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Maximal Order Reduction and Supremal 
( A ,  B)-Invariant and Controllability Subspaces 

P. J. ANTsAKLIs, MEMBER, IEEE 

Abstract-Given the system { A , B , C , E )  the supremal (A,B)-invariant 
and cwlmlhMily sobspaces are studied and thew dimensions are ex- 
pUcitly determined as functions of the number of zeros and the degree of 
the determinant of the interactor. This is done by solving the problem of 
the maximal order reduction via linear state feedback. 

I. INTRODUC~~ON 

The  geometric approach [9] has been used  successfully  in  recent  years 
in the  analysis and synthesis of linear, multivariable,  time-invariant 
systems. Among the key concepts of this approach are the concepts of 
the  supremal (A,B)-iivariant and controllability  subspaces contained in 
a given subspace  (often,  the  kernel of C) ,  denoted by Y. and R*, 
respectively. R* is a  subspace of vf and it has been  shown  by a  number 
of authors that dim vf = q +dimR* where q is the  number of zeros of 
the system  considered. Note, however, that the actual dimension of R* 
and consequently of vf are unknown. These  dimensions are important 
since  they  have  a  critical  effect on the dynamic  controller structure in 
some  synthesis  techniques, as for example  in  decoupling. 

In this paper the  dimensions of V. and R* of a  completely controlia- 
ble  system are explicitly  determined in terms of the degree of the 
determinant of the “interactor” introduced in [6]. Note that the relation 
between  the interactor and the  dimensions of V. and R* is not 
surprising in.  view of the importance of the interactor in the  decoupling 
problem  (Section 111, Remark) and generally in the  problem of system 
equivalence  under dynamic compensation [6]. 

Given  the  controllable and observable  system ( A ,  B,  C,  E ) ,  the dimen- 
sion of Y. is determined by solving an equivalent  problem,  namely  the 
problem of reducing  the order’ of the system  via  linear state feedback 
(LSF) by  making  unobservable the largest  possible  number of closed- 
loop  poles  (maximal order reduction  problem).  The  equivalence of these 
two  problems is established  in  Section I1 by using a  well-known  relation 
between vf and an appropriate unobservable  subspace (Lemma  1). In 
Section I11 the maximal order reduction problem is solved (Theorem 8) 
and the  stability of the closed-loop  system  is  examined  (Lemma 9 and 
10). These  results are used in Section IV to study the  subspaces vf and 
R* and determine  their  dimensions as functions of the number of zeros 
and the  degree of the determinant of the interactor. 

The  advantage of studying the maximal  order reduction problem 
instead of dealing  directly  with vf and R* is that one can avoid  using 
abstract algebraic concepts in the proofs and talk simply about more 
familiar  concepts as unobservable  poles and their  cancellation in the 
transfer matrix. Note that the maximal order reduction  problem  is of 
interest in its own right because, for example, of its relation to the 
decoupling  problem (Section 111, Remark); it can also be of interest  in 
modeling  where  the  dimension of the model can be reduced  via  LSF (or 
its equivalent  dynamic  compensation) by omitting  the  unobservable part 
which  cancels out in the closed-loop transfer matrix. 

It should be pointed out that the interactor is related to the transfer 
matrix or  polynomial  matrix representation of a  system.  Therefore, this 
paper  establishes  some of the key relations  between the different a p  
pmaches of studying  linear,  time-invariant  systems,  namely,  between 1) 
the transfer matrix and polynomial matrix approach and 2) the geomet- 
ric approach. Note that the connections between the  polynomial  matrix 
and geometric  approach have recenfly attracted considerable  interest 
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‘This is Inken to be equal to the McMillan degree of the transfer mauix. 

and a  variety of results, which differ from the present work in both 
nature and methodology,  have been reported [ 131, [ 141. 

Finally,  note that the results of this paper extend  similar  results [12] 
developed  under  the  assumptions: p G m, E = 0 and that the  “decoupling 
condition” does  hold. 

11. -ARIES AND PROBLEM FORMULATION 

Assume that an nth order controllable and observable  system i = A x  
+ Bu, y = Cx + Eu is  given and let T(s) be its p X m transfer matrix, 
which  is  assumed to be of full  rank.  Let R(s)P-‘(3) be a right  prime 
factorization of T(s) where R(s) and P(s) are p X m and m X m poly- 
nomial  matrices,  respectively,  with P(s)  column  proper [l], i.e., 

T ( s ) = C ( s l - A ) - ’ B + E = R ( s ) P - ’ ( s )  (1) 

with (R,P) relatively  right  prime (rrp) polynomial  matrices. The n poles 
of the given  system (1) are the n zeros of det(s1- A )  = det P(s)? while the 
q zeros of (1) are those zj (multiplicity included) for which [3] 

It can be  shown using [2] that the above q zeros can be equivalently 
defined  from R(s)  as follows. 

The  zeros of (1) are 1) (p  a m )  the  zeros of det G,(s) where G, is a 
greatest common right  divisor  (gcrd) of thep rows of R(s) and 2) (p <m) 
the  zeros of detGL(s), where GL is  a  greatest common left  divisor  (gcld) 
of the m columns of R(s). Note that when p =m, GR(s)=  G,(s)=R(s) 
and the zeros of (1) are simply  the  zeros of detR(s). 

