K.M. Rassino and P.J. Antsaklis, "Modeling and Analysis of Artificially Intelligent
Planning Systems," Introduction to Intelligent and Autonomous Control, P.J. Antsaklis and
K.M. Passino, Eds., Chapter 8, pp. 191-214, Kluwer, 1992

3

Modeling and Analysis of
Artificially Intelligent Planning Systems

K.M. Passino P.J. Antsaklis
Dept. of Electrical Engineering Dept. of Electrical Engineering
The Ohio State University University of Notre Dame
2015 Neil Ave. Notre Dame, IN 46556
Columbus, OH 43210

Abstract

In an Artificial Intelligence (Al) planning system the planner generates
a sequence of actions to solve a problem. Similarly, the controller in a
control system produces inputs to a dynamical system to solve a problem,
namely the problem of ensuring that a system’s behavior is a desirable one.
A mathematical theory of Al planning systems that operate in uncertain,
dynamic, and time critical environments is not nearly as well developed as
the mathematical theory of systems and control. In this Chapter
relationships, and a detailed analogy between Al planning and control
system architectures and concepts are developed and discussed. Then, we
illustrate how a discrete event system (DES) theoretic framework can be used
for the modeling and analysis of Al planning systems. The ideas presented
are fundamental to the development of a mathematical theory for the
modeling, analysis, and design of Al planning systems for real time
environments. It is hoped that the ideas presented here will help to form a
foundation for the implementation and verification of Al planning systems.

1. INTRODUCTION

In an Artificial Intelligence (AI) planning system the planner generates a
sequence of actions to solve a problem. It is a type of expert system since it
emulates how human experts represent, and reason over, abstract uncertain
information to solve a problem in a narrow field of expertise. As it is explained
below planning systems are, however, specially equipped to be able to use feedback
information and cope with uncertainties in real time environments. While several
essential ideas in the theory of Al planning on emulation of human planning
activities and planning techniques have been developed and reported in the Al
literature little attention has been given to engineering aspects of the planning
problem. For instance, it is of fundamental importance to study implementation

192 INTELLIGENT AND AUTONOMOUS CONTROL

issues and to create a mathematical theory of Al planning systems that operate in
dynamic, uncertain, and time-critical environments (real time environments) to lay
the foundation for verifying and certifying their dynamical behavior. Without such
careful verification of the planning system functions and a full understanding of the
implementation issues it is doubtful that they will be trusted in many real-world
applications [1].

In a control system the controller produces inputs to a dynamical system to
ensure that it behaves in a desirable manner (e.g., to achieve disturbance rejection).
In contrast to Al planning, there exists a relatively well developed mathematical
systems and control theory for the study of properties of systems represented with,
for instance, linear ordinary differential equations. The objective of this Chapter is
to point out relationships and to develop and discuss an extensive analogy between
Al planning and control system architectures and concepts. In the process, a
foundation of fundamental concepts in Al planning systems based on their control
theoretic counterparts is built. The second objective of this paper is to investigate
the use of a discrete event system (DES) theoretic framwork for the modeling and
analysis of plan generation in Al planning systems. This will show that the DES
theoretic framework offers a suitable approach for the modeling and analysis of Al
planning systems but also indicate that much more work needs to be done. This
Chapter represents a synthesis of some of the results reported in [1-7].

Overall, it is hoped that these discussions and analysis will help lead to the
development of (i) A variety of quantitative systematic modeling, analysis, and
design techniques for Al planning systems, (ii) Methods to analyze planning
system performance, and (iii) Empirical and/or analytical methods for Al planning
system verification, validation, and certification.

In Section 2 planning systems are classified, their fundamental operation is
explained, and the relevant concepts from Al planning system theory are
overviewed. In Section 3 the analogy and relationships between Al planning and
control theory are developed. This includes a foundation of fundamental concepts
for AI planning systems including controllability/reachability, observability,
stability, open and closed loop planning, etc. Section 4 contains a DES model
that can represent a wide class of Al planning problems. Section 5 provides two
applications of the DES theoretic framework to the modeling and analysis of plan
generation in Al planning systems. Section 6 provides some concluding remarks
and indicates some important research directions.

2. ARTIFICIAL INTELLIGENCE PLANNING SYSTEMS:
CLASSIFICATION, FUNCTIONAL OPERATION,
AND OVERVIEW
In this section, the essential components and ideas of Al planning systems
are briefly outlined and distinctions are drawn between Al planning systems and
other similar problem solving systems.

2.1 System Classification

In general, for this Chapter we will adopt the view that we can classify
problem solving systems into two categories: conventional and Al Several
distinct characteristics distinguish these two classes of problem solving systems.
The conventional problem solving system is numeric-algorithmic; it is somewhat
inflexible; it is based on the well developed theory of algorithms or
differential/difference equations; and thus it can be studied using a variety of

Modeling and Analysis of Al Planning Systems 193

systematic modeling, analysis, and design techniques. Control systems are an
example of a conventional problem solving systems.

An Al problem solving system is a symbolic-decision maker, it is flexible
with graceful performance degradation, and it is based on formalisms which are not
well developed; actually there are very few methodical modeling, analysis, and
design techniques for these systems. Al planning systems are examples of Al
problem solving systems. When comparing the characteristics of Al and non-Al
systems, one can make the following observations: The decision rate in
conventional systems is typically higher than that of Al systems. The abstractness
and generality of the models used in Al systems is high compared with the fine
granularity of models used in conventional systems. Symbolic representations,
rather than numeric, are used in Al systems. High level decision making and
learning capabilities similar to those of humans exist in Al systems to a much
greater extent than in conventional systems. The result is that a higher degree of
autonomy sometimes exists in Al systems than in conventional ones [8,9].

Al planning systems use models for the problem domain called "problem
representations”. For instance, in the past predicate or temporal logic has been
used. A planner's reasoning methodology is modeled after the way a human expert
planner would behave. Therefore, they use heuristics to reason under uncertainty.
Conventional expert systems have many of the elements of planning. They use
similar representations for knowledge and heuristic inference strategies. The
planning systems that are studied here, however, are specifically designed to
interface to the real world, whereas conventional expert systems often live in a
tightly controlled computer environment. The planning system executes actions
dynamically to cause changes in the problem domain state. The planner also
monitors the problem domain for information that will be useful in deciding a
course of action so that the goal state is reached. There is an explicit loop
traversed between planner executed actions, the problem domain, the measured
outputs, and the planner that uses the outputs to decide what control actions to
execute to achieve the goal. In an expert system there exists an analogous loop
which has been recently studied in [10]. The knowledge base is the problem
domain and the inference strategy is the planner. For rule based expert systems the
premises of rules are matched to current working memory (outputs are measured
and interpreted), then a heuristic inference strategy decides which rule to fire, that
is, what actions to take to change the state of working memory (the knowledge
base) and so on. The expert system has an inherent goal to generate some
diagnosis, configure some computer system, etc. Some expert systems have more
elements of planning than others. For instance, some consider what will happen
several steps ahead, if certain actions are taken.

A further distinction must be made between Al planning and scheduling
systems. It is the task of a planner to generate sequences of actions so that some
goal is attained without expending too many resources (for specific examples see
Section 5). A scheduling system is concerned with when the actions should be
executed and uses information about the availability of resources to assign
resources to times and actions.

2.2 Elements of AI Planning Systems

An Al planning system consists of the planner, the problem domain, their
interconnections, and the exogenous inputs. The outputs of the planner are the
inputs to the problem domain. They are the control actions taken on the domain.

194 INTELLIGENT AND AUTONOMOUS CONTROL

The outputs of the problem domain are inputs to the planner. They are measured
by the planner and used to determine the progress in the problem solving process.
In addition, there are unmeasured exogenous inputs to the problem domain which
are called disturbances. They represent uncertainty in the problem domain. The
measured exogenous input to the planner is the goal. It is the task of the planner
to examine the problem domain outputs, compare them to the goal, and determine
what actions to take so that the goal is met. Not all planners are completely
autonomous. Some provide for human interface, through which goals may be
generated, and allow varying degrees of human intervention in the planning
process.

