better approximate the 
desired behavior. 

With the  proposed  neural network 
architecture, the following problems are inves- 
tigated: dynamical system (plant and controller) 
modeling, fault detection and identification, in- 
formation extraction, and control law schedul- 
ing. In all of these implementations, it is assumed 
that a set of training points and certain specifica- 
tions for the behavior between the training points 
are provided. With this training set, the neural 
network is designed to exactly satisfy the 
specifications for the interpolation between the 
operating points. The proposed neural network 
has two layers of weights with sigmoid non- 
linearities for the hidden layer and linear func- 
tions for the output layer. The connection of the 
hidden layer to the output layer and the specific 
choices for the weights are unique aspects of this 
neural network design approach. 

The neural network design procedure 
presented in this paper represents one possible 
approach for satisfying the relationship be- 
tween the input/output pairs of the training set. 
Clearly, there exist other methods to (mathe- 
matically) describe the desired curve and 
solve the problem; for instance, polynomial or 
spline approximations can be used to represent 
the desired function. An advantage of using 
the neural network approach described here 
instead of one of these schemes is that the 
actual construction of the neural network in 
hardware would utilize the inherent paral- 
lelism of the neural network and hence result 
in a fast processing time. Compared to other 
neural network techniques, the design scheme 
here has several advantages. For one, there is 
no training required; only the design time 
needed to choose the appropriate function 
parameters (i.e., the specifications for the in- 
terpolation between the training pairs) is 
necessary. Also, exact control of the general- 
ization between the training points is guaran- 
teed via the design scheme. Furthermore, the 
number of layers and the number of neurons 
needed to correctly implement the desired 
function are known precisely. 
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In the next section, the neural network and 
the design of the neural network to approxi- 
mate a desired function are presented. The 
neural networkchosen here uses sigmoid non- 
linearities, while an alternative approach 
using Gaussian nonlinexities was introduced 
in [I] ,  [2] to address the same problem. Neural 
networks for plant and controller modeling, 
fault detection and identification, information 
extraction, and control law scheduling are dis- 
cussed, and three examples are supplied to 
illustrate the design scheme. 

Neural Network Design 

The neural network design procedure is 
presented first for the implementation of a 
si ngle-i n pu t- mu 1 ti -ou tpu t function and 
second for the implementation of a multi- 
input-multi-output function. 

Single-lnput Neural Network 

In all of the neural network implementa- 
tions, the neural network is designed to 
approximate a function given a specific set of 
training pattems and a set of generalization 
specifications. It is first assumed that the func- 
tion to be approximated is a single-input func- 
tion. For the training pattems, let v u )  denote 
the jth input pattern for 1 5 j 5 p ,  and let the 
p-dimensional vector v denote the vector of all 
input patterns arranged in ascending order, 
where v(j)> v(j- 1) for2 2 j 2 p .  Let diu) denote 
the ith component of the jth desired output 
pattern for IG ln  and 1 5 j 5 p ,  and let the 
n-dimensional vector du) and the p-by-n- 
dimensional matrix D denote the vector for 1 
5 j 5 p and the matrix of desired outputs, 
respectively. Thus, the p pairs (vu), du) )  are 
the given training patterns. 

With u as a scalar, let @ ( U )  be the n-dimen- 
sional output of a function approximating the 
relationship described by the training set [ v u ) ,  
du]  for 1 <: j 5 p.  Let @i(u) denote the ith 
component of the functions output for 1 I i 5 n. 
Three specifications are made on the function $: 
(i) If U = vu) ,  then $ ( U )  = d(j). 
(ii) If U E [vu)  - ~ j - ,  vu)  + ~ j + ]  and U # v u ) ,  then 
$i(U) E [diu) - yij-, diQ) + ~ i j + l .  
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Fig. 1. Illustration of curve spec$cations. 

(iii) If U E [v(j), v ( j  + l)], then $;(U) E [di(j), 

As an example, Fig. 1 illustrates one way 
in which these specifications can be viewed. 
The dots correspond to the training points, and 
according to specification (i), the approximat- 
ing curve must pass through these points. The 
boxes surrounding the dots correspond to the 
boxes described in specification (ii), and the 
boxes between the dots correspond to the 
bounding of the interpolation curve per 
specification (iii). The approximating curve 
must pass correctly through both sets of boxes. 
Clearly, there exist numerous curves that satis- 
fy these three specifications. With the neural 
network design scheme described here, a sub- 
set of the class of curves described by $ is 
achieved in which these three specifications 
are exactly satisfied. 