Assume that system (1) is compensated by a  linear state feedback 
(LSF) control law  of the  form 

u = F x + u  

where F is the state feedback matrix and u an external input. The 
state-space  description of the  closed-loop  system is 

i=(A+BF)x+Bu;   y=(C+EF)x+Eu.  (2) 

A  subspace V of the state-space is an output-nulling imriant subspace 
[15] if and only if 

or equivalently, if and only if for  some F 

(A+BF)VcVcker(C+EF) (3) 

where Im and ker are the  image and the kernel of linear  maps.  Let V. be 
the  supremal  output-nulling invariant subspace [15].  If E=O, i.e., there is 
no direct  feedthrough in (l), vf is exactly the supremal (A,B)-invariant 
subspace  in  the kerC [9]. In the  following, vf will be  referred to simply 
as the supernal ( A ,  B)-invoriunt subspace. 

Let OF be the observability  matrix of (2);  then  ker OF = n f:; ker[( C + 
EF)(A +BF)’]  is the  unobservable  subspace of (2). Let M* be the 
maximal  unobservable  subspace and assume  that, given Y., F,,, is a 
matrix F which  satisfies (3) with V =  vf. Then we have the following. 

Lemma I: 

V+=kerO,,=M*. 

Proof: If X E P ,  then (c+EF,)(A+BF,)’x=o, i=O,I,--.,  i.e, 
x E ker OF,. Thus V. c ker OF,. Ker OF is an ( A ,  Btivariant subspace in 
ker(C+ EF) for all F. Since vf is the supremal such element,  ker O F c  
P for all F. For F= F,, kerOFm c VI which  implies that vf=kerO~,. 

2Generally. det(sl-A)-a.detP(s) with a a nonzero scalar. Without loss of generality 
it is assumed that 0-1. 
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Note that ker OF c V. = ker 0," for all e that is,  ker OF= is the maximal 
unobservable subspace M*. Q.E.D. 

Lemma 1, which is a simple  extension (BzO) of a well known  result 
of the geometric approach [9], plays  a central role in this paper. 

Let Tds)  be  the transfer matrix of (2); then 

T ~ s ) = ( C + E F ) ( s l - A - B F ) - ' B + B = R ( s ) P , - ' ( s )  (4) 

where the nth degree  polynomial  det(s1- A - BF) equals det P&) with 
PF(s) P(s)- F(s); F(s) is a  column proper polynomial matrix, which 
depends on F, with column  degrees  strictly  less than the column  degrees 

The closed-loop  system (2) is controllable for all F but it is not 
generally  observable. The unobservable  poles are canceled out in T's), 
thus  causing  a  reduction in system order from n to nF, where nF is the 
McMillan  degree of Tds), i.e., the order of a minimal  realization of 
T's). If GAS) is  a  gcrd of R(s) and PAS), the zeros of det GAS) are the 
unobservable  poles of (2). Furthermore, note that the number of unob- 
servable  poles equals the dimension of the unobservable subspace of (2) 
which is dim  ker OF [3]. Therefore, 

of P(s) PI. 

dim ker OF = degree(det GF) = n - nP (5) 

In view  of Lemma 1, (5) implies that 

dimP=dimkerOFm=n-nFm. 

That is, dim VZ equals the largest  possible  number of unobservable  poles 
of (2>3 and it is also equal to the maximal order reduction possible  using 
LSF; furthermore, the LSF matrices  which  cause  maximal order reduc- 
tion  satisfy (3) for V= V.. 

The maximal order reduction problem will be solved in the following 
section to determine dim P. The role of zeros of system (1) will emerge 
from the constructive  proofs and the dimension of the largest  controlla- 
bility  subspace R* contained in VZ will be  explicitly  determined. 

Note  that although the maximal order reduction  problem is in- 
troduced ahd solved  here to explain concepts used in the  analysis and 
synthesis of linear  systems  (geometric approach), the  derived  results. can 
also be used to simplify  system  models  by  reducing  their order via LSF 
(or  the  equivalent dynamic compensation). The LSF matrices F which 
achieve this are the matrices F, which  satisfy (3) for V =  V*. 

q=n-nF,  

as claimed. 

B. p<m 

(6) 

Q.E.D. 

This is a  considerably  more  complicated case than p am. Note that 
here  the  relation between G,, the g a d  of R and Pm and GL, the gcld of 
thep columns of R(s), is not clear; consequently, the above  technique 
used in Lemma 2 which  relates the largest possible  number of unobserv- 
able poles to the  number of zeros of (1) cannot be directly  applied. The 
maximal order reduction will be found, in this case, using the "interac- 
tor" introduced in (61. In particular, since T(s) of (1) has full rank, there 
exists  a unique p x p  polynomial matrix X+)> called the interactor, 
such that 

S-CO 
lim XT(s)T(s)=KT; rankKT=p 

where X d s )  = H+)diag(&, . . - ,SA) with H A S )  being a p  X p  polynomial 
matrix in lower  left triangular form with 1s on the dmgonal, and KT 
being a real p X m  matrix. Note that, as it citn be  easily seen from the 
construction of X+) in [61, 

dT 2 degree(detXds)) < n  (8) 

where n is  the order of the system (I), or  equivalently, the McMillan 
degree of T(s) of (1). Observe that & which  plays an important role in 
the  following, can be  easily found by inspection from Xds) .  In particu- 
lar, note that 

P 
dT= 2 x.  

i =  1 

The following  lemma is now in order. 
Lemma 3: nF > for all F. 

