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Abstract

In this report, a hybrid control system consists of a continuous-state system, which
may be continuous-time or discrete-time, that is being supervised and controlled by a
higher level decision making system, typically a discrete-state symbolic system. In
particular, a hybrid control system consists of two rather distinct parts: a system adequately
described by a set of difference or differential equations, this may include the plant to be
conwrolled and perhaps a conventional controller, and a higher level decision making
controller, modeled as a discrete event system.

Since hybrid control systems show great promise, techniques for hybrid systems,
analogous to those existing for more conventional control systems, would be very useful.
However, until recently little has been attempted in the area of hybrid systems. In this
report, a general and useful modeling technique for hybrid control systems is presented
and this model is used to perform some analysis on the hybrid control system. A number
of examples are given to illustrate the concepts; they include a double integrator controlled
by a discrete event symbolic system and a surge tank controller.

More specifically, the model developed in this report includes an explicitly defined
interface for carrying information between the continuous-state and discrete-state parts of
the system. This interface allows for a complete mathematical model of the system to be
defined, so that it can be simulated or analyzed in a general fashion. A method is presented
for converting the continuous-state portion of the system, along with the interface, to a
discrete-event system representation. This discrete-event system represents the model, of
the lower level system, which the higher level system sees. Conditions are given to
determine whether the discrete-event representation will be deterministic. A beginning
treatment of the stability of hybrid control systems, using the discrete-event system
representation, is also given.
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1. INTRODUCTION

A Hybrid Control System (HCS) consists of a continuous-state system that may be
continuous-time or discrete-time, which is being supervised and controlled by a higher
level decision making system, typically a discrete-state symbolic system. In particular, a
hybrid control system consists of two rather distinct parts: a system adequately described
by a set of difference or differential equations, this may inctude the plant to be controlled
and perhaps a conventional controller, and a higher level decision making controller,
modeled as a discrete-event system. Note that the use of the term "hybrid" is quite distinct
from its common use in the control field referring to systems with both digital and analog
components. Hybrid control systems are quite common in practice. A familiar hybrid
control system is the temperature control of a typicai home, if the furnace and air
conditioner are modeled as continuous-time systems as they are being controlled by a
thermostat which can be regarded as a decision making system. Recently, attempts have
been made to study hybrid control systems in a unified, analytical framework [4, 12, 17,
18].

Models and techniques for the analysis of systems adequately described by a set of
difference or differential equations exist, in fact, this has been the main thrust of control
theory in the past century. Significant work has also been done for the modeling and
analysis of discrete-event systems, ¢.g. [14, 16, 20, 26]. Since hybrid control systems
show great promise, techniques for hybrid systems, analogous to those existing for the
above more conventional control systems, would be very useful. However, little has been
attempted in the area of hybrid systems. In [12], a model is developed for a specific hybrid
system, a computer disk and controller. In [17] and [18] a model for a more general class
of hybrid systems is proposed. Finally, in [4] a method of representing a wide class of
hybrid systems via a programming language is presented and used to draw some
conclusions about the hybrid system.

In this report, in keeping with conventional control systems, the continuous-state
system shall be called the plant, and the decision making system shall be called the
conwroller. This is in spite of the fact that there may be some control action taking place in
what is called the plant. The difficulty in modeling hybrid systems arises from the
heterogeneous nature of this system. The plant is a continuous-state system which evolves
in real time. Signals involving the plant may be continuous-time or discrete-time but they
are always continuously valued, being assigned a real numeric value. The controller, on
the other hand, s an event driven system; it evolves in logical time. Signals involving the
controlier are discrete and asynchronous, and their values are generally qualitative, being
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symbolic rather than numeric. In order for the plant and controller to interact, the hybrid
system must also contain an additional part which serves as an interface and allows an
exchange of information between the plant and controller. The three parts of a hybrid
control system, controller, interface, and plant, can be envisioned as a hierarchical system
with the controller as the highest layer, the interface in the middle, and the plant as the
lowest layer.

735 AN APPROACH TO MODELING HYBRID CONTROL SYSTEMS

A hybrid control system can be seen as having three layers, one layer for each of
the three essential parts of a hybrid control system. The top layer is made up of the
controller which acts as a supervisor and decision maker. The bottom layer consists of the
plant, which represents the system being controlled. And the middle layer is an interface
which allows two-way communication between the top and bottom layers.

The model described here, and used throughout this work, represents a refinement
of the above representation. It is made up of four interacting blocks, each with a specific
form and functon. The first of these four blocks represents the top layer or controller, and
it is therefore called the controller. The second block represents the bottom layer and is the
plant. Each of the remaining two blocks represent a portion of the interface layer and they
are called the actuator and aggregator blocks. The actuator relays commands from the
conwoller to the plant, and the aggregator carries information in the opposite direction, from
the plant to the controller. Figure 2.1 shows the arrangement of these four blocks as well
as the names and locations of the signals, represented by arrows, which provide
communication between the blocks. Each of the blocks and its associated signals will be
described now.

2.1 Plant

The plant is modeled as a time-invariant, discrete-time system (DTS). This can be
used to represent an actual discrete-time plant, a sampled continuous-time plant, or any type
of system which evolves in real time and can be suitably approximated by a time-invariant,
discrete-time system. Formally the plant is specified by the following equations:

x(k+1) = f(x(k), r(k)) (1)
z(k) = g(x(k)) @)

where
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DES Controller

rh Y Tzh

Actuator Aggregator

- .

Discrete-time Plant

Figure 2.1

f:RPxRM - Rhand g: R - RP

are the system functions, and

x(k) e Rn plant state
(k) e Rm plant input
Z(k) € RP measured plant output

are discrete-time signals. For the purposes of this work we assume that z(k) = x(k) and
therefore p = n. It should be pointed out that the plant could easily be changed to represent
a continuous-time system by changing Equation (1) to x = f(x, r).