For the neural network, let the scalar U 
denote the neural network's input, and let z 
denote the neural network's n-dimensional 
output. For a specific input U, let zi(u) for 1 5 

d;(j + l)]. 
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i I n and z(u) denote the output of the neural 
network. An individual output of the neural 
network is described by the weighted sum 
Z i ( U )  where 1 I i 5 n, wik is a weight of the ith 
linear neuron in the output layer, and gk is the 
difference between two sigmoid functions: 

Let W denote the (h + 1)-by-n-dimensional 
matrix of weights for the output layer. The 
output of the kth node in the neural network's 
hidden layer is described by the following 
where 1 5 k 5 h + 1, o is the sigmoid non- 
linearity of the hidden layer neurons, ck is the 
bias (or "center" of the sigmoid function), and 
sk is the weight (or "slope" of the sigmoid 
function): 

and 

For all U, let 

and 

Let c denote the n-dimensional vector of 
centers, ands denote the n-dimensional vector 
of slopes. With sk = 1, the conventional sig- 

-3 -2 -1 0 1 2 

Fig. 2. The Gaussian-typefunction gk(u) = O(u, -2, 5)  - O(u, 1, 20). 
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moid curve is achieved, but by allowing sk to 
vary, a class of sigmoid functions is possible, 
which allows for greater flexibility in the 
design of the interpolation curve. As an ex- 
ample of the formation of a Gaussian-type 
curve, Fig. 2 shows the output of gk(u) = o(u, 
-2,  5) - ~ ( u ,  1, 20) which can be viewed as a 
Gaussian-type curve centered at 0 with asym- 
metric sides. This asymmetry has advantages 
over the symmetrical Gaussian function used 
in the other  neural  network approach 
described in [ l ]  and [2]; mainly, the sigmoid 
formed function aptly handles nonequidistant 
training sets. 

Design for the Single-Inpui 
Neural Network 

In designing the neural network, its 
parameters are chosen such that its output z is 
in the class of functions $ described pre- 
viously. The proposed neural network design 
scheme is a selection process based on the 
specifications for the interpolation between 
the operating points and does not require train- 
ing. With this approach, exact control of the 
neural network's generalization behavior is 
achieved, and the three specifications 
described above are satisfied precisely, as will 
be shown. 

The number of hidden layer nodes is set 
equal to one less the number of training pat- 
tems, that is h = p  - 1. The center ck for the kth 
node is set equal to the value midway between 
the kth and the (k + 1)th input training points 
for 1 I k 5 h: 

1 (6) 
2 

ck = - [v ( k)+v ( k + 1 )]. 

Since Ck + 1 2 ck, gk here approximates a 
Gaussian-type nonlinearity centered around 
v(k), and this allows for a localized effect at 
the output of the nodes gk with the appropriate 
choice for each slope sk. 

To aid in satisfying specifications (ii) and 
(iii) for the output of the neural network, re- 
quirements relating the neural network's out- 
put to its parameters are made. First, the 
widths s are chosen such that (1) can be ap- 
proximated by the following weighted sum 
when U E [v( j ) ,  v ( j  + l)]: 

k = j  

This implies that the tails of the outputs gdu) for 
k # j and k # j + 1 are small compared to those 
fork = j and k = j  + 1 when U E [dJ, v(j + l)]. 

/€E€ Control Systems 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:52 from IEEE Xplore.  Restrictions apply. 

M. A. Sartori and P. J. Antsaklis, "Implementations of Learning Control Systems Using Neural 
Networks,” I EEE C ontrol S ystems M agazine , in Special Issue on 'Neural Networks in Control Systems' 
Vol.12, No.2, pp. 49-57, April 1992.



The approximation of (7) also implies that 
when the node gk has a larger response com- 
pared to the other nodes, the input is closest to 
the kth training pattern. In other words, for 1 
If5 h + 1 and for U E [v(k) - Ak-i, v(k) + Ak] 
where Ak is defined such that gk(v(k) + &) = 
gk+l(v(k) + Ak), 

Via (8), the localized effect of the hidden layer 
neurons is shown. The output of the neural 
network passing through a box specified by 
specification (ii) assumes the general shape of 
the output of the kth hidden layer node if Ek- I 
Ak.1 and &k+ 5 Ak. To further aid in satisfying 
specifications (ii) and (iii), the slopes s are 
chosen such that for all U: 

In conjunction with (7) and (8), (9) implies 
that for U E [v(k), v(k + l)] the sum of the 
outputs of gk(u) and gk + ](U) is constant, the 
and node gk contributes more to the sum when 
U is close to v(k) and less when it is closer to 
v(k+ 1). Thus, the choice of the slope sk clearly 
affects the shape of the interpolation curve and 
the localization properties of Gaussian-type 
nodes gk. 