Proof: Let XTF(s) be  the interactor of T&) of (4). Then, in view  of 
(8), 

where nF the  McMillan  degree of T&). From relation (4) 

T,(s)=R(s)P,-'(s)=(R(s)P-'(s))(P(s)P,-'(s))=T(s)T,(s) 

( 10) 

111. "AL ORDER REDUCTION VIA STATE  FEEDBACK where T, A PP;' is an equivalent to state feedback  feedforward com- - 
pensator [I], [7J Note that T,(s) is actually a  solution to a  model 

now of [6, Theorem 4.51 and the fact that T&) is proper [l], system are canceled out (by  making q of the  poles of (1)  unobservable), 
then  maximal order reduction  is  achieved  only  when p am. In the case  xT(s)xT;I(s) is proper, which directly implies that 
when p < m, the order n can be reduced by q + k where k is a  nonnega- 

It will be shown in this section that if all the (4) zeros Of the given  problem  where TAs) is  to  be the model. In view 

tive  integer  defined  below. Thus, the two -cases p  m and p <m willbe 4, dT. 
studied separately. Note that in the  following, F, denotes an LSF  matrix 
F which  achieves  maximal order reduction.  Comparing (9) and (1 I), the  desired relation 

Lemmrr 2: If p > m, the maximal order reduction via LSF is q, the 
number of zeros. 

Proof: It was  shown that the reduction in order, caused by an LSF 
matrix F, is degree (det G,) [see (31, where GF is a  gcrd of R and PP 
Note that GF is a  right  divisor of GR for all F where GR is a  gcrd of all 
the (p) rows of R(s). This implies that det GF is a factor of det GR for all 
F and consequently, in view  of the definition of zeros, it has as its zeros 
some of the zeros  of (1). It is therefore  clear that the order reduction is 
achieved by just canceling zeros of the system  which  implies that 
maximal order reduction  can be achieved by choosing an F to cancel (if 
possible) all q zeros of (1). 

It has now  been shown that such an LSF matrix F exists  (see among 
others [4] and [5D. Therefore, the maximal order reduction is 

is  derived.  Q.E.D. 
Lemma 3 shows that dT (=X+-&) is a lower bound to the McMillan 

degree of the closed-loop transfer matrix. In the following (I.emma 5)  it 
will be  shown that there  exists an LSF matrix F, which achieves this 
lower bound. Before this can be done Lemma 4 must be  shown. 

 emm ma 4: A realization of i s )  x ~ s ) ~ ( s )  is 

Prmf: First note that lims,,TQ)= KT [see (711, i.e., T is a proper 
transfer  matrix, and let? Tu. Assume  now that { A C , B C , C c , E )  is an 
equivalent to ( A , &  C , E )  representation of (1) in controllable compan- 

(2). 
3Dim V. is also equal to the largest possible number of  output decoupling zeros 131 of 

%e s p a 0 1  <As) is used in 161 instead of X,+). 
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ion  form (Q the  equivalence transformation ma%).  Let also T= &PC-' 
be an rrp factorization of T where & and PC are polynomial  matrices 
related to { A  C , B C ,  C C , E }  via the structure theorem of [l], i.e., PC@) 
depends  only on the  controllability  indices 4, i = 1; . . ,m, of (1) and the 
nontrivial parts of A', BE,  while Rc(s)= C'S(s)+ EP,(s) where S(S)= 
diag(e:,e,; . . .zm) with e, A 11,s;. . ,s:-']? 

Note that T=X,T=X,&P;'=&P;' with ?,& which di- 
rectly  implies that a  differential operator realization of T in controllable 
form [l] is Pc(D)z(f)=u(f);y'(t l=&(D)e(f)  where D d / d t  and z(r) is 
a "partial state.''  Since  now T is a proper transfer matrix-and PC a 
column proper polynomial  matrix, the c o l u m n  degrees of & are less 
than or equal  to the column  degrees (4.1 of PC. In view  of the structure 
theorem, R, thus  be  written as I&)= CcS(s)+KTPc(s) where dc is an 
appropriate real matrix; this in turn implies that x' = A + BCu, = 
CV+ K,U is a  realization of i equivalent to the  above differential 
operator realization. I f  now  the  equivalence transformation matrix Q is 
us+ (yhich depends  only on A and B )  it is clear that (13) is a  realization 
of T ( C =  C'Q). Observe also that the state x of  (13) is the state x of (1) 

A)-'Bu(s)= Qx(s) [I]. Q.E.D. 
Note that Lemma 4 can also he shown using the  state-space approach 

of [8]. 
Lemma 5: There  exists an LSF  matrix F ,  such that 

sin- x=($) = S(S)Z(S) = S(S)P~-'(S)U(S) = (sZ - AC)-'BCu(s) = Q(sZ - 

nFm = 4. ( 14) 

Pro05 Let ?(SI& Xds)T(s) and note that in view of Lemma 4, (13) 
is a  realization of T. If  now the  LSF  law u= Fx+ w is applied to (13), 
then 

y ' = ~ F u = [ ( d + K , F ) ( ~ Z - A - B F ) - ' B + K T ] u  

which in view  of the relation y' = Tu = X T .  = XTTFu  implies that 

TF=X,-'iF=X,-'[(d+K,F)(sZ-A-BF)-'B+K,]. (15) 

If now the LSF  matrix F, is  chosen to satisfy 

d+ K ~ F ,  =o, (16) 

then TF,(s)= XF'(s)K,, a  transfer matrix of McMillan  degree  equal to 
&=degree (detXds)) (this is because X&) and KT are rlp matrices in 
view  of  Lemma 3). Finally,  note that there  always  exists  a  (nonunique) 
solution F, to (16) since rank KT =p .  Q.E.D. 