2.2 Aggregator
The aggregator contains the portion of the interface layer responsible for relaying
information from the plant to the controller. The input to the aggregator is the measured
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output, z, which in our case is equal to the state of the plant, x, and the output is z4. The
task of the aggregator, therefore, is to convert the discrete-time signal, z, to a discrete-event
signat, zh. To accomplish this the aggregator partitions the state space of the plant into a
number of regions, where each region is associated with an event, e; € E, where E is a set
of possible events. It is possible that more than one closed region can be associated with
the same event. Whenever the state of the plant moves from one region to another, the
aggregator outputs the event associated with the new region. The aggregator will then

remain silent until the plant state moves into another new region.
Mathematicaily the aggregator can be specified by a function, o, which maps each

point in R™ to an event in E. o is not an injective function and it induces equivalence
classes in R". Each of these equivalence classes forms one or more contiguous regions in
R™ which partition the state space, and are called aggregator regions.

Definition 3.1: The aggregator regions generated by the function o in the space R? form a
partition of R such that two points, 11, 13 € RM, are in the same aggregator region iff there
exists a curve in RP from r; to rp such that a(r) = a(r;) = a(rz) for any point, r, on the

curve. The set of aggregator regions shall be denoted by A. 0
Thus

«:RPSE alpha

z(k) e R0 aggregator input (plant state)

zhje E aggregator output (DES controller input)

The action of the aggregator can be written as
zh = sp{a(x)] (3)

where we abuse notation slightly by allowing « to operate on a signal. sp is a function
which suppresses repeated events so that the aggregator generates an event only when the
piant state first enters a region. The function o is intended to induce equivalence classes
which generate reasonably large regions in the state space, large enough such that the plant
state can evolve for a number of time steps and remain in the same region. As a result, zA
will be a discrete and asynchronous signal which has a value only at the times that z moves
from one equivalence class of & to another. To help clarify, Figure 2.2 shows a sample
time line comparing z(k), a(z(k)), and zk for some system. The model for the aggregator
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may seem a bit restrictive, but its ability to handle a variety of systems will be discussed
later.

k 1 2 3 4 5 6
z(k) 0 1 2 4 3 1
oz(k)) e1 e1 €3 3 e3 el
zhj e1 €3 el

i 1 2 3

Figure 2.2: Sample Aggregator Time Line

2.3 DES Controller

In a hybrid control system, the controller acts as a supervision and decision making
system. It is an event driven system, meaning it reacts to discrete asynchronous input and
generates discrete asynchronous output. In this case, the input and output consist of an
asynchronous sequence of symbols which are called events. In the case of input, each of
these events represents a condition which can be reported to the controller, and in the case
of output, the events represent commands which can be issued by the controller. This
type of system is referred to as a discrete-event system (DES), and the input and output are
called discrete-event signals. Several modeling strategies have been developed for discrete-
event systems. Here the controller is modeled by a deterministic automaton which may
have an infinite number of states. The automaton is specified by a quintuple, {S, E, C, 8,
¢}, as follows

S = {sy,s2,83,...} set of controller states

E = {e1,e2,¢€3,...] set of events (controller inputs)
C={ct,c2c3,...} set of commands (controller outputs)
6: SXE—>S state transition function

¢: S—->C output function

As mentioned previously, the automaton may have an infinite number of states, in fact it
may have an infinite number of events and commands as well. This model can be used to
represent a wide variety of discrete-event systems, it follows the model found in [14] and is
similar to those found in [20, 26].
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The input signal to the controller is z2 and the output signal is r2. The names
reflect the fact that they are the high level signals corresponding to the discrete-time signals
zand r. Whenever an event is received by the controller on zA, the controller immediatety
undergoes a state transition determined by the state transition function:

ti = 8(ti-1, zhi) 4)

where tj€ S, zhj e E, and i is a time index. With each state transition, the controller
generates an output by the output function.

th; = () &)

where zh; € C. Note that since the state transitions and outputs of the DES controller occur
imediately upon receiving an input event, there is no need to include time in the model. The
delay between successive state transitions and outputs is determined completely by the
input signal, zh. Also note that the subscript on a signal, e.g. zh;, is used to indicate the
logical order of the event, state, or command carried on that signal. The subscript on a set
member, e.g. e;, however, refers to a particular member of the set.

2.4 Actoator

In this model the actuator receives a discrete-event signal, rh, carrying commands
from the controller. The unit in turn produces a discrete-time signal, r, which serves as the
input to the plant. To produce r, the actuator must be programmed with a method to
translate each command in C into a numeric value for . For command sets with a finite
number of elements this method could consist of a table lookup function, but for infinite
command sets another method of translation must be used. The signal, r, is piecewise
constant for it depends only on the most recent controller command and will not change
until the next command is received. In this way the actuator operation is similar to a hold
circuit. The actuator must also have access to the clock signal associated with the plant
because r is synchronized to the plant. The action of the actuator unit is determined by the
function v, where

Y:C—>Rm the actuator function
(k) e Rm the actuator output
thije C the actuator input
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and described by
r = hold[Y(rh)] (6)

where we allow 7y to operate on a signal and hold is a function which retains the current
value until a new argument appears. Figure 2.3 shows a sample time line comparing r#,

Y(rh), and r.
i 1 2 3
thj c5 (] C4
Y(rh;) 3.2 46 4.8
(k) 32 32 46 48 48 4.8
k 1 2 3 4 5 6

Figure 2.3: Sample Actuator Time Line

2.5 Example: Double Integrator

In this example the HCS model will be used to model a system consisting of a
sampled continuous-time plant, which is a double integrator, and a simple DES controller
which is attempting to stabilize it. The algorithm used by the controller is to apply a
negative input to the plant whenever the plant output is positive and increasing, a positive
input whenever the output is negative and decreasing, and a zero input at all other times.
This algorithm was chosen because it works and can be implemented by a DES.

