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Abstract - A new technique using quadratic optimization is proposed to find the 
weights of a single neuron, or a single-layer neural network, and extended to the 
multi-layer neural network. I t  is proposed here to fuui the weights for a neuron 
by minimizing a cost function that is quadratic with respect to the neuron's 
weights and to use these weights as an answer for minimizing a cost function 
that is quadratic with respect to the neuron's outputs. Previous methods, such as 
the least mean squares algorithm which is a grldient descent method and a 
precursor of the back-propagation algorithm, iteratively find weights for the 
neuron which minimiiz the eOst function directly involving the nonlinearity of 
the neuron. By back-propagating the output error through the neural networks 
layers, the proposed method is extended to the multi-layer neural network. The 
described Quadratic Optimization Algorithm for the multi-layer neural network 
mds to work best for classification problems and tends to achieve successful 
results in a single iteration. 

I INTRODUCTION 
A new training method based on quadratic optimization is presented in this 

paper to fmd the weights of a single neuron, or a single-layer neural network 
and is extended to a multi-layer neural network. Instead of minimizing a cost 
function that directly involves the nonlinearity of the neuron, a function which 
is quadratic with respect to the neuron's weights is minimized. The solution from 
this minimization problem is wed as a solution for the original poblem. In 
[1.2], the relationship betweem the two problems is established through a careful 
mor analysis and an examination of the relationship between the minima. Due 
to the class of nonlinear functions often chosen for the neuron (e.g., the 
hyperbolic tangent function or the signum function), the error for using the 
solution from the quadratic minimization as a solution for the original problem 
is small, and even zero if the e m r  from solving the quadratic minimization is 
zero, which is a case studied here. Furthermore, with the quadratic optimization 
procedure used to find the weights of the single neuron, it always converges and 
is faster than using a gradient descent algorithm on the original problem. By 
back-propagating the output error through a multi-layer neural networks hidden 
layers, the proposed method is extended to the multi-layer case. The so-called 
Quadratic Optimization Algorithm for the multi-layer neural network tends to 
work best for classification problems and tends to achieve successful results in a 
single iteration. 

In Section II. the neuron considered in this paper and the problem of finding 
its weights, termed here the Neuron Training Problem (N), are defined. In 
Section III. the Neuron Quadratic Optimization Problem (NQ) is defined, and its 
solution is used as one for Problem (N). In Section 1V. the single-layer neural 
network and the Single-Layer Neural Network Training Problem (L) are defined. 
The quadratic optimization procedure is then described for the single-layer neural 
network in terms of the Problem (L) and termed the Single-Layer Neural Network 
Quadratic Optimization Problem (LQ). In Section V. the multi-layer neural 
network and the Multi-Layer Neural Network Training Problem (M) are defined. 
and the back-propagation algorithm. one of the most common methods used to 
train the multi-layer neural network, is described. In Section VI, it is proposed 
to solve the Problem (LQ) for each layer of the multi-layer neural network by 
back-propagating the output layer's error to each hidden layer. The resulting 
procedure is termed the Quadratic Optimization Algorithm. Finally, in Section 
VII. two examples are given that illustrate the trainiing procedure of this paper. 

I1 THENEURON 
T h e m  Considered here is described by 

m 

y = f ( C  I+ Wi) = f(U'W), (1) 

where f:R + R is the nonlinearity of the neuron. U 3- [U,, .... U,,,]' c Rmxl is the 

input vector, w :- [wI. ..., w,,,]' 6 Elmr' is the weight vector, and U,,, = 1 is the 
bias input for the neuron. The type of nonlinearity of the neuron is restricted to 
those functions commonly used in neuron models (e.g., the hyperbolic tangent 
function or the signum function). 
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Assume that a training set (uti), do))  for 1 S j S p consists of p pairs of 
input vectors and desired output scalars. where u(i) e Rmr'. g(j) = 1. and 4) e 

(N) is defined as follows: R f o r l < j i p .  Th- . .  
min A F(w) I (N) 

W 
whae 

$(w) = (d - $(U'w))'(d - $(U'w)) 

and where d -  [d(l). .... d@)r Rpal is the desired output vector, U (~(1). .... 
u(p)] e Rmap IS ' the matrix of input vectors, and $(z) 2- [f(z,). .... f(Q' e Rpxl 
with z = [zt. .... zJ' e Rpx'. The notation @(z) represents a map which takes a p 
dimensional vector z and returns another p-dimensional vector with element 
f(zi). where f is the neuron's nonlinearity. In equation (N). $(w) is actually the 
sum of the squares of the error between the desired scalars and the output of the 
neuron: 

A P  
F(w) = (d(j) - f(Mj)'w))*. (2) 

j-1 
If the popular gradient descent- is used to solve (N). an iterative 

update equation is applied. In general, the gradient descent algorithm does not 
guarantee convergence to a global minimum due to the potential local minima 
entrapment. In addition. at regions of very low gradient. a gradient descent 
algorithm takes small orthogonal steps which result in a '*zigzagging" effect of 
the updates and slow convergence [3.4]. 