Lemmas  3 and 5 clearly show that the lowest  McMillan  degree of the 
closed-loop  transfer matrix TF of (4) is d,. This implies that the  maximal 
order reduction in this case is n - dT, as the  following  shows. 

Corollary 6: I f p  <m, the maximal order reduction via LSF is n -  d,. 
It was  shown  in  the  proof of Lemma 2 that if p > m, the  maximal order 

reduction is achieved  by  making q of the closed-loop  poles equal to  the 
values of the q zeros of the given  system and it is now of interest to 
determine  what  values  the  unobservable  poles of the  closed-loop  system 
must  take  when  p <m. First note that there is a  relation  between q and 
d p  In particular, it can be easily  seen  from the construction of Xds) in 
[6] that 

d ,+q<n .  ( 17) 

Let k be a'  nonnegative  integer  such that 

n - d T = q + k .  (18) 

In view  of Corollary  6 it is now clear that the  maximal order reduction is 
n - nF, = q + k which  is a  number  generally  larger than the  number of 
zeros q. It is shown in the  following  lemma that whenever the maximal 
order reduction is achieved ria an LSF matrix F,, all the zeros of the 
system are canceled out in  the  closed-loop transfer matrix TF,(s). 

modification. 
51t is assumed that rankB-rn. If d B c m  the above proof is still valid with slight 

Lemma 7: I f  the  maximal order reduction is achieved via an LSF 
matrix F,,,, the closed-loop  transfer matrix TFm does not have any zeros. 

Pro05 It was shown in the proof of Lemma 2 that for p > m  the 
maximal order reduction (4) is achieved by canceling out all the q zeros 
of the  system,  i.e., TF does not have any zeros. If p <m, then in view  of 
(17) 

where &Fm =degree(detXTFm(s)) and XTFm, qF,, and nF, are the interac- 
tor, the number of zeros, and the McMillan degree of TFmr respectively. 
Note  however  that Lemma 5 and relations (9) and (11) imply that 
nFm = d,!, (= 4) which in view of the above inequality,  implies that 
qF, =0, I.e., TFm does not have any zeros. Q.E.D. 

Remark: The LSF matrix of Lemma 7 is any member of the class of 
the LSF matrices  which  achieve  maximal order reduction. Note that if 
F, is chosen to satisfy  (16), then TF, = X; ' (s)Kp which,  clearly, has no 
zeros,  i.e., Lemma 7 is satisfied. 

It was  shown in Lemma 7 that in the case when p <m, q out of the 
q + k unobservable poles of the  closed-loop  system  have  values equal to 
the q zeros of the  system. It will be shown in the following  theorem, 
which is the  main  result of this section, that the remaining k unobserv- 
able poles can be arbitrarily assigned. 

Theorem 8: Given  system (I), the maximal order reduction via LSF 
u = Fx + u is q + k where q is the number of zeros of (1) and k is 1)  zero 
when  p > m and 2) n - q - 4 when p <m. Furthermore, this reduction is 
achieved by  making q+ k closed-loop poles unobservable; q of these 
poles have  always  values  equal to the  zeros of (1)  while the  remaining k 
poles can be arbitrarily assigned. 

Proof: Lemma 2 and Corollary 6,  together  with (18) prove the  first 
part of the  theorem. The fact that the maximal order reduction is equal 
to the largest  possible  number of poles which can be made unobservable 
via LSF is shown in Section 11. Lemma 7 shows that q of the unobserv- 
able poles are equal to the  zeros of the  open-loop  system. It remains to 
show that if p<m,  k of the closed-loop  unobservable  poles can be 
arbitrarily assigned. This will be shown in a  constructive way  using the 
algorithm used in [71 to obtain stable proper inverses  ?f a  given *fer 
matrix.  Assume that the realization (13), {A,B,C,KT}, of T(s)= 
X,(s)T(s) is given. There exists an m X m nonsingular matrix M such 
that K T M = [ q  01 where 4 is a p  x p  nonsiydar matrix (rankK,=p 
<m).  Let [&,&I BM and assume that F, is an (m-p)xn LSF 
matrix w@ch arbitrarily assigns the ,k controllable poles of { A  - 
B,k;;'C,B,}. The  existence of such an F, can be explained as follows: it 
!as she- in [7, Lemma 41 that the uncontrollabl: poles of { A  - 
B,f$-'C,B,} y e  exactly  equal to the zeros of {A,B,C,K,} which is a 
realization of T= XTT; in  view  of our definition of zeros it is clear that 
the  zeros of ( A , &  C,K,} are the zeros of system (1) together  with the 
zeros of detX&), !.e., t h y  %e- q+d,. This implies that the only 
eigenvalues of A - B,%-'C+ B2F2 which can be arbitra$y 
using F2 are the n - q - d T = k  controllable poles of (A-B,%-'C,B2}. 
It is now  claimed that 