The first step in modeling this system is to convert the sampled continuous-time
plant to a discrete-time plant. A continucus-time double integrator is as follows

0 1 0
l: ] x(1) + [ } r{t) (7a)
0 0 1

yo=[1 0 ]Ix(® (7o)

dx
dt

The zero order hold equivalent of this system is:

1 h h32

r(k) (8a)

x(k+1)=|: ]x(k)+

0 1 h
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8
ylo=11 0 Txk (8b)

where h is the sampling period, and as always
z(k) = x(k). (8c)

The next step is to model the interface which conveys information to the controlier
as an aggregator. Notice that the condition "positive and increasing output" is true exactly
when the discrete-time plant state is in the first quadrant, likewise the condition "negative
and decreasing output" is true exactly when the state is in the third quadrant. Therefore an
aggregator which detects whenever the plant state enters or leaves one of these two regions
would provide the necessary information to the DES controller. Such an aggregator would
partition the state space into the four quadrants, but it would only produce three different
events because the same event would be associated with both quadrant two and quadrant
four. The regions and associated events for this aggregator are shown in Figure 2.4.

‘xz

€2 €

€ )

Figure 2.4

The aggregator regions are chosen depending on the requirements of the DES
controiler as was done in this example. Conversely, the type of control law used is
influenced by the range of possible aggregator regions.
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With the plant and aggregator modeled, it is quite simple to model the controller as
an automaton with the desired behavior. Three states are required in the controller, one for
each of the three desired commands. The state transition graph of the conroller is shown
in Figure 2.5 and ¢(s;) =c; forie {1, 2, 3). Lastly, the portion of the interface which

translates controller commands into plant input must be modeled as an actuator. This is
done by assigning the function y as follows:

¥(c1) = 10, ¥(e2) =-10, ¥(c3) = 0

Figure 2.5

Figure 2.6 shows the results of simulations of this system with various initial states
for the plant, verifying that it is stable, (though not strictly since the state will hover in an
arbitrarily small area around the origin.)

515 MODELING FLEXIBILITY

At first glance, the proposed hybrid control system model may seem rather limited
in its capability to represent systems because of the specific nature of the interface. The
actuator generates only step inputs for the plant, it is incapable of providing a sinusoidal
input, for example. The aggregator is limited as well, for it cannot provide any information
other than that found in the current output, which in our case is the current state, of the
plant. To appreciate the flexibility of the HCS model it is important to recall that the plant
represents the entire continuous-state, dynamic portion of the system and may be made up
of several parts including a continuous-time or discrete-time controller. Also, the interface
of the HCS is simply a pair of static mappings between the discrete-time and discrete-event
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worlds, it is not intended to include any states of its own. In this section it will be shown
that this model can represent a wider variety of hybrid control systems than is apparent at
first glance.

3.1 Actuator and Plant Inputs

The reason the actuator in the HCS model is only capable of producing step
functions is that the DES conuoller is idle between subsequent events. Therefore when the
DES controller issues a command it can provide no new information to the actuator until the
next command, and consequently the actuator is 'stuck' at that setting until the next
command. To give the actuator additional signal generating capabilities, would be to model
it with components which are dynamic and therefore belong in the plant.

Many times it is necessary to drive a plant with some other type of input such as a
ramp or sinusoid. To accomplish this using the proposed HCS model, 2 model of a system
which generates the ramp or sinusoid must be included in the plant model. Note that a
theoretical actuator which is capable of generating various types of input signals can be
realized by using two blocks in series: an actuator of the type found in the HCS model
followed by a dynamnic system which responds to that actuator with the desired signals.
This setup can be made to fit the current HCS model by including the dynamic portion of
the theoretical actuator in the plant. The addition of the dynamic portion of the theoretical
actuator to the plant would form a new plant with an augmented state space.

Example
Consider the following discrete-time plant:

0 1 0
A= B= &)
40 -3 1

We would like to drive the above plant with a sinusoidal input. To accommodate this
system in the HCS meodel first divide the sinusoid generator into two parts: the first part
outputs a step function and forms the actuator block of the HCS model, the second part is a
linear system which converts the step function into a sinusoid and is incorporated into the
plant of the HCS system. The following system could be used for the second part of the
sinusoid generator
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0 1 1
A2=[ ] B2={ -1 (10a)
¢t -1 © -1
Cx=[1 0] (10b)

By combining the original plant with this system, the following augmented plant is

A BC 0
Aaug"—'[ } Baug =[ ] (11)
0 A B2

obtained

The state vector of the original plant is found in the upper n elements of the state vector of
the augmented plant.

3.2 Reconfigurable Plant

It has been suggested that the DES controller in a hybrid control system could be
used to select different feedback laws for the plant [12], or even different plant dynamics
[18]. This is quite different from merely controlling the input to the plant, but it can still be
accomplished using our model for a hybrid control system. The plant input, r, must be
used to accomplish whatever reconfiguration is required in the plant. This will tend to
produce a plant model which is highly nonlinear, but a system which allows
reconfiguration is generaily noniinear and this nonlinearity wiil have to be dealt with
somewhere.

Example

Suppose we would like to model a hybrid control system which includes a first
order plant which can be reconfigured by changing the response time. Consider a plant
which can behave as

x(k+1) = [.8] x(k) + [.2] r(k) (12a)
or

x(k+1) = [.9] x(k) + [.1] r(k) (12b)
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depending how it is configured. This plant would be modeled as follows in the hybrid
control system model

X(k+1) = [1 - r1(k}] x(k) + [r1(k)] r2(k) (13)

where rj and r are the elements of the plant input vector r which control the response time
and provide the conventional input respectively. To accurately model the system the
actuator will only be capable of generating two values for ry, i.e. 0.2 and 0.1.