With the centers and the slopes specified 
for the hidden layer, the weights for the linear 
output layer are chosen next. Let G denote a 
p-by-(h + 1)-dimensional output matrix of the 
hidden layer nodes for each of thep operating 
points. Thus, the output layer weights are 
found by solving the following linear system 
of equations: 

G W = D .  (10) 

Since G is square (h = p - 1) and nonsingular 
because of the particular choices for c and s, 
(1 0) has a unique solution W .  Furthermore, 
due to the choice of s per (7) and (8), if the 
neural network's input U is exactly the kth 
operating point, the output of the kth hidden 
layer node gk(u)  is 1 while the outputs of the 
other hidden layer Gaussian-type nodes are 0. 
Hence, G can be assumed to be the identity 
matrix, and W can be approximated by D .  

Using (7), (8), and (10) and the simplify- 
ing assumption that n = 1, it was shown in 
[ l ]  that to satisfy specification (ii) for all 
operating points, the slope sk needs to be 
chosen such that the following are met for 1 
< k < h :  

Wk + 1 - Wk C(k) = 
d(k)-yk- - Wk' 

and 

If d(k) = d(k + l), then specification (iii) requires 
zj(u)=d(k)=d(k+ 1 ) f o r u ~  [v(k),v(k+ l)],and 
the solving of (1 1) and (12) for U = v(k + 1) - 
~ ( k + i ) -  and U = v(k)  + &k+ is unnecessary. 

Thus, the neural network parameters can 
be chosen to  exactly satisfy the three 
specifications for the interpolation between 
the training points. With h = p - 1, the centers 
c are chosen per (6) and the weights W can be 
approximated with D .  Using (11) and (12), 
limits for the widthss are found. Various selec- 
tions fors can be made based on (1 1) and (1 2 )  
and the corresponding W can be recomputed 
via (10) until a desirable curve is achieved. 
The resulting neural network describes a func- 
tion which is within the class of functions 
described by O(u) and exactly satisfies the 
specifications for the interpolation between 
the training points. 

Due to the way in which the neural network 
parameters are chosen, the behavior of the 
neural network is expressed in (1)-(3). How- 
ever, the neural network can be reconfigured 
in a more economical fashion, and (1) and (2) 
are equivalent to the following where 1 I i I 
n and o(u, c, s) is defined in (3): 

Due to the choice of o(u, CO, SO) in (4) and 
o(u, c h + i ,  sh+l) in ( 5 ) ,  when the neural 
networks input is outside the design domain, 
the neural network's output is equal to either 
the first or last desired output from the training 
set. In other words, if U < v(l) ,  z(u) = d(l), or 
if U > v(p), then z = d(p). If instead it is desired 
that if U <c v( 1) or U >> v(p) then Z(U) = 0, the 

choice of o(u, CO, so) and o(u, ch+l, sh+l )  can 
be modified to accomplish this. 

Multi-Input Neural Network 

Given a specific set of training pattems and 
the three generalization specifications, the 
design of a neural network to approximate a 
multi-input-multi-output function is presented 
in this section. For the training patterns, let the 
m-dimensional vector v( j )  denote the jth input 
pattern for 1 5 j I p,  and let the scalar v&) be 
the rth component of vu) for 1 5 r I m. (Note 
that it is not required to arrange these in an 
order as with the single-input case.) Let the 
n-dimensional vectord(j) denote the jth output 
pattern for 1 5 j 5 p ,  and let the scalar diu) 
denote the ith component of the jth desired 
output pattem for 1 I i 5 n and 1 5 j 5 p .  Let 
the p-by-n-dimensional matrix D denote the 
matrix of desired outputs. Thus, the p pairs 
{ v ( j ) ,  d(j)]  are the given training patterns. 

For the m-dimensional vector U, let $(U) be 
the n-dimensional output of a function ap- 
proximating the relationship described by the 
training set {vu), d( j ) }  for 1 I j I p.  Let 
denote the ith component of the functions 
output for 1 I i <: n. Three specifications are 
made on the function $: 
(i) If u = vu), then o(u)  = du ). 
(ii) If Ur E [ V & )  - Erj., V&) + E r  J+] and U r  f 

v&), then @j(u) E [diu) - TI-, diu) +yo+]. 
(iii) If U is "between" any two immediate 
training patterns, v u )  and v(k), then @(U) is 
"between" the corresponding output pattems 
d&) and di(k). 