The problem domain is the domain (environment) the planner reasons about
and takes actions on. The problem domain is composed of a collection of
problems that the planner desires to solve. The planner takes actions on the
problem domain via the inputs to solve a particular problem. The planner
measures the effect of these actions via the outputs of the problem domain. The
disturbances represent uncertainty in the problem domain. The solution of a
problem is composed of the sequence of inputs and outputs (possibly states)
generated in achieving the goal.

One develops a model of the real problem domain to study planning
systems. This is called the problem representation. The real problem domain (for
real-world applications) is in some sense infinite, that is, no model could ever
capture all the information in it. The problem representation is necessarily
inaccurate. It may even be inaccurate by choice. This occurs when the planning
system designer ignores certain problem domain characteristics in favor of using a
simpler representation. Simpler models are desirable, since there is an inversely
proportional relationship between modeling complexity and analysis power. The
characteristics of the problem domain that are ignored or missed are often
collectively represented by disturbances in the model. The result is that
disturbances in general have non-deterministic character. Clearly, disturbances
occur in every realistic problem domain; they can be ignored when they are small,
but their effect should always be studied to avoid erroneous designs.

In this section we shall describe the functional components that may be
contained in an Al planner. The Al planner's task is to solve problems. To do so,
it coordinates several functions: Plan generation is the process of synthesizing a
set of candidate plans to achieve the current goal. This can be done for the initial
plan or for replanning if there is a plan failure. In plan generation, the system
projects (simulates, with a model of the problem domain) into the future, to
determine if a developed plan will succeed. The system then uses heuristic plan
decision rules based on resource utilization, probability of success, etc., to choose
which plan to execute. The plan executor translates the chosen plan into physical
actions to be taken on the problem domain. It may use scheduling techniques to
do so.

Situation assessment uses the problem domain inputs, outputs, and problem
representation to determine the state of the domain. The estimated domain state is
used to update the state of the model that is used for projection in plan generation.
The term "situation" is used due to the abstract, global view of the system'’s state
that is taken here. The term "assessment” is used since the value of the state is
determined or estimated. Execution monitoring uses the estimated domain state
and the problem domain inputs and outputs to determine if everything is going as
planned. If it isn't, that is if the plan has failed, the plan generator is notified that

Modeling and Analysis of Al Planning Systems 195

it must replan. A World Modeller produces an update to, or a completely new
world model. The world modeler determines the structure of the problem domain
rather than just the state of the problem domain like the situation assessor. It also
determines what must be modeled for a problem to be solved; hence it partially
determines what may be disturbances in the problem domain. The term "world
model” is thus used to indicate that it must be cognizant of the entire modeling
process. Its final output is a problem representation. A Planner Designer uses the
problem representation produced by the world modeler and designs, or makes
changes to the planner so that it can achieve its goal even though there are
structural changes in the problem domain. The planner designer may not need a
new problem representation if there are not structural changes in the problem
domain. It may decide to change the planner's strategy because some performance
level is not being attained or if certain events occur in the problem domain.
Situation assessment, exection monitoring, world modeling, and planner design are
all treated in more detail in [1].

2.3 Issues and Techniques in AI Planning Systems

In this section we briefly outline some of the issues and techniques in Al
planning systems. A relatively complete summary of planning ideas and an
extensive bibliography on planning is given in [11,1]. The goal of this Section is
to set the terminology of the Chapter.

Representation is fundamental to all issues and techniques in Al planning.
It refers to the methods used to model the problem domain and the planner and it
sets the framework and restrictions on the planning system. Often, it amounts to
the specification of a formalism for representing the planner and problem domains
in special structures in a computer language. Alternatively, it could constitute a
mathematical formalism for studying planning problems. Different types of
symbolic representations such as finite automata and predicate or temporal logics
have been used. Some methods allow for the modeling of different characteristics.
Some do not allow for the modeling of non-determinism. One should be very
careful in the choice of how much detailed mathematical structure or modeling
power is allowed, since too much modeling power can hinder the development of
some functional components of the planner, and of the analysis, verification, and
validation of planning systems.

The generality of developed planning techniques depends heavily on whether
the approach is domain dependent or domain independent. Techniques developed for
one specific problem domain without concern for their applicability to other
domains are domain dependent. The ideas in Section 3 of this Chapter are both
domain independent and problem representation independent.

Planners can be broadly classified as either being hierarchical or non-
hierarchical. A non-hierarchical planner makes all of its decisions at one level,
while in a hierarchical planner there is delegation of duties to lower levels and a
layered distribution of decision making. Planners can also be classified as being
linear or nonlinear. A linear planner produces a strict sequence of actions as a plan,
while a nonlinear planner produces a partially ordered sequence where coordination
between the tasks and subtasks to be executed is carefully considered. There are
several types of interactions that can occur in planning. One is the interaction
between subtasks or subplans that requires their proper coordination. Another is
between different goals we might want to achieve. While still another is between
different planning modules or with the human interface. Search is used in planning

196 INTELLIGENT AND AUTONOMOUS CONTROL

systems to, for instance, find a feasible plan There are many types of search such
as the heurzsuc search algorithms called A* or AO". In Sections 4 and 5 we show
how A” search can be used to solve plan generation problems in a DES theoretic
framework.

Skeletal plans, plan schema, and scripts are all representations of plans with
varying degrees of abstraction. Skeletal plans are plans that to some extent do not
have all the details filled in. A script is a knowledge structure containing a
stereotypic sequence of actions. Plan schema are similar. Often planners which
use these forms for plans store them in a plan library. Hypothetical planning is
planning where the planner hypothesizes a goal, produces a subsequent plan, and
stores it in a plan library for later use all while the current plan is executing.

Replanning is the process by which plans are generated so that the system
recovers after a plan has failed. There are two types of plan failures. One occurs in
plan generation where the planner fails to generate a plan. In this case, replanning
can only be successful if a planner redesigner makes some changes to the planner
strategy. The second type of plan failure occurs in the execution of the plan and is
due to disturbances in the problem domain. This plan failure can be accommodated
for by replanning in the plan generation module, if the failure is not due to a
significant structural change in the problem domain. If it is, then the world
modeler will produce a new world model and the planner designer will make the
appropriate changes to the planner so that it can replan.

Projection is used in plan generation to look into the future so that the
feasibility of a candidate plan can be decided. Projection is normally done by
performing symbolic simulation with a problem representation. If it is assumed
that there are no disturbances in the problem domain, and a plan can be generated,
then it can be executed with complete confidence of plan success. Disturbances
cannot be ignored in problem domains associated with real world dynamic
environments; therefore, complete projection is often futile. The chosen projection
length (number of steps in symbolic simulation) depends on the type and frequency
of disturbances and is therefore domain dependent. Notice that if the projection
length is short, plan execution can be interleaved with planning and replanning.
This sort of planning has been named reactive planning. A completely proactive
planner always has a plan ready for execution (in a plan library) no matter what the
situation is in the problem domain. These could be skeletal or scripts. Some
mixture of proactive and reactive planning with varying projection length is
probably most appropriate. In opportunistic planning one forms a partial plan
then begins execution with the hope that during execution opportunities will arise
that will allow for the complete specification of the plan and its ultimate success.
Planning with constraints is a planning methodology where certain constraints on
the planning process are set and the planner must ensure that these constraints are
not violated. Distributed planning occurs when a problem is solved by
coordinating the results from several expert planners. It is also called multi-agent
planning. Metaplanning is the process of reasoning about how a planner reasons.
It is used with world modeling and changes the planning strategy. Planners can
also be made to learn. For example, a simple form of learning is to save
successful plans in a plan library for later use in the same situation. Again, we
emphasize that the full details on the main ideas in planning theory can be found in
[11,1].