3.3 Aggregator and Controller Inputs

It is not uncommon in hybrid control systems for the DES controller to require
information about the system it is controlling which is not included in the current state of
that system. An example of this would be an event which occurs whenever a particular
state of the plant has been increasing for more than 10 seconds, regardless of its actual
value. It may be tempting to model the aggregaror so that it can generate more complex
events such as this, but that wouid require making the aggregator a dynamic system. The
solution is to model any dynamic sensing systems as part of the plant, just as dynamic
signal generating systemns are modeled in the plant.

3.4 Example: Surge Tank

To further show the generality of the hybrid control system model, consider a surge
tank with a DES controller. This example will demonstrate a hybrid control system in
which the plant is a continuous-time, non-linear system, and the DES controller has an
infinite number of states.

As stated, the plant in this example consists of a surge tank, which is a water tank
with an inlet valve and an outlet valve. The outlet valve is opened and closed unpredictably
by some user, while the inlet valve is connected to an actuator which is positioned by the
controlier. Control of the surge tank involves maintaining the water level of the tank within
a preset range. The behavior of the surge tank can be expressed by the following first-
order, nonlinear, differential equation [15]:

dh(t)/dt = {F(t) - 1000c()[h(t)]12}/pA (15)

where p = 99.8, the fluid density of water, and A = 1, the cross-sectional area of the tank.

h(t) is the height of the water, c(t) is the area of the outlet valve opening, and F(t) is the
flow through the inlet valve. For this tank, 0 <h() £1,0<c(t) 0.1, and 0 < F(t) £ 173.
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To model the surge tank as the plant of a hybrid system, the plant state, x(t), will be
defined as the height of the water, the plant input will be the inlet flow rate, and the zere
order hold equivalent of the plant will be used to model the sampled plant. Thus

x(k + 1) = f(x(k), r(k))

x(k) + T{r(k) - 1000c(t)[x(k)]1/2}/99.8 (16)

where
x(k) = h(kT), r(k) = F(kT), z(k) = x(k), and T is the sampling interval.

The control scheme used to regulate the level of the water in the tank is designed to
maintain the height between 0.7 and 0.9 To accomplish this the controiler will open the
inlet valve a preset amount if the water level drops below 0.8, and double the opening each
time the water level falls half the remaining distance to 0.7. If the water level reaches 0.9
the controller will shut off the inlet valve. To supply the controller with the necessary
information to implement this control scheme, the aggregator divides the state space into an
infinite number of regions as follows:

a(x(k)) = ¢; when 0.7 + 0.2(0.5)i1 < x(k) < 0.7 + 0.2(0.5)-2 17

The controller is described by the infinite state automata shown in Figure 3.1, where o(sp)
= vj, and the actuator behaves as follows:

Ye1) =0 and Y(ep) = ()2, 1 > 1 (18)

This particular control scheme was selected to reduce fluctuations in water level while also
keeping the rate of commands to the actuator low. The scheme was not selected in any
systematic way, however.

°2 °3 e4

Figure 3.1
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It would appear that this system has an unlimited amount of controi action, because
the actuator is modeled as if the inlet valve can be opened infinitely far. Because this would
not be the case with an acwal physical system, this model is only valid over a certain range
of states. It is very common in conventional control to use models that have a region of
validity so it should not be unexpected to find this situation in an HCS as well.

The behavior of this system is illustrated in Figure 3.2, which shows the water
level, the controlled inlet flow, and the outiet flow. The system behaves appropriately.

1.0 ‘ : . : :
] ] U
0.6 -
0.4 -
0.2 |- -
inlet flow
outlet flow
0.0 L= : [ . ) T ﬁ _~]
0.0 2.0 4.0 6.0 8.0 10.0

Figure 3.2
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4. A DISCRETE EVENT SYSTEM MODEL
FOR HYBRID CONTROL SYSTEMS

The difficulty in analysis presented by Hybrid Control Systems is due to the
incompatibility between the models employed in the various blocks which make up the
HCS, namely the DES controller and the DTS plant. A scheme in which a single modeling
strategy is used would allow analysis which is impossible to perform with the current HCS
model. In this section, a method for representing the entire HCS as two interacting DES's
will be described. The benefits and limitations of the new model will be described as well
as the relationship between the resuits obtained from the new model and the nature of the
original model.

4.1 DES Equivalent Plant

Notice that from the point of view of the DES controller the remainder of the HCS
appears as a DES (see Figure 4.1). This is because the input and output of the actuator,
plant, and aggregator, taken together, are discrete-event signals. This allows the HCS
model described in Section 2 to be converted into a discrete-event system model by
combining the actuator, plant, and aggregator into a single block. The discrete-event
controller remains the same in the new model and the newly formed block constitutes
another DES which shall be referred to as the DES equivalent plant. This new model is
shown in Figure 4.2. Like the controller, the DES equivalent plant is modeled by an
autornaton, but unlike the controller this automaton might not be deterministic and the state
transitions do not occur instantly when an input is received. However, one can determine
exactly when transitions occur becuase of the time dependence of the underlying system. It
is specified by the quintuple {P, C, E, y, ¢p) as follows

P={p,p2.p3 ...} the set of states

C={c1,¢2,¢3,...} the set of inputs {controller commands)
E = {e1,e2,€3,...} the set of outputs (events)
y:PxC— PP) the state transition function

¢p:P—oE the output function

The set of DES equivalent plant states, P, is based on the aggregator regions generated by
the equivalence classes of o in the state space of the original plant. Each state in P is

uniquely associated with exactly one of these regions, i.e. there is a one-to-one
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correspondence between the members of the set P and the set A. The sets E and C are the
same sets as those involved with the original HCS model and defined in Section 2. The
function ¢p plays the same role as o because it maps the plant state to an event in E. This
leaves Wy to be determined. Notice that the state transition function, W, maps to an element
of the power set of P, indicating that the automaton is nondeterministic in general. The
function v is also a partial function in general.