The meanings of all the specifications are 
the same as for the single-input case. How- 
ever, descriptive language is used to state 
specification (iii) for the multi-input case 
since the indexing of the higher dimension 
patterns becomes complex and may not be 
needed, as is explained below. 

For the  neural  network,  let the n- 
dimensional vector u denote the neural 
network's input, and let z denote the neural 
network's n-dimensional output.  For a 
specific input U, let zi(u) for 1 5 i I n and z(u) 
denote the output of the neural network. For 
the multi-input neural network, an individual 
output of the neural network is given by the 
following where 1 I i 5 n: 
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For m = 1, (14) reduces to (1). The output of 
the rkrth hidden layer node is described by the 
following where 1 I k, I h, + 1, 1 I r I m, and 
where o(u, c, s) is defined in (3): 

grk,(ur) = ~ ( u ,  cr(kr-l), s<k,-lj) 

- o ( U r ,  Crk,, Srk,). 

(15) 

For 1 I r I m and for all U,, let 

and 

o ( ~ r ,  cr(hr+-+l 1, Sr(hr+l j) = 0. ( 1  7 )  

Let Cr  denote the hrdimensional vector of 
centers, and let sr denote the h,-dimensional 
vector of slopes for 1 5 r 5 m. Since the sizes 
of Cr  andsr are not restricted to be the same for 
1 I r I m, the formation of a matrix of centers 
and a matrix of slopes may not be possible. In 
(14), the outputs of the Gaussian-type nodes 
are multiplied together, which is unusual when 
compared to conventional neural networks. 
With the multiplications, the specification of 
the centers and the slopes for the sigmoid 
neurons corresponds to the specification of 
hyper-rectangles around the operating points. 
By appropriately choosing these parameters, 
the entire input space can be mapped to par- 
ticular desired outputs of the neural network 
scheduler. However, a drawback is the added 
complexity of the neural network due to the 
required multiplications. 

Design for  the Multi-Input 
Neural Network 

The selection of the multi-input neural 
network's centers, slopes, and weights is 
divided into the two cases of equidistant input 
patterns and nonequidistant input patterns 
with the case of equidistant input pattems 
considered first. The term "equidistant" for the 
m-dimensional case refers to the input pattems 
being an equal distance apart in each dimen- 
sion. Instead of denoting the input pattems as 
v u )  for 1 I j I p, the set of all equidistant input 
pattems is considered to be comprised of ele- 
ments from vectors containing information on all 
the values of all the input pattems. Letp, denote the 
number of values for the rth dimension such that 

denote thep,-dimensional vector of values of 
the input pattems for the rth dimension such 
thatvr(kr+i) 2 vrk, for I 5 r I m and 1 I k ,  I pr. 
The counting of the p input pattems is not 
important; rather, their location in the input 
space is important. The number of hidden layer 
nodes in the rth dimension is set equal to one 
less the number of input pattems, that is h,  = 
p r - l , f o r l I r I m . F o r l I r I m a n d f o r l I  
k ,  I h,, the center c,k, is set equal to the 
distance halfway between the rk,th and the r(kr 
+ 1)th input pattems 

Since 

approximates a Gaussian-type nonlinearity 
centered around vrk,, and this allows for a 
localized effect in the shape of a hyper-rec- 

tangle at the output of the node n g r k , ( U r  ) with 

the appropriate choice for each slope srk,. 

In choosing the slopes to satisfy the 
specifications for the interpolation between 
the training pattems, the multidimensional 
equivalents of (7) to (9) need to be satisfied. 
For (7) ,  this implies that for any input U the 
output is dependent only on the closest Gaus- 
sian-type nodes. For 1 I f, I hr + 1 and for 
u r  E [Vrk, - Ar( k, - I ), Vrk,  + Ark, 1 where Ark, 
is defined such that 

-1 

for 1 5 r I m and 1 I k ,  I h,, the multidimen- 
sional equivalent of (8) is 

Furthermore, the interpolation curve pass- 
ing through a box described by specification 
(ii) assumes the general shape of the output of 

and 
E l k , ,  5 Ark, 

for 1 I r I m. For (9) and for all U, 

With the centers and slopes chosen to satis- 
fy (19) and (20), which aid in satisfying 
specification (iii), the weights w;k I .. k,  can 
be found. Forming the p-by-[(hi + 1) ...( hm + 
l)] matrix G from the outputs of the Gaussian- 
type nodes, (10) is solved for the unique [(hi 
+ 1)  ...( hm + l)]-by-n matrix W. Furthermore, 
(11)  and (12) can be extended to the multi- 
dimensional case with the appropriate chan- 
ges to the indices. Thus, a neural network can 
be designed to satisfy the specifications for its 
generalization behavior in the multi-input 
case. 