Modeling and Analysis of Al Planning Systems 197

3. ARTIFICIAL INTELLIGENCE PLANNING AND
CONTROL THEORY: ANALOGY AND RELATIONSHIPS

Relationships and an extensive analogy between Al planning and control
system architectures and concepts are developed in this section based on the work
in [1]. This is possible since both are problem solving systems (as described in
Section 2.1), with different problem domains. It is useful to draw the analogy
since conventional problem solving systems, such as control systems, are very
well studied. They have a well developed set of fundamental concepts and formal
mathematical modeling, analysis, and design techniques. The analogy is used to
derive a corresponding foundation of fundamental concepts for Al planning systems
that can be used to develop modeling, analysis, and design techniques.

The discussions below are meant to motivate the utility of using general
systems theory for the study of Al planning systems. In particular, it is hoped that
it is made clear that the general concepts of controllability/reachability,
observability, stability, etc. as defined in systems and control theory will be useful
in the quantitative study of Al planning systems. The results here will probably
need to be revised and expanded before a careful formulation of a mathematical
theory of Al planning via control theory is possible.

3.1 The Problem Domain / Plant Analogy

In this section we shall give the structural analogy (functional analogy)
between the problem domain and the plant. In conventional control, the plant is a
dynamical system whose behavior we wish to study and alter. It is generally
described with linear or nonlinear differential/difference equations, and is either
deterministic or non-deterministic. The problem domain is the domain
(environment) the AI planner reasons about and takes actions on. It can be
modeled using predicate or temporal logic, or other symbolic techniques such as
finite automata. We develop the analogy further using Figure 3.1.

As it is often done, we adopt the convention that actuators and sensors are
part of the plant, and thus part of the problem domain description. Plant actuators
are hardware devices (transducers) which translate commands u(t) from the
controller into actions taken on the physical system. The variable t represents
time.

In a problem domain, we take a more macroscopic view of an actuator, a
view which depends on available hardware and the type of inputs generated by the
planner. For example, in a robotic system a manipulator may be quite dexterous;
one may be able to just send the command "pick up object”, and it will know how
to move to the object, grip it, and pick it up. Such a manipulator can be seen as
an actuator, although simpler ones also exist. Clearly, the inputs to the problem
domain can be more abstract than those of a plant; consequently, we describe them
with symbols u; rather than numbers. The index i represents time in the problem
domain. The symbols are quite general and allow for the representation of all
possible actions that any planner can take on the problem domain. For example,
up="pick up object", or up="move manipulator from position 3 to position 7".
Rather than an input u(t) for the plant, the problem domain input u; is a time
sequence of symbols.

The physical system for both the problem domain and the plant is some
portion of the real world which we wish to study and alter. The difference between
the two is the type of systems that are normally considered, and thus the modeling
techniques that are used (See discussion in Section 2.2). Aspects of the dynamical

198 INTELLIGENT AND AUTONOMOUS CONTROL

behavior of plants such as cars, antennas, satellites, or submarines can be modeled
by differential equations. Problem domains studied in the Al planning literature
include simple robot problems, games, experiments in molecular genetics, or
running errands. Notice that problem domains cannot always be described by
differential equations. Consequently, certain conventional control techniques are
often inappropriate for Al planning problems.

*Disturbances, 4

Problem Domain

Inputs, uy Physical : Outputs, y.l

System

Actuators

Problem
. v | Domain
..... e
.) N +
1) .
AN R . v | Disturbances, d(t)
- . . 5 N
~ - - A >
x

~ ~

Outputs,

Inputs, u(t) Physical

System

Actuators {

Figure 3.1. Problem Domain / Plant Structure

The sensors in the plant and problem domain are used to measure variables
of the physical system and translate this information to y(t) for the controller and
yj for the planner. The symbols y; provide for the representation of all possible
measured values of outputs of the problem domain. As with the actuators in the
problem domain, we take a more macroscopic view of sensors. They can combine
various data to form an aggregate representation of dynamic problem domain
information. This necessitates the use of symbolic representations of the measured
outputs; consequently, yj is a time sequence of symbols. For example, in the
robot problem the position of some of the objects to be moved could be
represented with yj. The outputs could be yj="object 1 in position 5" and
yp="object 1 in position 3". The inputs u; can affect the physical system so that
the outputs yj can change over time.

The state of the plant or problem domain (or any dynamical system) is the
information necessary to uniquely predict the future behavior of the system given
the present and future system inputs. A particular state is a "snapshot” of the
system's behavior. The initial state is the initial condition on the
differential/difference equation that describes the plant, or the initial situation in the
problem domain prior to the first time a plan is executed. We shall denote the
state of the plant with x(t) and the problem domain with x;. The set of all

possible states is referred to as the "state space”. In our robot problem domain, the

Modeling and Analysis of Al Planning Systems 199

initial state can be the initial positions of the manipulator and objects. For two
objects, the initial state might be xg="object 1 in position 3 and object 2 in
position 7 and manipulator in position 5". Notice that part of the state is directly
contained in the output for our example. The state describes the current actuation
and sensing situation in addition to the physical system, since the sensors and
actuators are considered part of the problem domain.

The plant and problem domain are necessarily affected by disturbances d(t) or
symbols d; respectively (See discussion in Section 2.2). These can appear as
modeling inaccuracies, parameter variations, or noise in the actuators, physical
system, and sensors. In our robotics problem domain a disturbance might be some
external, unmodeled agent, who also moves the objects. Next we show how the
functional analogy, between the plant and problem domain, extends to a
mathematical analogy.

3.2 The Plant / Problem Domain Model Analogy

Due to their strong structural similarities it is not surprising that we can
develop an analogy between the models that we use for the plant and problem
domain and between fundamental systems concepts. Essentially this involves a
discussion of the application of a general systems theory described in [12] (and
many stanard control texts) to planning systems. We extract the essential control
theoretic ideas, and adapt them to planning theory, without providing lengthy
explanations of conventional control theory. The interested reader can find the
relevant control theoretic ideas presented below in one of many standard texts on
control. For the sake of discussion we assume that we can describe the dynamics
of the problem domain by a set of symbolic equations such as those used to
describe finite state automata [13]. Alternatively, one could use one of many
"logical” DES models (See Section 4 or [14]).

The mathematical analogy continues by studying certain properties of
systems that have been found to be of utmost importance in conventional control
theory.

Controllability / Reachability

In control theory, and thus in planning theory, controllability (or similarly,
reachability) refers to the ability of a system's inputs to change the state of the
system. It is convenient to consider a deterministic system for the discussion. A
sequence of inputs uj can transfer or steer a state from one value to another. In the
robot example, a sequence of input actions transfers the state from x="object 1 in
position 3 and object 2 in position 7 and manipulator in position 5" to x7="object
1 in position 5 and object 2 in position 10 and manipulator in position 1".

A system is said to be completely controllable at time i if there exists a
finite time j>i such that for any state xj and any state x there exists an input
sequence uj, ... ,uj that will transfer the state x; to the state x at time j, that is
Xj=X.

Intuitively, this means that a problem domain is completely controllable at
some time if and only if for every two state values in the state space of the
problem representation, there exists a finite sequence of inputs (that some planner
could produce) which will move the states from one value to the other (one state to
the other). Also notice that the time j-i is not necessarily the minimum possible.
There might be another sequence of inputs which will bring one state to the other

200 INTELLIGENT AND AUTONOMOUS CONTROL

in fewer steps. In the robot example, the problem domain is completely
controllable if for any position of the manipulator and objects, there exist actions
(inputs) which can change to any other position of the objects and manipulator.

If a problem domain is completely controllable, then for any state there
exists a planner that can achieve any specified goal state. Sometimes complete
controllability is not a property of the system, but it may possess a weaker form
of controllability which we discuss next. To discuss a more realistic, weaker form
of controllability we assume that the state space can be partitioned into disjoint
sets of controllable and uncontrollable states.

A system is said to be weakly controllable at time i if there exists a finite
time j>i such that for any states xj and x, both in the set of controllable states,
there exists an input sequence uj, ... ,u; that will transfer the state xj to the state x
at time j, that is x;=x.

