
NEURAL NETWORK TRAINING VIA QUADRATIC OPTIMIZATION

Michael A. Satton' and Panos J. Antsaklis2

'Cardemcl Division - Code 1941
Naval Surface Warface Center

Bethesda.Maryland 20084

Abstract - A new technique using quadratic optimization is proposed to find the
weights of a single neuron, or a single-layer neural network, and extended to the
multi-layer neural network. I t is proposed here to fuui the weights for a neuron
by minimizing a cost function that is quadratic with respect to the neuron's
weights and to use these weights as an answer for minimizing a cost function
that is quadratic with respect to the neuron's outputs. Previous methods, such as
the least mean squares algorithm which is a grldient descent method and a
precursor of the back-propagation algorithm, iteratively find weights for the
neuron which minimiiz the eOst function directly involving the nonlinearity of
the neuron. By back-propagating the output error through the neural networks
layers, the proposed method is extended to the multi-layer neural network. The
described Quadratic Optimization Algorithm for the multi-layer neural network
mds to work best for classification problems and tends to achieve successful
results in a single iteration.

I INTRODUCTION
A new training method based on quadratic optimization is presented in this

paper to fmd the weights of a single neuron, or a single-layer neural network
and is extended to a multi-layer neural network. Instead of minimizing a cost
function that directly involves the nonlinearity of the neuron, a function which
is quadratic with respect to the neuron's weights is minimized. The solution from
this minimization problem is wed as a solution for the original poblem. In
[1.2], the relationship betweem the two problems is established through a careful
mor analysis and an examination of the relationship between the minima. Due
to the class of nonlinear functions often chosen for the neuron (e.g., the
hyperbolic tangent function or the signum function), the error for using the
solution from the quadratic minimization as a solution for the original problem
is small, and even zero if the e m r from solving the quadratic minimization is
zero, which is a case studied here. Furthermore, with the quadratic optimization
procedure used to find the weights of the single neuron, it always converges and
is faster than using a gradient descent algorithm on the original problem. By
back-propagating the output error through a multi-layer neural networks hidden
layers, the proposed method is extended to the multi-layer case. The so-called
Quadratic Optimization Algorithm for the multi-layer neural network tends to
work best for classification problems and tends to achieve successful results in a
single iteration.

In Section II. the neuron considered in this paper and the problem of finding
its weights, termed here the Neuron Training Problem (N), are defined. In
Section III. the Neuron Quadratic Optimization Problem (NQ) is defined, and its
solution is used as one for Problem (N). In Section 1V. the single-layer neural
network and the Single-Layer Neural Network Training Problem (L) are defined.
The quadratic optimization procedure is then described for the single-layer neural
network in terms of the Problem (L) and termed the Single-Layer Neural Network
Quadratic Optimization Problem (LQ). In Section V. the multi-layer neural
network and the Multi-Layer Neural Network Training Problem (M) are defined.
and the back-propagation algorithm. one of the most common methods used to
train the multi-layer neural network, is described. In Section VI, it is proposed
to solve the Problem (LQ) for each layer of the multi-layer neural network by
back-propagating the output layer's error to each hidden layer. The resulting
procedure is termed the Quadratic Optimization Algorithm. Finally, in Section
VII. two examples are given that illustrate the trainiing procedure of this paper.

I1 THENEURON
T h e m Considered here is described by

m

y = f (C I+ Wi) = f(U'W), (1)

where f:R + R is the nonlinearity of the neuron. U 3- [U,, U,,,]' c Rmxl is the

input vector, w :- [wI. ..., w,,,]' 6 Elmr' is the weight vector, and U,,, = 1 is the
bias input for the neuron. The type of nonlinearity of the neuron is restricted to
those functions commonly used in neuron models (e.g., the hyperbolic tangent
function or the signum function).

i-1

bpanment of Electrical Engineering
University of Nom Dame

Notre Dame, Indiana 46556

Assume that a training set (uti), do)) for 1 S j S p consists of p pairs of
input vectors and desired output scalars. where u(i) e Rmr'. g(j) = 1. and 4) e

(N) is defined as follows: R f o r l < j i p . Th- . .
min A F(w) I (N)

W
whae

$(w) = (d - $(U'w))'(d - $(U'w))

and where d - [d(l). d@)r Rpal is the desired output vector, U (~(1).
u(p)] e Rmap IS ' the matrix of input vectors, and $(z) 2- [f(z,). f(Q' e Rpxl
with z = [zt. zJ' e Rpx'. The notation @(z) represents a map which takes a p
dimensional vector z and returns another p-dimensional vector with element
f(zi). where f is the neuron's nonlinearity. In equation (N). $(w) is actually the
sum of the squares of the error between the desired scalars and the output of the
neuron:

A P
F(w) = (d(j) - f(Mj)'w))*. (2)

j-1
If the popular gradient descent- is used to solve (N). an iterative

update equation is applied. In general, the gradient descent algorithm does not
guarantee convergence to a global minimum due to the potential local minima
entrapment. In addition. at regions of very low gradient. a gradient descent
algorithm takes small orthogonal steps which result in a '*zigzagging" effect of
the updates and slow convergence [3.4].