If the input pattems are not equidistant, two 
possible design choices are considered here: ad- 
ding extra pseudo-input pattems such that equi- 
distance occurs or locating the boundaries of the 
hyper-rectangles for each input pattem such that 
the entire input space is covered. The f i s t  pos- 
sibility is more viable when most of the input 
pattems are equidistant, and only a few extra 
pattems are needed. Once this is accomplished, 
the above procedure for choosing the centers 
for equidistant input pattems is followed for 
the set of input pattems and added pseudo- 
input patterns. When solving ( I O ) ,  extra 
pseudo-desired outputs are added such that W 
is a unique solution. These added outputs can be 
chosen to be the same as nearby ones orextrapo- 
lated values from surrounding ones. 

For the second possibility when the input 
patterns are not equidistant, hyper-rectangles 
are found for the given input patterns such that 
the entire input space is covered. Since the 
locations of the input pattems are no longer 
equidistant, (14) can be replaced by the fol- 
lowing where I I i I n: 

For low dimensional inputs, the selection of the 
hyper-rectangles may be performed manually. 
However, for higher dimensions, this may be- 
come impractical. In [3], this problem is ad- 
dressed as the "CRm" problem (or "CRd using 
their notation). The CR, problem is known to 
have a high computational complexity, and Gon- 
zalez presents algorithms for obtaining a subop- 
timal solution. Once the hyper-rectangles are 
found (either manually or algorithmically), the 
centers of the sigmoid neurons are chosen as the 
boundaries between them. The slopes are chosen 
to satisfy the specifications, and the output layer 
weights are found via (IO). Thus, through a 
selection of the hyper-rectangles around the 
input pattems, the parameters for the neural net- 
work are chosen, and the specifications for the 
neural network's output are satisfied. 
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Neural Network Implementations 

In this section, the use of the neural net- 
work architecture introduced in the preceding 
section is described for the following four 
problems: dynamical system modeling, fault 
detection and identification, information ex- 
traction, and control law scheduling. 

Dynamical System Modeling 

The neural network proposed in this paper 
can be used to model the plant’s or controller’s 
dynamics. In [4], known linear information is 
used to assist in the identification of the plant, 
yet prior nonlinear knowledge may also be 
used in the plant identification process. With 
the proposed neural network architecture, cer- 

tain types of knowledge can be implemented 
as a neural network. Specifically, if the the 
nonlinear information can be expressed within 
the framework of the training set and the three 
specifications for the interpolation between 
the training patterns, the design scheme 
proposed here can be used. Constructing a 
neural network to describe the known non- 
linear behavior of the plant and using it as part 
of the plant identification process, a second 
neural network may be trained using learning 
algorithms to modify the plant’s estimated 
dynamics. Such a scheme i s  shown in Fig. 3 
and can be viewed as modeling the known 
dynamics with one neural network and train- 
ing another neural network to leam the un- 
known dynamics. This general approach is 
discussed in IS]. By using a neural network to 

I 
I 

Neural Network 
I Prior Information 
I 
I 

I 
I 
I I f 

I 

I 
I 
I 

+ I  7 
Fig. 3. Training a neural network for  plant modeling. 

I I 

Fig. 4. Training a neural nehuork controllev. 
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model the plant’s known nonlinear behavior, 
it is anticipated that less time will be required 
to train the second neural network. In par- 
ticular, the tens of thousands of back-propaga- 
tion iterations that are normally required to 
train such a network may be reduced. 

Further, by modeling the known nonlinear 
dynamics of the plant with a neural network, 
a total neural network plant identification 
structure is formed. This has the advantage of 
being able to be incorporated into the training 
of a neural network controller, which is one of 
the purposes of training a neural network plant 
estimator as described in [SI and as used in [4]. 
This controller training scheme is shown in 
Fig. 4. Since the desired plant input is un- 
known, the desired output of the neural net- 
work controller is unknown. However, the 
desiredoutputofthe plantis known. Substitut- 
ing the actual plant with aneural network plant 
estimator, a multi-layer neural network may 
be trained with the back-propagation algo- 
rithm, or another gradient descent algorithm 
to minimize a plant output error cost function. 
Via the chain rule, the derivative of the cost 
function with respect to the plant estimator’s 
input is used in the computation of the deriva- 
tive of the cost function with respect to the 
neural network controller’s weights. Next, in 
reference to Fig. 4, this gradient is computed 
assuming a SISO plant for simplicity. 