If the initial state and the goal state are given and contained in the set of
controllable states and the problem representation is weakly controllable, then there
exists a planner which can move the initial state to the goal state. That is, there
exists a planner which can solve the problem. In the robot example, if the
problem representation is weakly controllable and the initial state begins in the set
of controllable states, then there are actions (inputs) that can move the manipulator
and objects to a certain set of positions in the set of controllable states, the ones
one might want to move them to. Note that there are corresponding definitions for
output controllability. Notions of controllability and reachability applicable to Al
planning systems have been studied in the DES literature [15,16,5].

Observability

In control theory, and thus in planning theory, observability of the problem
domain refers to the ability to determine the state of a system from the inputs,
outputs, and model of the system.

A system is said to be completely observable at time i if there exists a finite
time j>i, such that for any state xj, the problem representation, the sequence of
inputs, and the corresponding sequence of outputs over the time interval [i,j],
uniquely determines the state xj.

Intuitively, this means that a problem domain is completely observable at
some time if and only if for every sequence of domain inputs and their
corresponding outputs, the model of the domain and the input and output sequences
are all that is necessary to determine the state that the domain began in. A
problem domain that is completely observable on some long time interval may not
be completely observable on a shorter interval. It may take a longer sequence of
inputs and outputs to determine the state.

In the robot example, if the problem domain is completely observable, then
for every sequence of actions (inputs) there exists a situation assessor that can
determine the position of the objects and manipulator from the input sequence,
output sequence, and model of the problem domain.

If a problem domain is completely observable, then for any initial state,
there exists a situation assessor that can determine the state of the problem domain.
This situation assessor needs both the inputs and the outputs of the problem
domain, and there is the assumption that there are no disturbances in the domain.
Sometimes complete observability is not a property of systems, but they may
possess a weaker form of observability which is defined next. To discuss a more

Modeling and Analysis of Al Planning Systems 201

realistic, weaker form of observability, we will assume that the state space can be
partitioned into disjoint sets of observable and unobservable states.

A system is said to be weakly observable at time i if there exists a finite
time j>i, such that for any state x; in the set of observable states, the problem
representation, the sequence of inputs, and the corresponding sequence of outputs
over the interval [i,j], uniquely determines the state x;j.

If the problem domain is weakly observable there exists a situation assessor
that can determine the state of the problem domain given that the system state
begins in the set of observable states. In the robot example, if the problem
domain is weakly observable, then for any initial observable state and every
sequence of actions (inputs) that any planner can produce, there exists a situation
assessor that can determine the position of the objects and manipulator from the
planner input sequence, output sequence, and model of the problem domain.

As with controllability, observability is a property of systems in general,
therefore it has meaning for the problem domain, planner, and the planning
system. Notions of observability applicable to Al planning systems have been
studied in the DES literature (See the references in {14]).

Stability

In control, and thus in planning theory, we say that a system is stable if
with no inputs, when the system begins in some particular set of states and the
state is perturbed, it will always return to that set of states. For the discussion we
partition the state space into disjoint sets of "good" states, and "bad" states. Also
we define the null input for all problem domains as the input that has no effect on
the problem domain. Assume that the input to the system is the null input for all
time. A system is said to be stable if when it begins in a good state and is
perturbed into any other state it will always return to a good state.

To clarify the definition, a specific example is given. Suppose that we have
the same robot manipulator described above. Suppose further that the set of
positions the manipulator can be in can be broken into two sets, the good
positions and the bad positions. A good position might be one in some envelope
of its reach, while a bad one might be where it would be dangerously close to some
human operator. If such a system were stable, then if when the manipulator was
in the good envelope and was bumped by something, then it may become
dangerously close to the human operator but it would resituate itself back into the
good envelope without any external intervention.

We make the following definitions to make one more definition of stability.
We assume that we can partition the set of possible input and output symbols into
disjoint sets of "good" and "bad" inputs and outputs. A system is said to be input-
output stable if for all good input sequences the corresponding output sequences are
good.

In the robot example, suppose that the inputs to the manipulator can be
broken into two sets, the good ones and the bad ones. A bad input might be one
that takes a lot of resources or time to execute or it might be an input that takes
some unreasonable action on the problem domain. Let the output of the robot
problem domain be the position of the objects that the manipulator is to move. A
bad output position would be to have an object obstruct the operation of some
other machine or to have the objects stacked so that one would crush the other.
The robot problem domain is input-output stable if for all reasonable actions (good
inputs) the manipulator is asked to perform, it produces a good positioning of the

202 INTELLIGENT AND AUTONOMOUS CONTROL

objects (good outputs) in the problem domain. These stability definitions and
ideas also apply to the planner and the planning system. Notions of stability
applicable to Al planning systems have been studied in the DES literature [17].

Stabilizability refers to the ability to make a system stable. For a planning
system it may, for instance, refer to the ability of any planner to stabilize the
problem domain. A system is said to be stabilizable if the set of controllable
states contains the bad states. For the robot example, the problem domain is
stabilizable if for all states that represent bad positions of the manipulator arm,
there are inputs that can move the arm to its good (state) operating envelope.
Detectability refers to the ability to detect instabilities in a system. For a planning
system it may, for instance, refer to the ability of the situation assessor to
determine if there are instabilities in the problem domain. A system is said to be
detectable if the set of observable states contains the bad states. For the robot
example, if the problem domain is detectable, then for all input sequences that
place the manipulator arm in a bad position, there exists a situation assessor that
can determine the state. These definitions also apply to the planner and the
planning system.

3.3 Open Loop AI Planning Systems

In this section we define open loop planning systems and outline some of
their characteristics. They are named "open loop” because they use no feedback
information from the problem domain. Here we develop a structural analogy
between open loop conventional control systems and open loop planning systems
beginning with Figure 3.2. In conventional control theory, the open loop control
system has the structure shown at the bottom of Figure 3.2. The outputs of the
controller are connected to the inputs of the plant so that they can change the
behavior of the plant. The input to the controller is the reference input ©(t), and it
is what we desire the output of the plant to be. The controller is supposed to
select the inputs of the plant u(t) so that y(t)—r(t), or y(t) - r(t) is appropriately
small for all times greater than some value of t. Specifications on the performance
of control systems speak of the quality of the response of y(t). For example, we
might want some type of transient response or we may want to reduce the effect of
the disturbance on the output y(t). However, an open loop control system cannot
reduce the effect of disturbances in any way; notice that, by definition, the
disturbances cannot be measured.

In the open loop planner, plan generation is the process of synthesizing a
set of candidate plans to achieve the goal at step i which we denote by g;. The
goals g; may remain fixed, or change in time. In plan generation, the system
projects (simulates, with a model of the problem domain) into the future, to
determine if a developed plan will succeed. The system then uses heuristic plan
decision rules based on resource utilization, probability of success, etc., to choose
which plan to execute. The plan executor translates the chosen plan into actions
(inputs u;) to be taken on the problem domain. Many Al planners discussed in the
Al literature and implemented to date are open loop planners.

Next, we examine some basic characteristics of Al open loop planning
systems. We first consider the characteristics of the planner itself (not connected to
the problem domain) by interpreting the results above. Then we outline the
characteristics of open loop planning systems. It is useful to consider the planner
to be a model of some human expert planner. The state of the planner is the
situation describing the planner's problem solving strategy at a particular instant.

Modeling and Analysis of Al Planning Systems 203

Planner controllability refers to the ability of the goal inputs to affect the state of
the planner. Planner observability refers to the ability to determine the planner
state using the goal inputs, planner outputs uj, and the model of the planner.
Stability of the planner refers to its ability to stay in a problem solving state of
mind (ready to solve problems) when there are no goals to achieve (a null input).
Input-output stability of the planner is attained if for all reasonable, admissible
goals input the planner produces reasonable, acceptable outputs uj. The planner is
stabilizable if there exists a sequence of goals that will keep the planner properly
focused on the problem. The planner is detectable if for all goal sequences that
cause the planner to loose its focus of attention, the inputs, outputs, and model of
the planner can be used to determine where the focus of attention is.