is the  desired  feedback  matrix. Note first that F, satisfies (16) sin= 

f?r  _any F,. Furthermore, A + BF, = A  + BMM -IFm = ( A  - &E$-'d) + 
B2F2. That is, the  nonuniquencss of the solution of (16)  was used to 
arbitrarily assign k of the  eigenvalues of A + BF,; the  remaining n - k = 
q + d ,  eigenvalues are equal to the q zeros of T(s) and the dT zeros of 
detX+). In view  now  of (4) and the proof of Lemma 5 

T F _ ( s ) = ( C + E F , ) ( ~ Z - A - B F , ) - ' B + E = X ~ ' ( ~ ) K ,  (19) 

which in view  of the  above  clearly  implies that out of the q + k unobserv- 
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able poles of the closed-loop  system  (which  cancel out) q are equal to the 
zeros of (1) and k are arbitrarily assignable,  while the remaining n - q- 
k eigenvalues of A + BF,, (which appear in TF, = X,- ‘(s)KT) are the 
zeros of det XAs). Q.E.D. 

The following  observation  should be made at this point. The case 
p = m was studied in the above together  with  p >m. Note,  however, that 
it could  have been studied together  with p <m since all the  results 
developed for p <m are valid for p = m as well. In particular, for p = m 
(17) becomes an equality [q, i.e., dT+ q = n  which in view  of  (18),  implies 
that k=O. Furthermore, note @t in the proof of Theorem 8 (16) has a 
unique solution F, forp = m (F2 = 0) and the eigenvalAxs of A + BF,, are 
in this case  fixed and equal to the &+ q zeros of T, i.e., there are no 
arbitrarily assignable  unobservable  poles (k  = 0). 

The  following two lemmas deal with questions  related to the stability 
of the closed-loop  system. Lemma 9 deals with d e  arbitrary assignment 
of the poles of the  closed-loop transfer matrix TFm(s), while in Lemma 
10, the problem of maximal order reduction,  when  only the stable zeros 
are allowed to cancel, is studied. 

L~mmu 9: When maximal order reduction is achieved via LSF, the 
poles of the  closed-loop transfer matrix can be arbitrarily chosen. 

Proof: Let  the maximal order reduction be achieved by an LSF 
matrix F,. Clearly, the n-(q+ k)  observable poles of the closed-loop 
s y h m  i = ( A  + BF,)x + Bo, y =‘(C+ EF,)x + Eu are the poles of 
TF,(s). Let the first q+ k columns of the  equivalence transformation 
matrix Q be a  basis of the  unobservable subspace of the closed loop 
system6 then 

is the new equivalent representation where (A2,BZ)  is controllable and 
(A2,CZ) is the  observable part of the closed-loop  system. The LSF matrix 
[0, Fz] can now be used to arbitrarily assign the n -(q+ k)  eigenvalues of 
A,+ B2F2 which  implies that F= F, +[O,F& is an LSF  matrix 
which  achieves  maximal order reduction and, at the same  time, arbitrary 
assignment of the poles of the  closed-loop transfer matrix. Q.E.D. 

Lemma 7 shows that whenever  maximal order reduction is achieved 
all the q zeros of (1) cancel out in the closed-loop transfer matrix.  Note, 
however, that in practice,  only stable zeros are allowed to cancel in order 
to avoid unstable behavior of the system. The following  lemma  studies 
the problem of maximal order reduction when  only ( < q) zeros of (1) 
are allowed to cancel. 

Lemma 10: If only the stable (e) zeros of (1) are allowed to cancel, 
the maximal order reduction is + k where k is 1) zero when p > m and 
2) n - q - d, when p <m. This reduction is  achieved  by  making + k 
closed-loop  poles  unobservable; 4, of these  poles have values equal to 
the q, stable zeros of (1)  while the remaining k poles can be arbitrarily 
assigned. 

Proof: First, the transfer matrix Ts(s) is derived from Tfs)= 
~ ( s ) ~ - ’ ( s )  as follows. Let 3(s) be the smith form of ~ ( s )  131,  i.e., 
R(s)= U1(s)$(s)U2(s) where VI, U2 are unimodular matrices and write 
s(s)= .!fl(s).%&) where SI(,) is a p x p  diagonal polynomial matrix with 
diagonal entries all the factors of the diagonal of s(s) which  in- 
volve the 4- % (unstable) zeros’ and 1s everywhere  else.  Define 
T,(s) s2(s)U2(s)P -’(s) and observe that the zeros of T,(s) are exactly 
the q, zeros of -qs). If X&) is the interactor of T,(s) (l@-,mXz(s)Ts(s) 
?KT) {A,B,C,K,) is a  realization of Xz(s)T,(s) (see Lemma 4) where 
C, an app,’opciate real matrix. If now the LSF law u = Fx + u is applied 
to (A,B,C,,&-) and Theorem 8 is used, the maxjmal order reduction of 
the system T,(s) via an LSF matrix F,-will be e+ k, where k,=O for 
p > m and k, = n - - 4, for p <m. If F, is applied to (1). the closed- 
loop transfer matrix for p <m will be TF- = (U,S , )Xf  lKz. (Lemma 9 
can be employed, if necessary. to avoid unstable  cancellations between 
VIS, and X*). Using the fact that XTT=(XTUl~ , )Ts  and the s p e c i a l  
structure of g,, it can be shown that &= u& + q - qs which  directly 