In QUADRATIC PROBLEM FORMULATION
Since the Neuron Training Problem (N) is actually an unconstrained

minimization problem, a variety of optimization techniques exist which may be
employed to solve it. Unfortunately, due to the type of nonlinearities which are
usually chosen for this problem (for example. the hyperbolic tangent function),
the surface of the function F(w) is. in general, very complicated, and finding a w
which minimizes the surface may be a very difficult task. It is proposed here that

instead of finding a w which minimizes F(w), solve the following Problem (NQ)
and use the solution of (NQ) as an answer for (N). The

A

A

ion Problem (NQ) is defined as follows:

WQ)

(3)
and where v is such that $(v) = d. The function F(w) can be re-written as:

F(w) = W'AW - h'w + c.
where A = U U e Rmxm. h':- 2v'U' c R". and c := v'v c R'"'. So, finding a
w that minimizes F(w) in (NQ) is equivalent to finding a w that minimizes (3).

Solving (NQ) is. in general, easier than solving (N). It is proposed here lo
solve (NQ) instead of (N) and to use the solution from (NQ) as an answer for (N).
Intuitively speaking, if the W* found from solving (NQ) also solves (N) with a

small error, then this validates minimizing F(w) instead of minimizing F(w).
In [l] and summarized in [21, both a careful analysis comparing the error for

solving Problem (NQ) with the error for solving Problem (N) and the
relationship between the solutions of Problems (NQ) and (N) are provided.

I min F(w)

F (w) = (v - U'W) ' (V - U'w)

W where

A

IV T H E SINGLE-LAYER NEURAL NETWORK
The single-layer neural network considered here is comprised of n parallel

neurons. With the -piate extensions to the above, the
Network Tr- Roblem (L) is d c f d as follows: . .

min A F(W)

W
whue

t (W) = tr((D - O(U'W))'(D - O(U'W)))

49

0-7803-0593-Of92 $3.00 1992 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” P roc o f I SCA S ,
San Diego, CA, May 10-13, 1992.

with n = 1. (L) reduces to (N). In equation (L). & w) is actually a sum of the
squares of the error between the individual desired output elements and the
outputs of the neurons:

F(W)= c c (dk(i) - f(U(i),Wk))'.
A " '

4)
k-l i l

A
It is proposed here that instead of finding a W which minimizes F(W), solve

the following Problem (LQ) and use the solution of (LQ) as an answer for (L).
T h e m (LQ) is defined
as follows:

min F(W)
where

With n = 1. (LQ) reduces to (NQ). The function F(W) can be re-written as:

W

F (W) = tr((V - U ' W) ' (V - U ' W)) l w '
"

F(W) = c w i ' A w i - h , k i + ci (5)
i=l

where A := UU' e Rm"". hi' := 2vi'U' E RIxm, and c, := vivi E R tx t for 1 5 i 5 n.
Thus. with A symmetric and positive definite. F(W) is the sum of quadratics. The
solving of (LQ) can be accomplished in many ways including either minimizing
the n quadratics of (5) or finding a W that solves

UU'W = uv. (6)

V T H E MULTI-LAYER KEURAL NETWORK
The multi-laver neural network considered here consists of many layers of

parallel neurons connected in a feedforward manner. Defining the symbol #k as
the number of neurons in the kLh la er. the output of the kh layer is described by

(7)
where Y k i = [y:. y t k] E Rpayk is the matrix of outputs, yk:= , I [yk(l). ..., yt(p)]'

E R'"' is the vector of outputs for the f h neuron, U k := [uk(l) . ._.. uk(p)]
~ (W - l) + I) x p is , the matrix of input vectors, uk(i) := [yk-'(i). yx:-tI)(i). 11' E

R("(k-t)+t)xt is the vector of inputs for the jh input pattem and is equal to the
outputs from the previous layer plus the bias of one for the last term, W k = [w:.