Planner Distubances, d,
Plan Generation Set Control
Goals Plan :f One Actio] . \
g =ik Plans Plan U Outputs
Plan Project | f—#w- FPlan = Plan Problem Jeiise-
B Decisions Execution Domain § y.
o 1
Find
Prahl]
' i
' ’ ’)
‘\ - - - ‘ ; !
. - - U
.. .- “Open Loop Al Planning System
B
. Tl ’ Disturbances, d(t),’ ’
Conventional Open Logp ! ' A
Control System o P

Reference
Input, r(t

(6] ts, y(t
Controller uipusy(®

Figure 3.2. Open Loop Structural Analogy

All of the interpretations given for the planner are valid here, the difference
being that since we cascade the problem domain we are thinking of solving a
particular problem. If the problem domain is uncontrollable, then there may not
exist a planner capable of solving the problem. If it is controllable, then a planner
does exist. This does not mean that if the problem domain is completely
controllable, we can choose just any planner and it will solve the problem. It just
says that one exists. Situation assessment and execution monitoring cannot be
done since there is no connection to the outputs of the problem domain.
Consequently, there cannot be any replanning. If there are any disturbances in the
problem domain, the planner may become totally lost in its problem solving
process, because it has no ability to recover from plan failure; it is even unaware
that there was a failure. We say that the planning system is sensitive to problem
domain variations and open loop planners cannot reduce this sensitivity. This is
closely related to the idea of sensitivity reduction in conventional control theory.
Since, as explained in Section 2.2, there will always be some disturbances in the
real world, open loop planners will necessarily fail at their task. However, they

204 INTELLIGENT AND AUTONOMOUS CONTROL

can work if the problem domain is well modeled and the disturbances are quite
insignificant. This generally requires the use of a very complex, detailed model of
the problem domain in the case of significant real world problems. Notice that
since the outputs are not sensed, if the problem domain is unstable (input-output
or internally), then it is never stabilizable in open loop planning. Open loop
stabilization requires absolutely exact knowledge of the problem domain. Since
often this cannot be obtained, even insignificant disturbances can be catastrophic.

The length of projection in plan generation can be quite long since, if one is
using open loop planning then the disturbances must be assumed non-existent or
insignificant. The only reason for making the projection length shorter would be
to begin plan execution. If the projection length is too short for the plan generator
to specify a set of plans that will work, then there will be uncertainty in the plan
execution which may lead to ultimate plan failure. This is why current open loop
planners build the complete plan, then execute it.

Open loop planners do have the advantage of simplicity. If the problem
domain is stable and disturbances are insignificant, then they should certainly be
considered. They are cheaper to implement than the closed loop planners described
in the next two sections, since one does not need to buy sensors to gather
information about the states and outputs of the problem domain.

3.4 Al Feedback Planning Systems

Al feedback planning systems are analogous to conventional feedback
control systems that do not use state estimation; they do not use situation
assessment. In [18, Chapter 9] the authors point out the inherent feedback in the
planning process. They do not, however, make a clear distinction of the separation
between the planner and problem domain and their interconnections. In this
section the distinctions will be clarified.

The analogy between the feedback structures emerges from Figure 3.3. The
structure is the same as for the open loop system except there is the feedback
connection. This allows the planner to perform execution monitoring and
replanning. The feedback planning system can recover from plan failures that
occurred due to significant disturbances in the problem domain. The execution
monitoring system uses the measured outputs, the inputs, and domain model to
determine if the current plan has failed. If a plan fails, it informs the plan
generator that it must replan.

If the problem domain is not completely controllable, then one can perhaps
use more elaborate actuation systems that will properly affect the state of the
domain; or perhaps rederive the model of the problem domain since controllability
is a property of the mathematical model used. Therefore, controllability studies
can be used for design guidelines for the problem domain. Likewise for
observability. Situation assessment is not needed in a planner, if the full staie of
the problem domain is measurable. This is analogous to full state feedback in
conventional control theory. If observability studies show that some states of the
domain are unobservable, then one can design and implement additional sensors
which can provide the necessary information about the state. We see that there is a
tradeoff between expense of implementation of a planning system and planner
complexity. It may be expensive to implement sensors to sense the whole state,
but then situation assessment is not necessary thus making the planner simpler.

In order for the controller to force the plant output to track or follow the
reference input, it compares the output to the current reference input, and decides

Modeling and Analysis of Al Planning Systems 205

what to input into the plant. In comparing r(t) and y(t), the controller simply uses
the difference r(t)-y(t) to determine how well it is meeting its objective at any
instant and it takes appropriate actions. The difference r(t)-y(t), called the error,is a
control measure.

Planner Disturbances, d,
Plan Generation s
-|Set
Goals g:n of One Measured
&j o Plans Plan Outputs
- (Re)Plan ‘t Project | Plan g Plan]
Decistons Execution y.
- 1
Find. -
Problem Execution Monitoring
N]
|\ S ——— | \
“ - - M Ll
. == Lot
.. _- ATFeedback Planning Systemn
..... R A e St A ettt d I T e I L g
. =~ . Disturbances, d(t) ,’ '
Conventional Feedback, A
Control System ' ‘e
Reference o
Input, r(t utputs, y(t)
2 Controller p_>y

Figure 3.3. Closed Loop Structural Analogy

The planning system examines the difference between the current output
situation and the goal to be achieved, and takes subsequent actions. The error in
the planning system is not as easy to form as in the conventional control case.
This is because distance between symbols is more difficult to quantify. One could,
however, say that a problem domain output is closer to the goal if the components
that make up the output are closer to satisfying the goal. If the goal is a
conjunction of several subgoals, it is closer to the output if the outputs make more
of the subgoals true.

Suppose we fix the goal input to the feedback planning system to be the
same for all time, i.e., g;=g(for all i. The feedback planning system is then

considered to be a regulatory planning system. It achieves the goal state and
regulates the inputs to the problem domain to ensure that the goals are met for all
time even in the face of problem domain disturbances.

If the sequence of goals g;, the exogenous inputs to the planner, change over
time and the planner sequentially achieves the goals, the planning system is said to
be a goal following or goal tracking planning system. Notice that if the goals
change too quickly, the planner will not be able to keep up, and there will be some
tracking error.

When one designs a feedback planning system, there are certain properties
that are desirable for the closed loop planning system. We refer to these properties
collectively as the "closed loop specifications”. These could be stability, rate,
performance measures, etc.

Normally, stability is always a closed loop specification. The planner is
designed so that stability is present in the closed loop system. Take special note

206 INTELLIGENT AND AUTONOMOUS CONTROL

that even though feedback planning systems have the ability to stabilize any
system that is stabilizable, they can also destabilize an otherwise stable problem
domain. As an example, consider the case when because of some delay in
receiving feedback information, the planner applies the right plan but at the wrong
time. One must be careful in the design so that this is avoided.

A very important advantage of feedback planning systems over their open
loop counterparts is their ability to reject problem domain disturbances (reach and
maintain a goal even with disturbances) and to be insensitive to problem domain
variations (reach a goal even though the model is inaccurate). In conventional
control theory these objectives are designed for, using techniques which will
produce optimal disturbance rejection and sensitivity reduction. Systems that meet
these objectives are said to be robust. The theory of robust control addresses these
questions.

4. A DISCRETE EVENT SYSTEM THEORETIC FRAMEWORK
FOR THE MODELING AND ANALYSIS OF
ARTIFICIALY INTELLIGENT PLANNING SYSTEMS
In this Section we will introduce a "logical" DES model that can be used to
model and analyze Al planning problems. For simplicity we focus here on goal-
directed planning systems where from the initial state it takes only a finite number
of steps to reach the goal state. Moreover, as is standard in the Al literature we
focus mainly on plan generation and not on execution monitoring and re-planning.
Our study here amounts to a formal approach to planning system verification (for
an overview of work in formal verification of Al planning systems see [11,1]).
The problem of plan generation is essentially an optimal control problem in
that one wants to generate a plan that will transfer the system from the current
state to the goal state while using the least amount of resources. Such problems
can be solved with dynamic programming but often this approach causes problems
with computational complexity. We will show that the plan generation problem
is essentially a reachability problem similar to that discussed in Section 3.