%at is, a basis of Y. (Section LI). 
’The 2em5 of the diagonal enhies of %(s) are the zeros (1) [Z], 131. 

implies that k, = k  of Theorem 8, Le., there are again k=n- q- dT 
arbitrarily assignable  unobservable  poles. The reduction in order, there- 
fore, is n - &, = % + ks = % + k. This is the maximal order reduction in 
this case as it can be intuitively seen; it can also be formally shown, if a 
technique similar to the one used to show that n - d, (of Theorem 8) is 
the maximal order reduction, is used. QED. 

Remark: The computational difficulties  associated  with the evaluation 
of X&) and the calculation of the LSF matrix F, which  achieves 
maximal order reduction (p <m)  are greatly  reduced  when X&)= 
diag(sfi, - ,s$, i.e., 

Note that if (20) is true, then system (1) can be diagonally dewupled via 
anLSFcontrollawoftheformu=Fx+Gu[l].InthiscaseAi=l,..-,p 
are the  “decoupling  indices”  which can also be found from the state 
representation {A,B,C,  E }  of (1) as follows [I], [8]: if 

M[O], g E, 

N [ j ] ,  C,&’ 

where i - I ,2 , . . - ,p , j=1,2,**-  and E,, Ci denote the ithrows of E, C, 
respectively,  then 

J=min{ j lM[j ] i+=O}  i=1,2,...,p . (22) 

FytherznQre, the matrices d and KT of the  realization { A ,  B, d ,KT) of 
T(s) = X&) T(s), which are used in the proof  of Theorem 8 to determine 
an appropriate F, via (16), can be directly written down as 

It is clear that if (20) is satisfied ( p  <m), the maximal order reduction is 
n -E{- (= q+ k )  where A are the  decoupling  indices.  Note, in addi- 
tion, that if (20) is satisfied the poles of the  closed-loop transfer matrix 
can be  directly assign$ without using the constructive  proof of Lemma 
9. Instead of X#, X&) H(s). Diag(p,(s)) is used where  p,@) are 
arbitrary polynomials of the form p,(s) = + Zj&&. It can be easily 
shown that 

S+ lim m &(s) T(s) = KT; rank KT =p 

with  KT as in (7),If now  the algorithm in_ the proof of Theorem 8 is 
applied to (ALB,C,KT}, a  realization of X&)T(s) (see Lemma 4), an 
LSF matrix F, is-derived  which  assigns the 4 observable  poles of 
(A+_BF,,B,C+EF,,E) at arbitrary locations equal to the zeros of 
detX&)= IIf- ‘pi(s) (see Example). 

Finally, note that if the LSF u= i m x +  Go is used wi$ G such that 
KTG = I ,  the  closed-loop transfer matrix will be TF,(s)= X+- ’(s) which is 
a  diagonal  (stable) transfer matrix, i.e., the  system ( I )  has been  decou- 
pled 

IV. SUP- (A, B)-INvARIANT AND CONTROLLABILXIY 
SUBSPACES 

The  results of the  previous section wiU now be translated into proper- 
ties of the supremal output-nulling invariant and controllability sub- 
spaces [15] VL and R*, respectively. The supremal output-nulling in- 
variant subspace or simply  the s u p r e d  (A,B>inwiant subspace Y+ 
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was defined in Section II where  a number of its  properties were also 
discussed The supremal  output-nulling  controllability  subspace R* is 
defined [ 151  bye 

R * = ( A + B F , , , ~ ~ ~  VL) (25) 

where V., F, satisfy (3) and 4 is the range of the map B restricted to 
kerE, i.e., 6 is spanned  by  the c o l u m n s  of BG, where the columns of G, 
span ker E. If E=O, then 9 =ImB and R* is the supremal  controllabil- 
ity  subspace in kerC [9]. In the  following  R* will be referred to as the 
sqremul controlkabiliv subspace  R*. 

Observe that the  previous  section  is  based  mainly on transfer matrix 
and differential operator [l] representations of a  system  and,  therefore, 
by  using  those  results to show properties of geometric approach con- 
cepts, certain relations  between  geometric and polynomial  matrix a p  
proaches will emerge. In the  following  theorem,  the  dimensions of V. 
and  R* are given as functions of q, the number of zeros, and d,, the 
degree of the determinant of the interactor XAs). 

Theorem I I :  DimV*=q+dimR*wheredimR*isl)zerowhenp>m 
and 2) n-q-d, whenp<m. 

Proof: It was shown in  Section  I1 that dim V. = n - nFm, the maxi- 
mal order reduction. In view  of Theorem 8, dim V. = q + k where k is 1) 
zero  when p > m  and 2) n - q- d, when  p <m. Any output-nulling 
controllability  subspace  R is a subspace of P [15],  which  implies that 
R* is the  largest  controllability subspace in V.. Theorem 8 now shows 
that when maximal order reduction  is  achieved q of the  unobservable 
poles  have  always  (fixed)  values equal to the q zeros of the  given  system, 
which  implies that k is the  maximum  number of unobservable poles 
which can be  arbitrarily  chosen.  Therefore, dim R* = k. Q.E.D. 