I d ' ' _ ' '
is the vector of weights. and O(Z) E Rpxn is the same

as defined previously for the single-layer neural network. Using U' = U , the
output of the first luddsn hys~ is described by

Y' = O(U'*W'). (8)
with U'' = [U' 11 E RPx("+') where 1 E R'". the output of the second hidden
layer is described by

Continuing this inductive process, each successive layer is defined appropriately
until the desired number of layers is reached. The last layer is called the QQUJ

Y l =O(U"W')

k E R (# (k - l) + t) x # k . is the matrix of weight vectors, w: .= [w W X J

ww-t)+l j l
k , E R(#(k-l)+t)xt .

YZ = O(U*'W2). (9)

and is described by

yo = O(U~'W0) (10)
where the superscript "0" denotes "outpul".

The Multi-Laver Neural Network Trainine Problem (M) is defined as follows:

min $(W', ..., W O) 1 (M)
w' ... WO

where

& W ', WO) = tr((D - Y o) ' (D - Y o))
and where "U" is the trace of a square matrix, (W', _.., WO) are the weight
matrices of all the layers of the multi-layer neural network, D := Idl. _... d,]' E

Rpan is the desired output matrix, and Yo is the output of the output layer of the
multi-layer neural network. In relation to the previous training problem (L), the
input matrix U is not directly in (M) since the input is "buried beneath the
hidden layers. If there are no hidden layers, then (M) reduces to (L). In equation
(M), &w'. W O) is actually the sum of the squares of the error between the
individual desired output elements and the outputs of the neurons in the output
layer:

" P
$W1, ..., WO) = c (dkO) - r,"Ci)f (11)

k=l j=l
One method to solve (M) is the back-propagation algorithm [5] . which is a

constant-step-size, gradient-descent algorithm that minimizes the least-squares
cost function ;(W', _._. WO). The sigmoid function is often considered to be the
nonlinear function of the neurons (i.e.. f(z) = 1/(1 + e-")) and has the property
that f'(z) = f(z)(l - f(z)). Here, the hyperbolic tangent funl-tion. f(z) = tanh(z). is
used as the neuron's nonlinearity. and f '(2) = 1 - f(zf. The weights of the neural
network are adjusted after every QQ.& (i.e., one pass of the training set) by the
constant-step-size gradient-descent rule:

After some manipulation of the partial derivative term, the back-propagation
algorithm's rule for changing the weights of the multi-layer neural network is
given by

VI T H E QUADRATIC OPTIMIZATION ALGORITHM
In this section, the Multi-Layer Neural Network Training Problem (M) is

solved by applying the solution of Problem (LQ) to each layer. The technique
proposed here is based on the back-propagation algorithm. in which the
propagation of the output error of the multi-layer neural network is used to form a
desired output for each layer and hence to form a quadratic weight cost function at
each layer. The solution of Problem (LQ) for each layer is then used as a solution
for Problem (M). Several implementation considerations are discussed as well as
the advantages and disadvantages of using this approach.

Instead of solving the Problem (M) using the back-propagation algorithm,
it is proposed here to solve the Problem (LQ) for each layer of the multi-layer
neural network and use this solution as one for (M). In solving (LQ) for the
single-layer neural network, the desired output is known, and thus a matrix V can
be found such tha O(V) = D. In solving (LQ) for the k* layer of the multi-layer
neural network, the malrix Vk needs to be found such that

where Vk:= [v:, ..., vx"k] E R'""', v::= [vr(l), _... vf(p)]' E R'"', and f(vr(i)) =

46) for 1 S i 5 # k . 1 5 j Cp.

Assuming that all weights in the hidden layers have initial values, there is
no problem in directly applying the methodology described for the single-layer
neural network to the output layer. A matrix Vo can be chosen such that O(Vo) =
D . and Problem (LQ) can be applied to find the weights of the output layer.
Unfortunately. there do not exist desired outputs Dk for the hidden layers, but by
using the back-propagation of the output error, an approximation of these values
can be obtained; the algorithm proposed here back-propagates the error between
the desired output and the actual output of the neural network to all of the hidden
layers to form an approximated desired output for each layer.