The cost function i s  a sum of the squares 
of the plant output errors for the p training 
patterns: 

To compute the weight change in the neural 
network controller, 6F/6u is required. So, 

and 
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Fig. 5. Neural network output of the A D  converter of Example 1. 

Computing 6yn(i)/6u and assuming 6yr(i)lGu is 
determined, the gradient 6F/6u is found. 
Relaxing the assumption of a SISO plant, the 
extension to the multi-input case is straight 
forward since each grk in (14) is dependent 
on only one input and not the entire input 
vector. Thus, the neural network architecture 
and design scheme proposed in this paper can 
be used both to implement a plant estimator 
and train a neural network controller. 

Fault Detection and Identi3cation 

The described neural network architecture 
may be used for fault detection and identifi- 
cation. As described in [I] ,  [SI, the neural 
network in this case operates outside the main 
loop and receives the appropriate signals from 
the plant: for instance, outputs, inputs, or en- 
vironmental conditions. The neural network 
then responds by declaring either a fault, no- 
fault condition, or, with the neural network 
design proposed here, a partial membership 
signal. If fault patterns are known to occur for 
specific patterns, this information can be 
stored in the neural network by choosing the 
training set of the neural network to coordinate 
with the known faults. Valid fault regions for 
each fault can next be determined and stored 
using the centers c of the sigmoid non- 
linearities. By choosing the slope of the sig- 
moid nonlinearities small, a "gray scale", or 
partial membership, of the fault region can be 
included in the fault detection system design. 
By choosing the slope of the sigmoid non- 
linearities large, clearly definable fault and 
no-fault regions develop. 

A drawback of this approach is that for 
multi-input failure detection systems, the 
valid fault regions are restricted to hyper-rec- 
tangles. If irregular shaped fault regions 
defined by straight lines are desired, the 
method initially described in [6] and further 
developed in [ I ]  may be employed. If it is 
desired that the neural network failure detec- 
tion system detect, identify, and diagnose the 
failure, the scheme described in [7], which is 
illustrated using a JPL space antenna model, 
is one possible approach. 

Information Extraction 

The neural network architecture described 
in this paper may also implement the general 
control function of numeric-to-symbolic con- 
version. As considered here, numeric-to-sym- 
b o k  conversion is the task of processing data 
that can be used by the controller as informa- 
tion. One such example of numeric-to-sym- 
bolic conversion is fault detection and 
identification as discussed in the previous sub- 
section. Here, the numeric data consists of the 
detection system's inputs: the plant's inputs 
and outputs, their derivatives, and the environ- 
mental conditions. The symbolic data is the 
occurrence of a fault or no-fault condition and 
the identification of the fault. 

Another example, as discussed extensively 
in [6],  is the task of converting numeric data 
to a form usable by a discrete event controller. 
The discrete event controller requires sym- 
bolic information describing the state of the 
plant. However, the output of the plant is in a 
numeric form, unusable to the discrete event 
controller. By describing the regions of inter- 

est to the discrete event control law, the boun- 
daries of the regions are transformed into 
design specifications for the centers of the 
neural network's sigmoid functions. By 
changing the slopes of the sigmoid functions, 
membership in a region can be made specific 
(i.e., a large slope) or non-specific (i.e., a small 
slope) depending on the type of information 
required by the discrete event control law. 

For a digital controller, the neural network 
architecture proposed here can perform the 
function of analog-to-digital (AD) conver- 
sion. The centers of the sigmoid function are 
chosen to correspond to the quantization 
regions. For a clear distinction between 
regions, the slopes are chosen larger. This 
feedforward neural network design can be 
compared to the feedback neural network 
design of Tank and Hopfield in [8] and to its 
improved design described in [9]. In compar- 
ing the feedforward design to the feedback 
design, no time is required to wait for the 
output of the feedforward neural network to 
settle, as is required for the feedback neural 
network design. The problems with determin- 
ing and designing the regions of attraction for 
the neural network's minima in the feedback 
design do not occur whatsoever with the feed- 
forward design; the "regions of attraction" are 
known exactly and can be easily designed 
according to specifications. Comparing the 
number of neurons required for an n-level A/D 
converter, the feedback design requires n 
neurons, while the feedforward design re- 
quires 3n neurons. Next, an A/D converter is 
implemented with a neural network designed 
using the method proposed here. 

Example 1 

It is desired to convert analog signals in the 
range of 0 to IO to all 11 discrete levels be- 
tween 0 and IO. In addition, any signal less 
than 0 is mapped to 0, and any signal greater 
than 10 is mapped to 10. The discrete regions 
are divided midway between the integer values. 
The training set becomes the 11 matched pairs 
of the input and output integer values. Using 
the single-input neural network design proce- 
dure in this paper, h = 10 and form (6), 

c = [OS 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.51'. 