Note that the  relation dimVL=q+dimR* was already  known as it 
has been  shown  by a number of authors [lo], [15], [ 161 using  alternative 
methods. 

The  subspaces V+ and R* can be determined from the corresponding 
q+ k eigenvectors of A + BF,. A problem  might  arise if v* is to be 
determined and the q eigenvectors  corresponding to the  fmed  eigenval- 
ues (equal to the q zeros) are not linearly  independent. This problem 
might be avoided if the  observability matrix OF- is  used and VL is  found 
instead  from V.= kerOFm; note, however, that all q eigenvectors are 
generically  independent [ 1 11. 

Remurk: An interesting  special  case arises whenp < m  and the interae 
tor XAs)=diag(d) (see Remark  following  Lemma  10). In this case 
dim V. and dimR* are expressed in terms of the "decoupling indices"h, 
i=I,...,psinced,=Z ~-,If;..IfnowrankE=p,thenf,=Owhichimplies 
that dim V. = n, i.e., the whole space, and dimR* = n - q ;  note that this 
is exactly the case  when (1) has  a proper right  inverse 171. 

The results of the previous section and especially  Lemma IO can be 
used to study another subspace of interest, T, which is used in the 
solution of the disturbance decoupling  problem with stability @DPS) 
[9]. c is the largest  element of the subspaces V which satisfy (3) and for 
which o(A + BF/ V) (the spectrum of the restriction of A + BF on V) is 
stable. It can be  easily  shown, although not  here, that dim equals the 
maximum number of the stable unobservable poles of the  closed-loop 
system.  The  following  corollary of Theorem 1 1  is  easily  established  using 
Lemma 10 and its  proof  is  omitted. 

Corollary I2: Dim c = e + d i m R * ,  where qs is the number of stable 
zeros of (1). ' 

Note that all the above properties are true for unobservable  systems as 
well. This intuitively  clear  result can be shown as follows:  consider  the 
system R(s)P-'(s)= C(sZ-A)-'B+E with ordep n 2 degree(detP(s)) 
=degree(det(sZ-A))  where R, P are not necessarily rrp, i.e., the  system 
( A ,  B,  C,  E } is controllable but not necessarily  observable. The interactor 
X,($) can be found either from the corresponding  controllable  and 
observable  system T(s) or  directly, as it can be shown, from R(s) and the 
column  degrees of P(s). If  now RP - ' is used instead of T(s) all the 
above  results  refer to a  system  which is just controllable.  It is of interest 

8 < a 1 ~ 8 ) ~ ~ + A ~ + . . . + a " - ' ~ .  
%Note the  different meaning of the term "order" for the given systan. 

to note that if there are r unobservable  poles in a  system of order n with 
q zeros  (defined in the Preliminaries) not all of these r poles correspond 
tozeros,whenp<m,butonlysayr,<r.Inthiscase,dimVL=q+k=n 
-d ,  and d i m R * = k  with k = n - q - d T = [ ( n - r ) - ( q - r z ) - d T ] + r - r z ,  
i.e., the  dimensions of R* and V. are larger than the  dimensions of R* 
and V. of the corresponding  controllable and observable  system  by 
r - rr and r, respectively. As an illustration consider  the  example. 

Example: P(D)r(t)= u(t); y ( t )=  R(D)z(r) where 

R(D)=[(D+l)(D+2),0] 

and 

P( D)  = 

The system is controllable but unobservab  e  with  unobservable poles at 1 
and -2. The zeros of the  system are a 4 - 1 and - 2  (q = 2) while the 
poles are at 1, -2,O,O,O (n=5). The transfer matrix is T(s)= R(s)P-'(s) 
=[s+ l/s2,s+ l/s3]. X&)=$ which  implies that &= 1. The maximal 
orderreductionthereforeisn-r+=q+k=4=dimV+andd@Rf=k= 
2. An appropriate LSF  matrix F ,  is_found-as  follows.  Let XAs)=s+ a 
(see Remark  following Lemma 10). XTR = CS(s) + K,P(s) where 

r l  01 
s(s)=[; B J Kr=[1 01 e=[2u,2+3a,a+1,-1,1]. 

o s  

An LSF  matrix F, which  achieves  maximal order reduction is 

with g2 arbitrary, since c+ KTFm =O for all g2 (9 proof  of Theorem 8). 
For stable closed-loop  eigenvalues, (I >O and Fz is  chosen as follows. 
From the structure theorem [I]  a  realization of the  given  system is 

If [ i , , & ] = B ,  { A - B , C , B , }  has -1, -2, and - a  as uncontrollable 
poles. F2 =[O,O,O, - b c ,  - 1 - (b+ c)]  assigns  the  controllable poles at 
- 6, - c, i.e.,  the  eigenvalues of A + BF, are at - 1, -2 (equal to the 
q = 2 zeros), at - 6, - c ( k  = 2 arbitrarily assignable  eigenvalues) and at 
- u  (which is the  only  observable  pole  of { A  +BF,,B,C)) .  TF,= 
~ ~ ' ~ ~ = [ l / ( s + a ) , ~ ] . ~ h e e i g e n v a l u e s o f ~ + ~ ~ , ~ ~ . * e  -1, -2, -b ,  
-c and  the  eigenvalues of A +BF,IR* are -6, - c. From the corre- 
sponding  eigenvectors of A + BF, 