First, the errors at the output of each layer are defined. The error between the
desired output and actual output for the ih neuron of the kh layer is given by

where 1 5 i 5 Uk. 1 5 j 5 p, and the error for the iLh neuron of the output layer is
the quantity

O(Vk) = Dk (16)

(17)
"k .
El 0) = <a, - Y;W,

t(i) = dl(i) - YPW. (18)
where 1 5 i 5 n. 1 5 j 5 p. Next. in comparing the delta terms of (14) and (15) of
the back-propagation algorithm, the error for the i" neuron of the k~ layer (not
equal to the output layer) can be viewed as

Combining (18) and (19) the desired output for the iLh neuron of the k* layer can
be viewed as

$0) = y;(i, + # y S k ; ' (i) h = l w"H'. (20)

Using (20). the matrix Vk can be chosen such that

(21)
h=l

where 1 5 i 5 #k. 1 5 j C p. With Vk. Problem (LO) can be solved to find the
weights of the klh layer. Since the hyperbolic tangent function is one-to-one and
is assumed to be the nonlinear function of each neuron, vkQ) can be formed by
applying the inverse of the function to both sides of (21). Thus, by back-
propagating the error through the multi-layer neural network, a quadratic
problem is formulated for each layer, and the results for the Problem (LQ) in
relation to the Problem (L) are applicable here for each layer. This method docs
not guarantee convergence, but does tend to give good results with a fast
computation time.

In implementing this quadratic optimiration procedure for a multi-layer
neural network, several observations are useful. First. in practice, limiting the
neural network to two layers provides adequate results. Second, since a quadratic
function is minimized for each layer, the hiddcn layer should be adjusted first,

50

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” P roc o f I SCA S ,
San Diego, CA, May 10-13, 1992.

and then the output layer can be updated using the newly found values for the
hidden layer's weights. Third, when a one-to-one function is the hidden layer's
nonlinearity and when the values v!(j) are found by inverting the one-to-one

function. care must be taken to insure that d!(j) lies in the range of the function.
For instance. if the hyperbolic tangent function is the nonlinearity for the
hidden layer, its range is (-1. 1) and hence d.'(j) c (-1. 1). To insure this, the
output layer's weights need to be first initialized to small values around zero, for
instance W: [-&, &I. Next, when computing the desired output for the hidden
layer, if the right-hand side of (21) is not in the range of the hidden layer's
nonlinearity. the weights of the output layer can be scaled to insure this: if W2 =
max(wi for 1 I; i I; #I + 1 and 1 I; h I; #2) > lml , then (21) is modified to

#1 P(0)

6 0.1063
5 0.1189
4 0.1330

for 1 S i 5 #I + 1 and 1 S j I; p. If the right-hand side of (22) is still not in the
range of the hidden layer's nonlinearity, the output layer's weights can continue
to be scaled by 1 2 1 until h i s occurs. Fourth, in practice, the weights for the
output layer rend to be large in magnitude. which is attributed to the fitting of the
mapping between U' and V' with the linear equation

uZu'-w' = U'VZ. (23)
To aid in avoiding the computational inaccuracies which may occur due to the
large magnitudes of W2. it is suggested to choose v:(j) < 0.5 for 1 5 i I; #2 and 1

I; j I; p. This can be accomplished by scaling the desired outputs appropriately.
This also aids in insuring that d:(j) is properly valued. With these observations,
the Quadratic Optimization Algorithm used in practice to train a multi-layer
neural network IS as follows:

1) Given D, find V2 such that vz(j) < 0.5 for 1 5 i 5 #2 and 1 5 J 5 p.

2) Initialize W' and W2 with magnitudes less than 1/#1.

3) Test t (W1, W'). If small enough. then stop
4) Find V' using either (21) or (22).
5) Find W1 by solving U'U''W' = U'V'.
6) Find U' for the new weights W'.
7) Find W' by solving U'U''W' = U'V'.

t $(O flops f +(t) flops
1 0.0212 132024 1244 0.0208 1442790
1 0.0244 10256 1169 0.0240 1158168
1 0.0246 820 427 0.0240 351273

8) Goto3).
In applying the Quadratic Optimization Algorithm to various problems,

several advantages and disadvantages are evident. First. finding the weights of a
multi-laver neural network via the auadratic ootimization aDoroach described ..
here tends to work well for classification problems in that the desired outputs are
achieved and the generalization behavior of the neural network is accurate. The
algorithm also tends to converge to a solution in a single step achieving a small
value for $(W', W') and then to slowly vary around this value with more
iterations. Thus, it is recommended to use the Quadratic Optimization Algorithm
for a single iteration on classification problems.

Both of these properties are attributed to the finding of the weights via
steps 5) and 7) of the algorithm. To achieve this type of performance, the choice
of the number of hidden layer neurons is important. Since the overall mapping
between the input pattems and the desired output pattems is accomplished via
the solving of the linear system of equations in step 7). the number of hidden
layer neurons needs to be large enough such that this linear approximation in the
output layer succeeds. Clearly, the choice of 111 is problem dependent. Thus, the
choice of the number of hidden layer neurons is a design consideration and is
dependent on the particular desired mapping of the training set. Funhermore. the
initial values for the weights of the neural network are more important as the
numbex of hidden layer neurons is reduced towards the level where the Quadratic
Optimization Algorithm is unable to achieve the desired training set mapping.
These properties of the algorithm are illustrated in Example 1.