In QUADRATIC PROBLEM FORMULATION 
Since the Neuron Training Problem (N) is actually an unconstrained 

minimization problem, a variety of optimization techniques exist which may be 
employed to solve it. Unfortunately, due to the type of nonlinearities which are 
usually chosen for this problem (for example. the hyperbolic tangent function), 
the surface of the function F(w) is. in general, very complicated, and finding a w 
which minimizes the surface may be a very difficult task. It is proposed here that 

instead of finding a w which minimizes F(w), solve the following Problem (NQ) 
and use the solution of (NQ) as an answer for (N). The 

A 

A 

ion Problem (NQ) is defined as follows: 

WQ) 

(3) 
and where v is such that $(v) = d. The function F(w) can be re-written as: 

F(w) = W'AW - h'w + c. 
where A = U U  e Rmxm. h':- 2v'U' c R". and c := v'v c R'"'. So, finding a 
w that minimizes F(w) in (NQ) is equivalent to finding a w that minimizes (3). 

Solving (NQ) is. in general, easier than solving (N). It is proposed here lo 
solve (NQ) instead of (N) and to use the solution from (NQ) as an answer for (N). 
Intuitively speaking, if the W* found from solving (NQ) also solves (N) with a 

small error, then this validates minimizing F(w) instead of minimizing F(w). 
In [l] and summarized in [21, both a careful analysis comparing the error for 

solving Problem (NQ) with the error for solving Problem (N) and the 
relationship between the solutions of Problems (NQ) and (N) are provided. 

I min F(w) 

F ( w )  = (v  - U'W) ' (V  - U'w)  

W where 

A 

IV T H E  SINGLE-LAYER NEURAL NETWORK 
The single-layer neural network considered here is comprised of n parallel 

neurons. With the -piate extensions to the above, the 
Network Tr- Roblem (L) is d c f d  as follows: . .  

min A F(W) 

W 
whue 

t ( W )  = tr((D - O(U'W))'(D - O(U'W)))  
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with n = 1. (L) reduces to (N). In equation (L). & w )  is actually a sum of the 
squares of the error between the individual desired output elements and the 
outputs of the neurons: 

F(W)= c c (dk(i) - f(U(i),Wk))'. 
A " '  

4)  
k-l i l  

A 
It is proposed here that instead of finding a W which minimizes F(W), solve 

the following Problem (LQ) and use the solution of (LQ) as an answer for (L). 
T h e m  (LQ) is defined 
as follows: 

min F(W) 
where 

With n = 1. (LQ) reduces to (NQ). The function F(W) can be re-written as: 

W 

F ( W )  = tr((V - U ' W ) ' ( V  - U ' W ) )  l w '  
" 

F(W) = c w i ' A w i  - h , k i  + ci (5 ) 
i=l 

where A := UU' e Rm"". hi' := 2vi'U' E RIxm, and c, := vivi E R tx t  for 1 5 i 5 n. 
Thus. with A symmetric and positive definite. F(W) is the sum of quadratics. The 
solving of (LQ) can be accomplished in many ways including either minimizing 
the n quadratics of (5 )  or finding a W that solves 

UU'W = uv. (6) 

V T H E  MULTI-LAYER KEURAL NETWORK 
The multi-laver neural network considered here consists of many layers of 

parallel neurons connected in a feedforward manner. Defining the symbol #k as 
the number of neurons in the kLh la er. the output of the kh layer is described by 

(7) 
where Y k i =  [y:. .... y t k ]  E Rpayk is the matrix of outputs, yk:= , I  [yk(l). ..., yt(p)]' 

E R'"' is the vector of outputs for the f h  neuron, U k  := [uk(l) .  ._.. uk(p)] 
~ ( W - l ) + I ) x p  is , the matrix of input vectors, uk(i) := [yk-'(i). .... yx:-tI)(i). 11' E 

R("(k-t)+t)xt is the vector of inputs for the jh input pattem and is equal to the 
outputs from the previous layer plus the bias of one for the last term, W k  = [w:. 