V.=span[ 0 0  -! 1 -i] 0 R*=span[ 0 0  i]. 
0 1  

The  results  developed  above are precise  results.  It is of interest to 
determine  what  happens  when  generic  properties  [9] are important. This 
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is often the case in practice where the matrices A ,  B, C (E=O) are 
obtained from  imprecise  measured data  [ll]. It is clear that in those 
cases T(s)= C(sl-A)-'B = R(s)P(s)-'  will have (generically) full rank. 
If the zeros of the system are defined as the zeros of the  greatest 
common divisor of the highest order minors of R(s) [2], clearly q = O  for 
p#m.Ifp=m,thenq=n-p(rankC=p)asitcanbealsoseenfromthe 
structure theorem of [I]. When p <m, XAs)=diag(sr',. * ,s$, (the sys- 
tem can be diagonally  decoupled)  with A= 1 and d,=p  since the 
differences between denominator and numerator degrees in the rows of 
T(s) (which  define fi) will be one.  Therefore,  (generically) 

forp >m V* = R*=O 
forp=m R*=O P = k e r C  (dimVS=n-p). 

This is because v+ is spanned by the n-p (generically independent) 
eigenvectors corresponding to the q= n -p (unobservable)  eigenvalues of 
A + BF,; these  eigenvectors constitute a  basis for ker C since if oi is an 
eigenvector  corresponding to an unobservable  eigenvalue Cui =O (also 
dimker C =  n -p). Similarly, it can be  shown that 

f o r p a n  R+=V+=kerC (dimP=dimR*=n-p). 

Note that all  these  results can be  derived  using  purely  geometric con- 
cepts [gB [ 1 11. 

CONCLUDING REMARKS 
The subspaces Y* and R* were studied and their  dimensions  were 

explicitly  determined as functions of the number of zeros of the system 
and the degree of the determinant of the interactor. This was  achieved 
by  solving  the  problem of maximal order reduction via hear state 
feedback. It should  be noted at this point that the particular methods 
used in the  constructive proofs of this paper are not, in general, com- 
putationally  attractive. In a hture paper it will be shown using eigenveo 
tors [5] that the  above  subspaces can be found quite easily from the 
polynomial matrix description of the system; it will become then appar- 
ent that V S ,  R*, Vf depend only on the numerator R(s)  of the  transfer 
matrix T(s)  and the  column  degrees of the denominator P(s). 
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An Improved Algorithm for Optimization  Problems 
with Functional Inequality Constraints 

C.  GONZAGA, E. POLAK, FELLOW, IEEE, AND R TRAHAN 

Abstmct-TU paper  presents an algorithm for  optimization problem 
with disMbnted constraints. 'Ibe algorithm is of the combined phase 
I-phase II feaslMe directiolls type, similar to one proped by Polak and 
Map. It was developed as an improved  version of the POW-Mayue 
algorithm; by performing certain approximations in a  diffemnt way it was 
possible to eliminete an expensive test requid by Polak and Mayue. 

I. INTRODUC~ON 

Recently, Polak and Mayne [l] presented an algorithm for solving 
problems of the form 

wherep: W"+W andgi: R"-&,j=1,2,.--,p, are continuously  differen- 
tiable functions andf: R"+W,j= 1,2,-. . ,m, are functional constraints 
of the form 

f(z)= max@'(z,o) ( W  

where # Rn X R+W. It is assumed that #(e, e)  is continuous and that 
V&( e ,  .) is continuous for each j =  1,2,. . * ,m. The set 0 is a  compact 
interval of the real line. As noted in [1]-[4], an important class of 
e n g i n h g  design  problems can be formulated in the form of (la). 

The method in [l] is a  phase I-phase I1 type method of feasible 
directions.  Algorithms of this kind, for the case when all ?(-)GO (Le., 
when the jj are not present) in (la), were described in [5].  Since the 
algorithm in  [l], as well as the one in this paper, generalizes the ideas in 
[5], it is worth while to summarize the principal  concepts found in [5]. 
Thus,  consider  the  simpler  problem 

oEQ 

min{p(z)lg~(z)<o,j=1,2,~~~,P} ( 2 4  

with all functions as in (la). Let 

wi thp~{1,2 , . . . ,p )  .~hen(2a)canberewrittenas 

min{P(z>IJ.(z) < 0) (24 

where $(.) is only  directionally  differentiable,  with directional derivative 
at z, in the  direction h, given  by 

where Z&) = { j Eplj'(z) = Hz)).  

and 3) #(z)  > 0. For  l), any h E R" such that 
Now consider  three  cases: E Iw" is such that I )  Hr)<O, 2) Hz)=O, 

<VP(Z),h> <o ( W  

defines  a cost decrease  direction  which can be  followed for some 
distance without  violating constraints. For 2) any h E Rn such that 

max{<vP(z),h>,W(z;h)}<O  (20 

is  again  a  feasible  direction of cost  decrease.  Finally, for 3), any h E W 
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