The disadvantages of using the Quadratic Optimization Algorithm to train a
multi-layer neural network are outlined next. First, the algorithm may not work
well for non-classification problems in that the desired outputs may be
approximately achieved but the generalization behavior of the neural network
may be inaccurate. This behavior is attributed to the finding of the output layer's
weights by the solving of the linear system of equations in step 7). Thus, it is
suggested to restrict the use of the Quadratic Optimization Algorithm to
classification problems. Secondly, in applying the algorithm, all of the
training pattems need to be known and no values for the weights from previous
iterations are saved. Thus, this quadratic optimization training procedure may
not work for on-line learning. Thirdly, the algorithm also requires the solving
of two linear systems of equations when there are two layers of weights: one in
step 5) with m equations and m unknowns, and the other in step 7) with #I + 1
equations and #1 + 1 unknowns. If these numbers are large, the solving of the
linear systems may become burdensome, although there do exist many ways for
solving such systems. Finally. the values for the output layer weights may be
large, which is a potential disadvantage if implementation of the neural network
is desired. This behavior is also attributed to the final calculation step of the
algorithm. which attempts to form the desired mapping with the solving of a

linear system of equations to the fmd the weights of the neural networks output
layer.

The two examples in the following section illustrate these observations and
some of the advantages and disadvantages of using the Quadratic Optimization
Algorithm to nain a multi-laya neural network.

51

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” P roc o f I SCA S ,
San Diego, CA, May 10-13, 1992.

,
. . .

Algorithm for 1 iteration and those found using the hack-propagation algorithm

yQoA = (0.0079 -0.0256 -0.0554 0.0170 0.1238 -0.1056 -0.0906 0.12331

8
for 1729 iterations are

< .
7 and

ysPa= [0.0531 -0.0802 -0.0789 0.0514 0.1526 -0.0809 -0.0783 0.1 1651
where the magnitude of the desired output is 0.1. Clearly, the neural nelwork
trained with the Quadratic Optimization Algorithm did not achieve the desired
neural network outputs but did achieve the desired mapping for the classification
training set. For this reason, it is recommended that the Quadratic Optimization
Algorithm be used for classification problems and not for general function
approximation problems. However, even though the exact desired outputs may
not be achieved using the Quadratic Optimization Algorithm, the resulting neural
network does have desirable generalization properties for classification training
sets as illustrated in the following example.

6 -

5 7

4 -

I .

.

VI11 COSCLUDING REMARKS
A new method based on the minimization of a quadratic function is presented

for the training of a single neuron. a single-layer neural network. and a multi-
layer neural network. The training procedure for the single neuron can be
immediately applied to the single-layer neural network case but not to the multi-
layer neural network case since there do not exist known desired outputs for the
neural networks hidden layers. By using the concept of back-propagating the
output error to the hidden layers, desired outputs are approximated for the hidden
layers, and the results for the single-layer neural network are applied to each of
the hidden layers. The training of a multi-layer neural network via the described
Quadratic Optimization Algorithm tends to work best for classification problems
and tends to achieve good results in a single iteralion.

The results reported in this paper also appear in [I] and [2], which is an
expanded version of this paper.

ACKKOWLEDGEMEKTS
The authors wish to acknowledge the partial support of the Jet Propulsion

Laboratory (Contract Number 957856).

REFERENCES
[I] Sartori M.A.. Feedforward Neural Networks and Their Application in the

Higher Level Control of Systems. Ph.D. Dissertation. Department of
Electrical Engineering. University of Notre Dame. April 1991.
Sartori M.A.. Neural Nehvork Training Via Quadratic Optimization.
Technical Report #90-05-01, Department of Electrical Engineering.
University of Notre Dame, May 1990, Revised April 1991.

[3] Gill P.E., Munay W.. Wright M.H.. Practical Optimization. Academic
Press, New York, 1981.

141 Bazaraa M.S.. Shetty C.M.. Nonlinear Programming: Theory and
Applications. Wiley. New York, 1979.

151 Rumelhart D.E.. Hinton G.E., Williams R . J . , "Learning Internal
Representations by Error Propagation." in Rumelhart D.E.. McClelland
J.L., eds.. Parallel Distributed Procesring: Explorations in the
Microstructure of Cognition, vol. 1 : Foundalion. pp. 318.362, MIT
Press, 1986,

121

Figure 2 Testing the trained neural network.

52

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” P roc o f I SCA S ,
San Diego, CA, May 10-13, 1992.