4.1 A Problem Domain Model

We consider problem domains that can be accurately modeled with

P=(X,Q.8.%.x0.Xf) M

where

(i) X is the possibly infinite set of problem domain states,

(i) Q is the possibly infinite set of problem domain inputs,

(iii) §:QxX—X is the problem domain state transition function

(a partial function),

(iv) x:XXX-—>IR+ is the event cost function (a partial function describing the
cost of executing a planning step),
(v) x(is the initial problem domain state, and

(vi) Xf=X is the non-empty finite set of goal states.

R™ denotes the set of positive reals. The model P is limited to representing
problem domains that are deterministic in the sense that for a given input there is
exactly one possible next state. A state transition can occur in a non-deterministic
fashion relative to time so asynchronous problem domains can be modeled. The
set

EP)={(x,x)e X<X:x'=8(q.x)} @

Modeling and Analysis of Al Planning Systems 207

denotes the (possibly infinite) set of events for the DES P . The event cost
function x(x,x") is defined for all (x,x")e E(P); it specifies the "cost” for each event
(planning step) to occur and it is required that there exist a >0 such that
x(x,x")=8" for all (x,x')e E(P). Finally, we require that for each xe X,
1{8(q,x):qe Q}! is finite, i.e., that the graph of P is locally finite (hence, P is
equivalent to a 8-graph [19,20]).

Let Z be an arbitrary set. Z* denotes the set of all finite strings over Z
including the empty string . For any s,te Z* such that s=zz-z" and t=yy'-y",
st denotes the concatenation of the strings s and t, and te s is used to indicate that t
is a substring of s, i.e., s=zz"--t---z".

A string se X* is called a state trajectory or state path of P if for all
successive states xx'e s, x'=5(q,x) for some ge Q. Let

Es(P)EP®) 3
denote the set of all events needed to define a particular state path se X* that can be
generated by P. For some state path s=xx'x"x".., Eg(P) is found by simply
forming the pairs (x,x'), (x',x"), (x",x"),~-. An input sequence (sequence of
planning steps) ue Q* that produces a state trajectory s€ X* is constructed by
concatenating ge Q such that x'=8(q,x) for all xx'es. Let Xz<TX then

BPx X)X @
denotes the set of all finite state trajectories s=xx"--x" of P beginning with xe X
and ending with x"e X,. Then, for instance, % (P,x(,Xt) denotes the set of all
finite length state trajectories for P that begin with the initial state x() and end with
a final state xe Xf and %(P,x,X) denotes the set of all valid state trajectories for P
that begin with xe X. Therefore, 3 (P,x0,Xf) denotes the set of all possible
sequences of states that can be traversed by any plan that can be generated that will
result in successfully attaining the goal state. A problem domain P is said to be
(x,X,)-reachable if there exists a sequence of inputs ue Q" that produces an state
trajectory se %(P,x,Xz). This notion of reachability is closely related to the
definition of controllability in Section 3 except that here it is recognized that the
more general idea of the ability to reach a set of (goal) states is needed (since most
often there is more than one goal state).

4.2 An Optimal Plan Generation Problem

Intuitively, the valid behavior that the problem domain can exhibit which is
modeled by P can be characterized by the set of all its valid state trajectories
%(P,x,X) where xe X, along with its input sequences (it is specified with the graph
of P). Let P=(X,Q.8,x.x0.Xf) specify the valid behavior of the problem domain
and

A=(Xa.Qa.0a.Xa.Xa0-Xaf) ®

be another model which we think of as specifying the "allowable" behavior for the
problem domain P. Allowable problem domain behavior must also be valid
problem domain behavior. Formally, we say that the allowable plant behavior
described by A is contained in P, denoted with A[P}, if the following conditions on
A are met:

() Xa<X, Q=Q,

(i) 82:Qa*Xa—Xa, 8a(q.x)=0(q,x) if 8(q,x)€ Xa

and 83(q,x) is undefined otherwise

208 INTELLIGENT AND AUTONOMOUS CONTROL

(iii) Xa:XaXXa—>]R+ is a restriction of x:XXX—»[R+,

(iv) Xa0=x0, Xaf < Xf.
Also, let E(A)CE(P) denote the set of allowable events defined as in (2), %4 is
defined for all (x,x")e E(A), and Eg(A) is defined as in (3) above. In a graph-
theoretic sense, A is a partial subgraph of P. The model A, specified by the
designer, represents the "allowable” problem domain behavior which is contained
in the valid problem domain behavior described by the given P. It may be that
entering some state, using some input, or going through some sequence of
planning steps is undesirable. Such design objectives relating to what is
"permissible" or "desirable" plant behavior are captured with A. This formulation
is similar to that used for the "supervisor synthesis problems" in [15]. There the
authors introduced a minimal acceptable language and legal language and study the
synthesis of supervisors so that the resulting language controlled by the supervisor
in the plant lies between the acceptable and legal languages. Their minimal
acceptable and legal languages specify what we call the allowable behavior A
which is contained in P.

To specify optimal plan generation problems let the performance index be

1:Xa—>Ry4 ©
where the cost of a state trajectory s is defined by
I(s) = 2 X (x.x") M
(x,x)e Eg(A)

for all xe X5 and se %(A,x,X3a). By definition, J(s)=0 if s=x where xe Xa. Let A
describe the allowable behavior for a plant P such that A[P] then we have:

Optimal Plan Generation Problem (OPGP): Assume that A is (x(,Xaf)-reachable.
Find a sequence of inputs ue Q; that drives the system A along an optimal state
trajectory s*, ie., s e %(Ax0.Xaf) such that J(s*)=inf(J(s):s€ %(A,x0.Xaf)}-

Since we require that ue Q; and se X;, the solutions to the OPGP will
achieve not only optimal but also allowable problem domain behavior. There
may, in general, be more than one optimal state trajectory, i.e., the solution to the
OPGP is not necessarily unique. Here we are concerned with finding only one
optimal state trajectory for the OPGP and finding it in a computationally efficient
manner. To do this we will invoke the A* algorithm for the solution to the
OPGP. Note that the key problem in using this approach is the specification of
the "heuristic function” h(x). Here, we use the approach developed in [2-7] for the
specification of the heuristic function.

5. PLANNING APPLICATIONS

In this Section we apply the approach in Section 4 to two planning
applications: (i) an optimal part distribution problem in flexible manufacturing
systems, and (ii) simple Al planning problems (games). In each case we specify
the model P for the problem, the allowable behavior A, and state the particular
OPGP. Then, using the results in [2-7] we specify admissible and monotone
heuristic functions so that A* can find solutions to the OPGPs in a
computationally efficient manner. A* and the generalized Dijkstra’s algorithm
were implemented to compare the complexity of the two algorithms.

Modeling and Analysis of Al Planning Systems 209

5.1 Optimal Parts Distribution Problem in
Flexible Manufacturing Systems

A Flexible Manufacturing System (FMS) that is composed of a set of
identical machines connected by a transportation system is described by a directed
graph (M,T) where M=(12, ..., N} represents a set of machines numbered with
ieM and TCMxM is the set of transportation tracks between the machines. We
assume that (M, T) is strongly connected, i.e., that for any i€ M there exists a path
from i to every other je M. This ensures that no machine is isolated from any
other machine in the FMS. Each machine has a queue which holds parts that can
be processed by any machine in the system (with proper set-up). Let the number
of parts in the queue of machine ie M be given by xj=0. There is a robotic
transporter that travels on the tracks represented by (i,j)e T and moves parts
between the queues of various machines. The robot can transfer parts from any
ie M to any other je M on any path between i and j (it is assumed that the robot
knows the path to take, if not A" could be used to find it). The robot can transfer
no more than Be N-{0} parts at one time between two machines. It is assumed that
the robot knows the initial distribution of parts, the graph (M,T), and we wish to
find the sequence of inputs to the robot of the form "move o (<p) parts from
machine i to machine j" that will achieve an even distribution of parts in the FMS.
In this way, we ensure that every machine in the FMS is fully utilized. It is
assumed that no new parts arrive from outside the FMS and that no parts are
processed by the machines while the redistribution takes place. Our example is
similar to the "load balancing problem” in Computer Science except that we
require that a minimum number of parts be moved to achieve an even distribution.
Next, we specify the model P in (1) of this FMS.