The slopes for the hidden layer neurons are 
chosen large: sk = 500 for 1 I k S 10. Solving 
(1 0), the output layer weights are determined. 
The output of the resulting neural network is 
shown in Fig. 5. The transitions between the 
regions are sharp due to the high gain chosen 
for the sigmoid nonlinearities. 
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Control Law Scheduling 

A neural network may be used to imple- 
ment a control law scheduler. In this capacity, 
the neural network can be viewed as a high 
level decision maker operating outside the 
conventional control loop to provide a higher 
degreeofautonomy to the system [11,[51,[10]. 
Given a set of operating points and the as- 
sociated set of parameters values for the con- 
trol law, the neural network is designed to 
satisfy given specifications for the interpola- 
tion between the provided operating points. 
The operating points become the training set, 
and the specifications for the interpolation 
between the operating points become the three 
specifications discussed in the design of the 
neural network. 

In its operations as a control law scheduler, 
the neural network is first supplied with infor- 
mation about the system and its environment; 
it then produces control law switching infor- 
mation to the controller. The neural network‘s 
inputs are the inputs and outputs of the plant 
together with the reference signal. The output 
of the neural network is the control law adjust- 
ment signal sent to the controller; in this paper, 
this signal represents parameter values for the 
controller. The neural network’s inputs are not 
restricted to these signals; other signals such 
as the plant’s states, derivatives, environmen- 
tal conditions, or delayed values of any of 
these can be used as inputs to the neural net- 
work. Basically, any signal that may be 
designed into the operation of the scheduler is 
used as an input to the neural network. Fur- 
thermore, the plant and controller can operate 
in either continuous or discrete time. If the 
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7.73 
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neural network is implemented in analog 
hardware, both the plant and the controller can 
operate in continuous time; in this case, the 
neural network may supply the parameter 
values to the controller as continuous vari- 
ables. However, if the neural network is to be 
implemented in software, both the plant and 
the controller need to be discrete or discretized 
versions of continuous ones. In either case, the 
designing of the neural network as discussed 
in this paper remains unchanged. 

I p, 
i 

2.5‘ I L I 
2 3 4 5 6 7 8 

Amplitude of Disturbance 

Fig. 6. Neural network output for L for  Example 2. 

49000.0 

39200.0 

44046.1 

37325.7 

44046.1 

29114.0 

32025.4 

48450.7 

41567.5 

41567.5 

4 1567.5 

119703.96 

13 1674.35 

1459 10.16 

183327.84 

175092.19 

203493.90 

203493.90 

140073.75 

138395.55 

138395.55 

110716.44 

Two examples, one for a single-input 
neural network and one for a multi-output 
neural network to implement, are presented 
next to illustrate the design of aneural network 
implemented control law scheduler. 

Example 2 

In [11], a parameter learning method is 
presented and used to define the region of 
operation for an adaptive control system of a 
flexible space antenna. In one of the experi- 
ments described, an initial pulse disturbance 
is applied to the plant, and the adaptive con- 
troller is required to follow a zero-order refer- 
ence model. The goal of the parameter 
learning system is to find and store values for 
the four agaptive controller parameters ((31, 

(32, L,  and L,) for vaned amplitudes of a pulse 
disturbance (system initial conditions) such 
that a defined performance index based on the 
output of the plant is minimized. In Table I, 
the values found for the controller parameters 
for different pulse amplitudes are repeated. 
Using this table, the goal here is to construct 
a neural network scheduler such that a smooth 
interpolation is achieved between the 11 
operating points using the design method of 
this paper. 

For the neural network, the centers of the 
sigmoid neurons in the hidden layer are set 
halfway between the operating points accord- 
ing to (6): 
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Table I1 
Selected Flight Points for FlOO Engine 

Amplitude Mach Controller 
(1K ft) Number Parameters 

10 0.75 2 

10 I .00 3 

10 1.25 4 

20 0.50 I 

30 0.75 5 

30 1 .OO 6 

c = [2.125 2.375 2.75 3.27 3.75 4.25 
4.75 5.25 5.75 6.51’. 