We will now derive the state transition function, y, given information about the
Hybrid Control System. We use tj € P to denote the state of the DES equivalent plant at

timen(i).
Given:
zhi = splox(9)] (26a)
r(k) = hold[y(rh))] (260)
then
W(ti, thy)) = ¢pin¥(zhjy1) (272)
= %inv(sp[a(f(x(k), r(k)D (270)

W(ti, th) = opi™(spleuf(cd™(dp(t), Yrhi))]))  (27¢)

where ainV is inverse image under o and timep(i) = time(k). The DES equivalent plant is
non-deterministic in general because o'V maps a single event to a subset of RP

ainv : E — P(RD)

which will typically resuit in a set, containing more than one state, as the value of y(t;, rh;).
In addition, ¢pi“" may map a single event to several DES equivalent plant states

¢pi™ : E = P(P)

resulting in an even larger set for y(t;, th;). For values of t; and rh; for which y (or any
other function) is undefined the following notation may be used

(s, thi) € (void) (28)

The DES equivalent plant represents the extent to which the DES controller in a
particular hybrid control system can regulate the plant. The control of the plant is limited
by two factors. First, the plant input is limited to those set points which can be generated
by the actuator. This limitation reduces the number of possible state trajectories which can
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be realized in the plant, and this is reflected in the DES equivalent plant by a reduced
number of possible state transitions.

The second limitation on the control of the plant is caused by the aggregator. The
aggregator does not provide the DES controller with the exact state of the plant, but rather
with a sort of approximation. Thus, based solely on information from the aggregaror, the
response of the plant to a given input is not known precisely. This effect appears in the
DES equivalent plant as nondeterministic state transitions. That is, for a given input and
state, the DES equivalent plant may have several possible transitions. The example in
Section 4.3 clearly shows this effect. First however, we derive the conditions for
determinism.

4.2 Determinism in the DES Equivalent Plant

We would like to know what restrictions can be placed on the hybrid system to
ensure that the DES equivalent plant can be represented by a deterministic automaton. This
is because the exact behavior of the system can only be determined if the system is
deterministc.

Definition 4.1 : A DES equivalent plant is said to be deterministic iff V p; € P, cje C, we
have y(pj, ¢j) € {pi, void} where pje P. O

If v is to represent a deterministic autornaton, then the expression on the right side
of equation (25b) must take on values which are sets with only one member. Theorem 4.1

below gives the condition for a deterministic DES equivalent plant under the restriction that
¢p s a bijective function.

Theorem 4.1 : Given ¢y, bijective, the DES equivalent plant will be deterministic iff
V zhje E,thije C 3 ee E s.t. a(x(k+1)) € {zh;, e}

where

X(k) is any € R? s.t. a(x(k)) = zh;
and

x(k+1) = f(x(k), y(rhp).
Proof

To prove sufficiency, assume the condition holds then by equation (27b)

Wy (ti, thy) = ¢pinv(splaufix(k), r(k))])



J. A. Stiver and P. J. Antsaklis, "A Novel Discrete Event System Approach to Modeling and Analysis of
Hybrid Control Sysytems,” Control Systems Technical Report #71, Dept. of Electrical Engineering,
University of Notre Dame, June 1991.

20

and since r(k) = y(rh;j) and x(k+1) = f(x(k), y(rh;))
w(ti. thi) = OpinV(splow(x(k+1)))).
Now, by the theorem we have
W(ti, th) & {9pM(spla(x(K)), ¢pinV(sple])),
and since sp suppresses repeated events

w(t, hy) € {void, ¢pinV(sp(e])}
y(t, th) e {pin¥(sple])}.

Recall that ¢p is bijective and therefore y(t;, rh;) can take at most one value and  is thus
deterministic.
To prove that the condition of Theorem 4.1 is necessary, we will start by assuming

a system is deterministic and then showing that the theorem holds. Assuming the system is
deterministic implies there is at most one possible value for v, i.e.

w(ti, rhy) € {void, p},
and by equation (27b)
opinV(splauf(x(k), r(k))]) € {void, p}.
If we define e = dp(p), then
splo(f(x(k), r(k))] € (void, e},
and since sp suppresses repeated events,
a(f(x(k), r(k)) € {zh;, e}

follows because zh; is the only event which can be repeated and be suppressed. Finally, by
equation (1)
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ou(x(k+1)) € {zh;, e}
and the theorem is proven. O

If the restriction that ¢, be a bijective function is removed then equivalence classes
of o will not necessarily coincide with the aggregator regions and a more general theorem

is required to describe a deterministic system,

Theorem 4.2 : The DES equivalent plant will be deterministic iff
Vaje A,thje C J aze A st xtk+tl)e aj U a

where
x(k) e a1

x(k+1) = f(x(k), y(rhy)).
Proof

Recall that A is the set of aggregator regions and that there is a one-to-one
correspondence between the aggregator regions and the states of the DES equivalent plant.
Thus by making the correspondence

Pi < aj and pj & a,
the theorem can be rewritten as

Vpie P,rhie C 3 pje P s.t. pe {p;, pj}
where p;j and p are the DES equivalent plant states at time(k) and time(k+1) respectively.
Thus Theorem 4.2 is a basically a restatement of the definition a deterministic DES
equivalent plant, saying that if the state changes, there is a unique state to which it will
change. (|

The restriction of Theorems 4.1 and 4.2 guarantee that if the current value of z4 and
rh are known, then the next value of z can be determined uniquely and thus v is a function
in the conventional sense because it returns only one value. Another way of stating the
theorems is that, under any given value of r, all real-time plant trajectories in any given
aggregator region lead to the same subsequent aggregator region. This restriction is
necessary if the plant is to be controlled in an arbitrary way because a controller cannot be
designed to arbitrarily control a plant which reacts unpredictably.