Let X=NN denote the set of states and xg=[x1 x2 - xN1t and xg41=[x'1 x'2
- x'N]! denote the current and next state respectively. Let Q={u%:oce N-{0}} be
the set of inputs where u?j‘ denotes the command to the robot to move o parts
from machine i to machine j. The state transition function is given by S(U‘fj‘,xk)=

[x1 X2 = Xj-0L - XjHQL - xN1Y, the event cost function by x(xk,Xk+1)=0, and

x0=[x01 x02 - xON]%. The set Xf characterizes the state (or states) for which we
consider the the parts in the FMS to be at an even distribution. Let int(x) denote
the integer part of x (e.g. int(3.14)=3) and "mod" denote modulo. Let

N N

. X0i
L=in . N and Le= .
=1 i=1

X0i

N od N.

The value of L represents the amount of parts each machine would have if the parts
could be evenly distributed and Le represents the number of extra parts that we seck

to, for instance, distribute across the first Le machines. With this intent we let
x=[x1 X2 - XN]! where xj=L+1 for i, i<Le and xj=L for j, Le<j<N (other states
where the parts are considered to be evenly distributed can be specified in a similar
manner - an example of this is given below). We often let Xaf={x} so that the
evaluation function f(sx) for A* is easy to compute.

210 INTELLIGENT AND AUTONOMOUS CONTROL

We let A=P, i.e., all valid DES behavior is allowable, but note that our
solution will work for any allowable behavior A so long as A is (x0,Xaf)-
reachable. This is very important since it shows that if the robot is informed that
some machine or transportation track is out of order, the robot can still evenly
distribute the load for the remaining machines that are still appropriately connected
to the FMS. It is in this sense that our solution is "fault tolerant”. The OPGP
for this optimal parts distribution problem involves finding a sequence of inputs
u% to the robot which will result in it moving the least number of parts to achieve
an even distribution, i.e., xk€ Xaf.

Let Z be an arbitrary non-empty set and let p:ZxZ—[R where p has the
following properties: (i) p(x,y)20 for all x,ye Z and p(x,y)=0 iff x=y, (ii)
p(x,y)=p(y.x) for all x,ye Z, and (iii) p(x,)<p(x,2)+p(z,y) for all x,y,ze Z (triangle
inequality). The function p is called a metric on Z and {Z;p} is a metric space.
Let ze Z and define d(z,Z)=inf(p(z,2'): Z€Z)}. The value of d(z,Z) is called the

distance between point z and set Z. Recall that if x,ye R™, x=[x1 X2 - xplt,

n
y=[y1 y2 - ynl', and 1<p<ee, then Pp(x,y)=[zi=1'Xi-YilP]”p, Poo(X,y)=max {Ix1-
y1h1x2-y2l, ... Jxp-ynl}, and pq (discrete metric) where pg(x,y)=0 if x=y and
pd(x,y)=1 if x=y, are all valid metrics on R".

First, consider using the metric pp with p=1. Notice that p1(xk.Xk+1)=20.
for all (xk,xk+1)€ E(A). Hence, from [2-7] ﬁl(xk)=(1/2)p 1(xk.X) (x defined above)
is admissible and monotone so we get an efficient solution to the OPGP. The
results in [2-7] offer another possibility. Consider the metric peo. Notice that
Poo(Xk,Xk+1)=0t for all (xk,xk+1)€ E(A), all xke X are isolated points, and hence
hoo(XK)=Poo(Xk.X) (X defined above) is admissible and monotone.

Consider the FMS with 3, 4, and 6 machines and track topologies shown in
Figure 5.1. For the 3-machine FMS in Figure 5.1 let B=1 and x0=[10 0 41%; then
L=4 and Le=2 and we choose Xap={[5 5 411}. A*(h1(xi)) and A* (heo(x)) both
expand 5 states and result in a optimal state trajectory of cost 5 (i.e., 5 parts is the

minimum number of parts that must be moved to achieve a even distribution).
The generalized Dijkstra's algorithm expands 36 states to find a solution. If we let

x0=[11 3 2]t then L=5 and Le=1. If we choose Xaf={[6 5 51t}, A*(h1(xp) and
A*(hoo(xk)) both expand 11 states and result in a optimal state trajectory of cost 5.
The generalized Dijkstra's algorithm expands 51 states to find a solution; hence we

see that for the 3-machine FMS A¥ using the heuristic functions specified via the
results of in [2-7] far outperforms the generalized Dijkstra’s algorithm.

For the 4-machine FMS in Figure 5.1 let B=1 and x(=[0 5 2 6]t so that L=3
and Le=1. Choose Xaf={[4 3 3 31, [3 3 3 4]}, A¥(h1(xK) and A¥ (hooxK)
expand 38 and 53 states respectively and result in a optimal state trajectory of cost
6 that ends in [3 3 3 4]L. The generalized Dijkstra's algorithm expands 141 states
to find a solution to the OPGP for the 4-machine FMS. For the 6-machine FMS
in Figure 5.1 let =1 and x0=[4 0120 5]t so that L=2 and Le=0. Let Xaf={[222
22214, A*(ﬁl(xk)) expands 82 and results in a optimal state trajectory of cost 6.
The generalized Dijkstra's algorithm expanded 798 states to produce the same
solution.

Modeling and Analysis of Al Planning Systems 211

D - Machine

— - Transportation Track

Figure 5.1. Example Flexible Manufacturing System Topologies

Note that if we had allowed B>1 for the above examples then the
computational savings obtained by using A" over the generalized Dl_]kstras
algorithm would even be more pronounced. This is the case since A* would
exploit the fact that the robot could move multiple parts so that an even
distribution could be achieved quicker. For the generalized Dijkstra's algorithm
large B will drastically increase the number of states it visits in finding an optimal
state trajectory. Also note that for large N and total number of parts initiaily in
the FMS, for many FMS track topologies the OPGP can easily become too
difficult to solve via any method due to combinatorial explosion. We have,
however, illustrated that for typical FMS systems the A* algorithm, with the
appropriate heuristic function, can solve the optimal parts distribution problem
efficiently - and with significantly fewer computations than conventional
techniques.

5.2 Simple Artificial Intelligence Planning Problems: Games

The A* algorithm has already been used for the solution to many Al
planning problems such as tic-tac-toe, the 8 and 15 puzzle, etc. [20]. The
extensions to the theory of heuristic search in [2-7] allow for a wider variety of
such problems to be studied. For instance, in [4] the authors showed that the
metric space approach could be used to specify the standard heuristic functions for
the 8-puzzle and discovered several new heuristics for this problem that also work
for the more general N-puzzle. In [3] heuristic functions were specified for a
"triangle and peg" problem and a simple robotics problem ("blocks world"). Here
we study the Missionaries and Cannibals Problem as in [2,3], an Al planning
problem for which there currently exist no admissible and monotone heuristic
functions. In this way we illustrate that the results in [2-7] facilitate the discovery
of new heuristics.

The problem statement is as follows: Three missionaries and three
cannibals are trying to cross a north-south river by crossing from east to west. As
their only means of navigation, they have a small boat, which can hold one or two
people. If the cannibals outnumber the missionaries on either side of the river, the
missionaries will be eaten; this is to be avoided. Find a way to get them all across
the river which minimizes the number of boat trips taken.

First we model this problem with the problem domain model P. Let X=N0

and xg=[x1 x2 - xg]' and xk+1=[x'1 x'2 - x'g]! denote the current and next state

212 INTELLIGENT AND AUTONOMOUS CONTROL

respectively. Let x1 (x4) and x3 (xg) denote the number of cannibals and
missionaries on the east (west) side of the river respectively. Let "E" and "W"
denote the east and west side of the river respectively. Let "C" and "M" denote
cannibals and missionaries. Let Q={q;:i=1,2, ..., 10} where q1=2 C W—E (move
2 cannibals from the west side of the river to the east side of the river); q2=2 C
E—-W; g3=1 C W-E; q4=1 C E5W; g5=1 C IM W—E (move 1 cannibal and 1
missionary from the west side of the river to the east side of the river); qg=1 C 1M
E-W; q¢7=IM E-5W; qg=1 M E-W; q9=2 M E—-W; q10=2 M W—-E. Of
course the boat moves in the indicated direction also. For the state transition
function we have 8(q2,[3 1300 01Y) = [1 03 21 0]t; the other cases are defined
similarly. Let X (xk,Xk+1)=1 for all (xk,xk+1)€E®P), x0=[31300 0]¢, and
Xr=([000313]t}.