The slopes for the hidden layer neurons are 
c h o s e n a s s k = 7 5 f o r I I k I  lO.With(lO),the 
unique weights Ware found. Fig. 6 shows the 
output of the sigmoid neural network 
scheduler for adaptive controller parameter L 
along with the straight line approximation be- 
tween the operating points (dotted line). As 
can be seen, z3(k) = d3(k) for 1 I k I 11,  and 
specification (i) is met. In the regions nearby 
the operating points, the adaptive controller 
parameter values specified by the neural net- 
work scheduler are close to those specified by 
Table I satisfying specification (ii) for very 
thin and wide boxes. In regions between 
operating points, a swift yet smooth transition 
occurs between the operating points, and 
specification (iii) is met. Between 5.5 and 6.0, 
specification (iii) requires a straight line, and 
this is clearly satisfied. Thus, all specifications 
can be shown to be satisfied. 

Example 3 

0 1 2 

Mach Number 

Fig. 7. Selected FlOOflightpoints for  Example 
3.3. 

and 

d = [ l  2 3 4 1 1 1 1 1 5  6 61’. 

The resulting vectors of operating points are 

V I  =[ I0  20 301’ 

and 

v 2  = [OS0 0.75 1.00 1.25]’, 

where r = 1 corresponds to the altitude and 
with r = 2 corresponds to the Mach number. 
The equivalent to (16) for this example is 

Using (20), the vectors of centers are 

C I  = [15 251’ 

and 
cz = [0.625 0.875 1.1251’. 

In [12], linear models of a FlOO engine are 
developed for various flight points based on 
altitude and mach number. In Table 11, 6 of 
these flight points are listed with fictitious 
controller parameters, and in Fig. 7, these six 
are diagrammed. It is desired to design a 
neural network control law scheduler for the 
interpolation between these flight points using 
the architecture and design approach of this 
paper. Since the operating points are non equi- 
distant, it is decided to add 6 pseudo-operating 
points such that equidistance is achieved, and 
p = 12. Now, 

10 10 10 10 20 20 20 20 30 30 30 30 regions for the in- 
terpolation curve, 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 
which are shown in 

The slopes are chosen as SI k , = 20 for 1 5 ki 
I 2 and s2 k = 400 for I I k2 I 3. The weights 
w are found by solving (1 0), and the interpola- 
tion curve produced is shown in Fig. 8. The 
lowest comer corresponds to the point (8,0.4), 
the most left comer to (32,0.4), and the most 
right corner to (8, 1.35). Specifications (i) and 
(iii) are clearly satisfied, and specification (ii) 
is satisfied for small thin boxes for a rectan- 
gular region around the operating points. 

Instead of adding extra operating points 
such that equidistance is achieved, it is 
decided to hand pjck the generalization 

Fig. 8. Neural network output for the first 
scheduler of Example 3. 

Fig. 9 and are assigned values according to 
Table 11. The equivalent to (21) for this ex- 
ample is 

Only 4 sigmoids are needed to form the 6 
regions, and the vectors of centers are 

C ]  = [20] 

and 

c2 = [0.625 0.875 1.1251’ 

where r = 1 corresponds to the altitude and r 
= 2 corresponds to the Mach number. By 
choosing S l k  = 20 and s2k = 400 for 1 I k 5 6 
and by solving (10) for w ,  the interpolation 
curve formed is shown in Fig. 10 with the 
same comer coordinates as the previous two- 

- c 
a, U. 
(I) 

? a 
t 
0 -c 

a, U 

c c ._ - a 

40 

30 

20 

10 

0 
0 1 2 

I Mach Number 

Fig. 9. Selected localized regions for  the F I O O  
flight points of Example 3. 
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Fig. 10. Neural network output for  the second 
scheduler of Example 3. 

dimensional plots. Specifications (i) and (iii) 
are clearly satisfied, and specification (ii) is 
satisfied for small thin boxes for rectangular 
regions around the operating points. 

Concluding Remarks 

A part icular  neu ra l  ne twork  a n d  a 
systematic design methodology are intro- 
duced so that prior information about the 
system's behavior can be  directly and easily 
incorporated into the control design. The 
four uses investigated for  the proposed 
neural network architecture are dynamical 
system (plant and controller) modeling, 
fault detection and identification, informa- 
tion extraction, and control law scheduling. 
Another approach to address this problem is 
presented in [13] using neural networks 
with Gaussian non!inearities and not sig- 
moid nonlinearities. The two methods are 
compared in [ I  1, [ 2 ] ,  and it is shown that the 
sigmoid neural network implementation has 
certain advantages over the Gaussian neural 
network implementation. In particular, the 
sigmoid neural network easily implements 
training patterns that are nonequidistant, 
which is a problem for the Gaussian neural 
network approach. However, for the multi- 
input case, the sigmoid neural network has 
an added complexity due to the multiplication 
in (14). 
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