Often the restrictions of Theorems 4.1 and 4.2 are unnecessary. If a particular
control objective is to be attained, the non-deterministic transitions may not be relevant to
the design of the controller. In any case, the state transition function of a DES equivalent
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plant can be separated into a deterministic part and a non-deterministic part. The

deterministic part will be a partial function in general because it may not be defined for all
states and inputs. Let the deterministic part of the state ransition function be g4 such that

yq :PxC—>P
where
Ya(t, thy) € (i, rhy)

and Vy is defined only for those pairs (pj, ¢j) where Iy(p;, ¢jli = 1. The notation IIX|l refers
to the cardinality of set X. Furthermore if the restriction of Theorem 4.2 is met, then

yr(ti, thy) = {wq(t, rhy) ).

The deterministic portion of the DES equivalent plant, described by the function yy,
represents in a sense the controllable portion of the DES equivalent plant. The state
transitions included in W4 can be enabled by the controller and there is no uncertainty in
which transition will occur. If these deterministic transitions are sufficient to achieve the
control objectives for the system, then the non-deterministic part of the DES equivalent
plant is of no consequence.

4.3 Example: Double Integrator

The double integrator system from Section 2.5 is a case of a Hybrid Control
System with a non-deterministic DES equivalent plant. Figure 4.3 shows the state
trajectories of the real-time plant under the three available control inputs, along with the
aggregator regions. The trajectories which are roughly parallel are under the same inpaut, r.
As can be seen the aggregator regions this example do not lead to a deterministic DES
plant. The reason for this situation is that the aggregator does not preserve enough
information about the state of the actual plant. Therefore, by changing the aggregator to
add more regions as shown in Figure 4.4, the system can be made to have a deterministic
DES equivalent plant. The new aggregator is a refinement of the original which preserves
more information about the actual plant state and leads to the deterministic DES equivalent
plant shown in Figure 4.5. The original aggregator was sufficient for the stabilizing DES
controller of the original example, but the new aggregator will allow any controller to be
designed without the worry of unpredictable plant behavior.
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Figure 4.5

4.4 Example: Surge Tank

As a another example of the alternate representation consider again the HCS
containing the surge tank found in Section 3.4. This system has unique features because
the real-time plant has an unmodeled component, namely the user which opens and closes
the outlet valve. This unmodeled component prevents the state trajectories from being
determined exactly as a function of the input r. The only thing that is certain is that the state
will be increasing for inputs greater than r(k) = 100, because that exceeds the maximum
drain due to the user. With this information the DES equivalent plant can be found for this
system and it even has a deterministic part. Figure 4.6 shows the DES equivalent plant.
The fact that the only deterministic transitions correspond to inputs of ¢ wherei=1ori>
9, means that a DES controller for this system must use these inputs or risk losing control
of the plant.

ci:i>1 ci:i>1 ci:i>1
ci:1.<.i58 ci:ISiSS ci:ISiSS

Figure 4.6
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3. ON THE STABILITY OF HYBRID CONTROL SYSTEMS

In this section, a definition of stability which can be applied to Hybrid Control
Systems is presented, and the implications of this notion of stability, for the individual
blocks of the HCS, are described. The definition of stability used here is taken from the
Lyapunov stability for Discrete-Event Systems which was developed in [16], and this
criteria is applied to the DES equivalent of the HCS. The work described in this chapter is
by no means complete, but represents some first steps toward developing a theory of
stability for hybrid control systems.

5.1 Lyapunov Stability for Discrete Event Systems
A Discrete-Event System, such as the DES equivalent plant of a HCS as defined in
Section 4, can be described by a quintuple {P, C, E, v, ¢p}, where

P = {p1,p2, p3: - - -} the set of plant states
C=(c1,¢2,€3,...} the set of plant inputs
E=(e1,e2,€3, ...} the set of plant output
y:PxC— P(P) the state transition function
¢p:PE the plant output function.

The definitions and theorems for the Lyapunov stability of discrete-event systems
found in the remainder of this section were developed in [16] by Passino, et. al. and are
presented here with a change in notation so that they can be applied to the discrete-event
systems used in this paper.

First let us have the following notation

PnCP

E is the set of all sequences of events from E

Ex € E is any sequence of k events

Ey C E is the set of valid event sequences i.e. physically possible

Ev(p) C Ey is the set of valid event sequences that begin at state p € P

X:PxE — P function which maps an initial state and a sequence of events to a
final state

p:PxP—R isametricon P

PP, Pm) = inf{p(®, p) : p' € P}
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A sequence of events is a sequence of symbols from the set E. Valid sequences refer to
sequences which could actually be generated by the system in question. The function X is
similar to an extended state transition function except that it gives the final state after a
certain series of events which are outputs rather than inputs.

Definition 5.1: The r-neighborhood of an arbitrary set P, € P is denoted by the set S(Ppy,;
r)={pe P: 0<p(x,Py) <r } wherer > 0.

Definition 5.2: The set P, C P is called invariant if from p € Py, it follows that X(p,Ey)
€ Py, for all E such that Ex € E\(p) and k € N.

Definition 5.3: A closed invariant set Py, © P is called stable in the sense of Lyapunov
w.r.r. E, if for any € > 0 it is possible to find a quantity & > 0 such that when p(p, Pp) <
d we have p(X(p, Ex), Pm) < € for all Ex € E\(p) and k € N. If furthermore p(X(p, Ey),
Pm) — 0 for all Ex € Ey(p) as k — o, then the closed invariant set Py, is called

asymptotically stable w.r.t. Ey.

Definition 5.4: A closed invariant set Py, is called unstable in the sense of Lyapunov w.r.t.
E, if it is not stable in the sense of Lyapunov w.r.t Ey.