Notice that we have not represented the part of the problem which states that
"the cannibals cannot outnumber the missionaries”. We will consider this to be
included in the design objectives using the allowable behavior A such that A[P].
Let Xp={xke X: x1>x3 or x4>x¢) and X3=X-Xp, Qa=Q, and the definition of A
follows immediately. The OPGP for the missionaries and cannibals problem is to
(i) find the minimum length sequence of inputs (loads of passengers) that will
result in all persons on the west side of the river and (ii) satisfy the constraint that
the cannibals cannot outnumber the missionaries which is represented with A.

Currently, there does not exist any monotone h(xy) for this problem. We
now show that the results of [2-7] allow for the specification of several such fl(x).
First consider pp where p=2 and notice that p2(xk,xk+1)sm and x(xk.Xk+1)=1
for all (xk,xk+1)€ E(A) so from [2-7] h(xi)=(1/N 10)p2(xk.X) where x=[0 0 0 3 1
3]t is an admissible and monotone heuristic function. Also notice that

Poo(Xk:Xk+1)<2 50 from [2-7] h(x)=(1/2)pes(xk,X) Where x=[0 0 0 3 1 3]t is an
admissible and monotone heuristic function. When these heuristic functions are
used with A* to find the solution to the OPGP, the minimum length sequence of

inputs found was: g¢, 48, 92, 93, 99 95, 99, 93, 42, 48, 46. The solution involves
11 boat trips, the minimum number of trips needed to solve the problem.

6. CONCLUDING REMARKS

Although a foundation of fundamental concepts has been formed for Al
planning systems by drawing an extensive analogy with control theoretic ideas,
much work needs to be done in order to mathematically formalize the full range of
concepts and planning paradigms presented here. At best, the results of this paper
raise many important questions, and clarify some of the issues that may be
important in quantitative studies of Al planning systems. Extensive research must
be done on developing particular methods to model, analyze, and design Al
planning systems. Since the results in this paper are both domain and problem
representation independent they are applicable no matter what modeling and
analysis methodology is chosen provided that the methodology provides for the
study of the fundamental concepts developed here.

As it is quite fundamental to the quantitative study of Al planning systems,
the modeling issue must be studied much more extensively. Various questions
must be answered: (i) What mathematical formalism to use for the problem

Modeling and Analysis of Al Planning Systems 213

representation? (logical or "timed" DES models? hybrid system models?), (ii) What
is the expressive power of this formalism? That is, what class of problem
domains can be modeled?, (iii) Does the formalism lend itself to analysis, design,
and implementation?

Secondly, systematic analysis methods must be developed so that planning
system behavior can be studied quantitatively within the developed modeling
framework. Before this is done, however, it will be important to determine what is
important to analyze. Are there properties other than the ones developed here that
need to be analyzed? It is also expected that planning methodologies which lend
themselves to analysis will have to be developed. The question of what constitutes
good planning system behavior must be answered.

Finally, planning system design must be addressed. It is hoped that a
systematic procedure for design is obtained, one that is similar, in character, to the
control system design process. Moreover, as indicated in the introduction there is
the need to more carefully study implementation issues before we can realistically
expect Al planning systems to be used in more challenging real-world applications.

Acknowledgements: This work was partially supported by McDonnell Aircraft
Company's Artificial Intelligence Technology Group (reported in Oct. 1987) and
by the Jet Propulsion Laboratory. In addition, the first author was also partially
supported by an Engineering Foundation Research Initiation Grant.

REFERENCES

[1] Passino K.M., Antsaklis P.J., "A System and Control Theoretic Perspective on
Artificial Intelligence Planning Systems", Int. Journal Applied Artificial
Intelligence, Vol. 3, No. 1, pp. 1-32, 1989.

[2] Passino K.M., Analysis and Synthesis of Discrete Event Regulator Systems,
Ph.D. Dissertation, Dept. of Electrical and Computer Eng., Univ. of Notre
Dame, April 1989.

[3] Passino K.M., Antsaklis P.J., "Artificial Intelligence Planning Problems in a
Petri Net Framework”, Proc. of the American Control Conf., pp. 626-631,
Atlanta GA, June 1988.

[4] Passino K.M., Antsaklis P.J., "Planning Via Heuristic Search in a Petri Net
Framework", Proc. of the Third IEEE Int. Symp. on Intelligent Control, pp.
350-355, Arlington VA, August 1988.

[5] Passino K.M., Antsaklis P.J., "On the Optimal Control of Discrete Event
Systems”, Proc. of the Conference on Decision and Control, Tampa, Florida,
pp. 2713-2718, Dec. 1989.

[6] Passino K.M., Antsaklis P.J., "Near-Optimal Control of Discrete Event
Systems”, Proc. of the Allerton Conf. on Communication, Control, and
Computing, pp. 915-924, Univ. of Illinois, Sept. 1989.

[7] Passino K.M., Antsaklis P.J., "Optimal Stabilization of Discrete Event
Systems", Proc. of the IEEE Conf. on Dec. and Control, Hawaii, pp. 670--671,
Dec. 1990.

[8] Antsaklis P.J., Passino K.M., Wang S.J., "Towards Intelligent Autonomous
Control Systems: Architecture and Fundamental Issues”, Journal of Intelligent
and Robotic Systems, Vol. 1, No. 4, pp. 315-342, 1989.

[9] Antsaklis P.J., Passino K.M., Wang S.J., "An Introduction to Autonomous
Control Systems", IEEE Control Systems Magazine, Special Issue on
Intelligent Control, Vol. 11, No. 4, pp. 5-13, June 1991.

214 INTELLIGENT AND AUTONOMOUS CONTROL

[10] Lunardhi A.D., Passino K.M., "Verification of Dynamic Properties of Rule-
Based Expert Systems", Proc. of the IEEE Conf. on Decision and Control, pp.
1561-1566, Brighton, UK, Dec. 1991.

[11] Tate A., "A Review of Knowledge-Based Planning Techniques”, in Merry M.,
ed., Expert Systems 85, Cambridge Univ. Press, Cambridge 1985.

[12] Kalman R., Falb P., Arbib M., Topics in Mathematical System Theory,
McGraw Hill, NY, 1969.

{13] Hopcroft J., Ullman J., Introduction to Automata Theory, Languages and
Computation, Addison Wesley. Reading, Mass., 1979.

[14] Special Issue on Dynamics of Discrete Event Systems, Proceedings of the
IEEE, Vol. 77, No. 1, Jan. 1989.

[15] Ramadge P.J., Wonham W.M., "Supervisory Control of a Class of Discrete
Event Processes", SIAM J. Control and Optimization, Vol. 25, No. 1, pp.
206-230, Jan. 1987.

[16] Peterson J.L., Petri Net Theory and the Modeling of Systems, Prentice Hall,
NJ, 1981.

[17] Passino K.M., Michel A.N., Antsaklis P.J., "Lyapunov Stability of a Class
of Discrete Event Systems", Proc. of the American Control Conference, pp.
2911-2916, Boston, MA, June 1991.

[18] Charniak E., McDermott D., Introduction to Artificial Intelligence, Addison
Wesley, Reading Mass, 1985.

[19] Hart P.E., Nilsson N.J., Raphael B.,"A Formal Basis for the Heuristic
Determination of Minimum Cost Paths", IEEE Trans. on Systems Science
and Cybernetics, Vol. SSC-4, No. 2, pp. 100-107, July 1968.

[20] Pearl J., Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley, Reading, Mass., 1984.