Definition 5.5: If the closed invariant set Pp, is asymptotically stable in the sense of
Lyapunov w.r.t. E, then the set P, of all states p € P and p € Py, having the property
PX(p, Ex), Pm) — O for all Ex € Ey(p) as k — <e is called the region of asymprotic

stability of Pmw.r.t. E,.

Definition 5.6: The closed invariant set Py, with region of asymptotic stability P, w.r.t. E,
is called asymprotically stable in the large w.r.t. E, if P, =P.

The following Theorem provides necessary and sufficient conditions for stability of
the DES defined above.

Theorem 5.1: In order for a closed invariant set Py, to be stable in the sense of Lyapunov
w.r.t Ey it is necessary and sufficient that in a sufficiently small neighborhood S(Pyy; 1) of
the set Py, there exists a specified functional V with the following properties:
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(i) For sufficiently smalil ry > 0, it is possible to find a rp > 0 such that V(p) >r; for p
€ S(Pmy; r) and p(p,Pm) > 11.
(ii) For any r4 > O as small as desired, it is possible to find a r3 > 0 so small that when
r(p,Pm) < 13 for p € S(Ppy; r) we have V(p) <14.
(iii) V(X(p,Ey)) is a non-increasing function fork € N, forp € S(Pp,; 1), forallk e
N, as long as X(p.Ex) € S(Pp; r) for all Ex € Ey(p).

A proof of this theorem can be found in [16].

5.2 Lyapunov Stability for Hybrid Control Systems

Since the lower portion of a Hybrid Control System, the actuator, plant, and
aggregator, can be modeled as a Discrete-Event System, namely the DES equivalent plant,
the requirements for Lyapunov stability in a DES can be applied to the DES equivalent plant
of a HCS. There are two situations which can be considered. First we can test the stability
of the DES equivalent plant separately, with no input and therefore subject only to initial
conditions. Second, we can consider the entire system, both DES equivalent plant and
DES controller.

The first step in testing for Lyapunov stability is to choose a suitable invariant set,
P, and metric, p. Py, is intended to represent those states which are desirable, in other
words, the states in which the plant is supposed to operate. Therefore choose Py, to be the
subset of P which defines the acceptable operating range of the DES equivalent plant. A
useful metric is the following

P(pi» pj) = inf Il {Ey : X(pi, Ex) = pj} (31)

which defines the distance between two states as the minimum number of state transitions,
not necessarily valid, required to move from the first state to the second. It it easy to see
that this function meets the requirements for a metric, namely

P(pi, pj) =0 <= i=]j
P(Pi> pj) = P(Pj> Pi)
and
P(pi, Px) < P(Pis P + P(Pj: PW-

5.3 Example: Double Integrator
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5.3 Example: Double Integrator

The double integrator system first presented in Section 2.5 makes a good choice for
an example here because the purpose of the system is to achieve stability. First the DES
equivalent plant will be analyzed alone to see if it is stable according to our definition.
Figure 5.1 shows the DES equivalent plant for the doubie integrator system. A problem is
evident immediately when the invariant set, Py, is determined, because all four states are in
the desired operating range. Therefore it is not possible for the DES equivalent plant to go
unstable. In fact, any time a system has a finite number of possible states it will be stable
according to our definition because the state is inherently bounded. However, depending
on the invariant set, the systemn will not necessarily be asymptotically stable.

Cl 02 C3

C1€2C3

Figure 5.1: DES Equivalent Plant for Double Integrator

Let us define a new aggregator for the double integrator system which generates an
unbounded state space in the DES equivalent plant and thus allows a meaningful stability
analysis. The new aggregator generates the regions shown in Figure 5.2. In fact Figure
5.2 only shows a part of the state space but it establishes the pattern of the aggregator
regions. The curved boundaries are coincident with certain state trajectories so that the
DES equivalent plant has a manageable number of nondeterministic ransitions. A portion
of the DES equivalent plant is shown in Figure 5.3, and the invariant set has been
indicated. The invariant set is
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Figure 5.2: Aggregator Regions

Figure 5.3: Uncontrolled DES Equivalent Plant

Pm = {pla P2: p3: P4}

and according to the metric defined in equation (31) we have

p(Pi, Pm) =int () + 1.

30

(32)

(33)
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It should be clear from Figure 5.3, that this DES equivalent plant is not stable. In fact there
is no functional, V, which can be created to satisfy the requirements of Theorem 5.1 for a
non-empty neighborhood of the invariant set.

Next we consider the entire system which consists of the DES plant described
above as well as the DES controller which is intended to stabilize it. The DES controller
serves to permit only certain transitions in the DES plant so the combined system can be
represented by the DES plant with the forbidden transitions removed. This system is
shown in Figure 5.4. Now with the definition

V(pi) = p(pis Pm) (34)
the stability of the combined system can be shown. First conditions (1) and (2) can be

satisfied by setting rj =ry and r3 =r4. To see that condition (3) is satisfied, notice that no
state transition leads to a state with a larger valued metric with respect to the invariant set.

Figure 5.4: Controlled DES Equivalent Plant

It appears that if a DES equivalent plant can be shown to be stable then there exists
a relationship between the boundaries of the aggregator regions and the contours of an
actual Lyapunov function for the continuous-state plant. If two states in the DES
equivalent plant are not the same distance from the invariant set according to the metric, and
their corresponding aggregator regions are adjacent, then the boundary between these
aggregator regions shouid lie on a contour of a Lyapunov function for the continuous-state
plant. This is the case for the example given, but it is not known how well this condition
generalizes.
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6. CONCLUDING REMARKS

An important contribution of this work is the development of an explicitly defined
model for representing hybrid control systems. There are three chief advantages of this
model which distinguish it from others studied. First, the model is defined completely,
leaving no gaps which lead 10 uncertainty in its behavior. One benefit of this is that it
allows a hybrid control system, so modeled, to be simulated on a computer using a general
program similar to the one used and included in this paper. A second benefit is that tools
for analysis can be developed for this model which then apply to any hybrid control system
which can be represented.

The second chief advantage of the model is that the interface of the hybrid control
system is represented by two simple static maps. This is important for analysis because it
is the interface which introduces the difficulty in handling hybrid controt systems. Thus it
is anticipated that a more simple interface will result in less difficulty. A final advantage of
our model is its flexibility; it has been shown to be capable of representing systems with a
variety of different types of control action.

The next contribution of this work is to begin the development of some basic
concepts and tools to be used in the analysis of hybrid control systems. The DES
equivalent plant is intended to represent the behavior of the interface and plant of an HCS in
such a way that it reflects the extent to which the controller can achieve its objectives in the
system. The definition of determinism and the theorems concerning determinism are used
to evaluate the DES equivalent plant. The study of stability in HCS's leads to a greater
understanding of the role of the interface in determining the overall behavior of the hybrid
control system.

7. REFERENCES

(1] Antsaklis, P. J., Passino, K., Wang, S., "Towards Intelligent Autonomous
Control Systems: Architecture and Fundamental Issues", Journal of Intelligent and
Robotic Systems, pp. 315-342, 1989; also "T", IEEE Control Systems Magazine,
Vol. 35, No. 6, pp. ,June 1990.

[2] Astrom, J., Wittenmark, B., Computer-Controlled Systems, Prentice-Hall, NJ,
1990.



J. A. Stiver and P. J. Antsaklis, "A Novel Discrete Event System Approach to Modeling and Analysis of
Hybrid Control Sysytems,” Control Systems Technical Report #71, Dept. of Electrical Engineering,
University of Notre Dame, June 1991.

(3]

[4]

(5]

(6]

(71
(8]

(9]

(10]

(12)

(14]

[15]

[16]

(17]

33

Benveniste, A., Le Guernic, P., "Hybrid Dynamical Systems Theory and
Nonlinear Dynamicai Systems Over Finite Fields", New Trends in Nonlinear
Control Theory, pp. 485-495. Springer-Verlag, NY, 1989,

Benveniste, A., Le Guernic, P., "Hybrid Dynamical Systems and the SIGNAL
Language", I[EEE Transactions on Automatic Control, Vol. 35, No. 5, pp. 535-
546, May 1990.

Borgne, M., Benveniste, A., Le Guernic, P., "Polynomial Ideal Theory Methods
in Discrete Event and Hybrid Dynamical Systems", Proceedings of the 28th
Conference on Decision and Control, pp. 2695-2700, Tampa, FL, December 1989,
Cao, X., Ho, Y., "Models of Discrete Event Dynamic Systems"”, JEEE Control
Systems Magazine, pp. 69-76, June 1990,

Carroll, 1., Long, D., Theory of Finite Automata, Prentice-Hall, N.J., 1989.
Cassandras, C., Strickland, S., "Sample Path Properties of Timed Discrete Event
Systems", Proceedings of the IEEE, Vol. 77, No. 1, pp. 59 - 71, January 1989.
Cassandras, C., Ramadge, P., “Toward a Control Theory for Discrete Event
Systems", IEEE Control Systems Magazine, pp. 66-68, June 1990.

Fishwick, P., Zeigler, B., "Creating Qualitative and Combined Models with
Discrete Events", Proceedings of The 2nd Annual Conference on Al, Simulation
and Planning in High Autonomy Systems, pp. 306-315, Cocoa Beach, FL, April
1991.

Goliu, A., Varaiya, P., "Hybrid Dynamical Systems", Proceedings of the 28th
Conference on Decision and Control, pp. 2708-2712, Tampa, FL, December 1989.
Passino, K., "Analysis and Synthesis of Discrete Event Regulator Systems”,
Ph. D. Dissertation, Dept. of Electrical and Computer Engineering, Univ. of Notre
Dame, Notre Dame, IN, April 1989,

Passino, K., Sartori, M., Antsaklis, P.J., "Neural Computing for Numeric-to-
Symbolic Conversion in Control Systems”, IEEE Control Systems Magazine, pp.
44-52, April 1989.

Passino, K., Michel, A., Antsaklis, P. J., "Lyapunov Stability of a Class of
Discrete Event Systems”, Proceedings of the American Control Conference, Boston
MA, June 1991. To appear.

Peleties, P., DeCarlo, R., "Modeling of Interacting Continuous Time and Discrete
Event Systems : An Example", Proceedings of the 26th Allerton Conference on
Comunication, Control, and Computing, pp. 1150-1159, Univ. of Illinois at
Urbana-Champaign, October 1988.



J. A. Stiver and P. J. Antsaklis, "A Novel Discrete Event System Approach to Modeling and Analysis of
Hybrid Control Sysytems,” Control Systems Technical Report #71, Dept. of Electrical Engineering,
University of Notre Dame, June 1991.

(18]

[20]

[22]

(231

(25]

[26)

34

Peleties, P., DeCarlo, R., "A Modeling Strategy with Event Structures for Hybrid
Systems", Proceedings of the 28th Conference on Decision and Control, pp.1308 -
1313, Tampa FL, December 1989,

Ramadge, P., Wonham, W. M., "The Control of Discrete Event Systems",
Proceedings of the IEEE, Vol. 77, No. 1, pp. 81 - 98, January 1989.

Sain, M. K., Introduction ro Algebraic System Theory, Acedemic Press, NY,
1981.

Sontag, E. D., Mathematical Control Theory - Deterministic Finite Dimensional
Systems, Springer-Verlag, NY, 1990.

Zeigler, B., Multifacetted Modelling and Discrete Event Simulation, Acedemic
Press, NY, 1984,

Zhong, H.,Wonham, W. M., "On the Consistency of Hierarchical Supervision in
Discrete-Event Systems”, I[EEE Transactions on Automatic Control, Vol. 35, No.
10, pp. 1125-1134, October 1990.