I d '  ' _ ' '  
is the vector of weights. and O(Z) E Rpxn is the same 

as defined previously for the single-layer neural network. Using U' = U ,  the 
output of the first luddsn hys~ is described by 

Y' = O(U'*W'). (8) 
with U'' = [U' 11 E RPx("+') where 1 E R'". the output of the second hidden 
layer is described by 

Continuing this inductive process, each successive layer is defined appropriately 
until the desired number of layers is reached. The last layer is called the QQUJ 

Y l =O(U"W') 

k E R ( # ( k - l ) + t ) x # k  . is the matrix of weight vectors, w: .= [w .... W X J  

ww-t)+l j l  
k , E R(#(k-l)+t)xt . 

YZ = O(U*'W2). (9) 

and is described by 

yo = O(U~'W0)  (10) 
where the superscript "0" denotes "outpul". 

The Multi-Laver Neural Network Trainine Problem (M) is defined as follows: 

min $(W', ..., W O )  1 (M) 
w' ... WO 

where 

& W ' .  ..., WO) = tr((D - Y o ) ' ( D  - Y o ) )  
and where "U" is the trace of a square matrix, (W', _.., WO) are the weight 
matrices of all the layers of the multi-layer neural network, D := Idl. _... d,]' E 

Rpan is the desired output matrix, and Yo is the output of the output layer of the 
multi-layer neural network. In relation to the previous training problem (L), the 
input matrix U is not directly in (M) since the input is "buried beneath the 
hidden layers. If there are no hidden layers, then (M) reduces to (L). In equation 
(M), &w'. .... W O )  is actually the sum of the squares of the error between the 
individual desired output elements and the outputs of the neurons in the output 
layer: 

" P  
$W1, ..., WO) = c (dkO) - r,"Ci)f (11) 

k=l  j=l 
One method to solve (M) is the back-propagation algorithm [ 5 ] .  which is a 

constant-step-size, gradient-descent algorithm that minimizes the least-squares 
cost function ;(W', _._. WO). The sigmoid function is often considered to be the 
nonlinear function of the neurons (i.e.. f(z) = 1/(1 + e-")) and has the property 
that f'(z) = f(z)(l - f(z)). Here, the hyperbolic tangent funl-tion. f(z) = tanh(z). is 
used as the neuron's nonlinearity. and f '(2) = 1 - f(zf. The weights of the neural 
network are adjusted after every QQ.& (i.e., one pass of the training set) by the 
constant-step-size gradient-descent rule: 

After some manipulation of the partial derivative term, the back-propagation 
algorithm's rule for changing the weights of the multi-layer neural network is 
given by 

VI T H E  QUADRATIC OPTIMIZATION ALGORITHM 
In this section, the Multi-Layer Neural Network Training Problem (M) is 

solved by applying the solution of Problem (LQ) to each layer. The technique 
proposed here is based on the back-propagation algorithm. in which the 
propagation of the output error of the multi-layer neural network is used to form a 
desired output for each layer and hence to form a quadratic weight cost function at 
each layer. The solution of Problem (LQ) for each layer is then used as a solution 
for Problem (M). Several implementation considerations are discussed as well as 
the advantages and disadvantages of using this approach. 

Instead of solving the Problem (M) using the back-propagation algorithm, 
it is proposed here to solve the Problem (LQ) for each layer of the multi-layer 
neural network and use this solution as one for (M). In solving (LQ) for the 
single-layer neural network, the desired output is known, and thus a matrix V can 
be found such tha O(V) = D. In solving (LQ) for the k* layer of the multi-layer 
neural network, the malrix Vk needs to be found such that 

where Vk:= [v:, ..., vx"k] E R'""', v::= [vr(l), _... vf(p)]' E R'"', and f(vr(i)) = 

46)  for 1 S i 5 # k .  1 5 j Cp. 

Assuming that all weights in the hidden layers have initial values, there is 
no problem in directly applying the methodology described for the single-layer 
neural network to the output layer. A matrix Vo can be chosen such that O(Vo) = 
D .  and Problem (LQ) can be applied to find the weights of the output layer. 
Unfortunately. there do not exist desired outputs Dk for the hidden layers, but by 
using the back-propagation of the output error, an approximation of these values 
can be obtained; the algorithm proposed here back-propagates the error between 
the desired output and the actual output of the neural network to all of the hidden 
layers to form an approximated desired output for each layer. 

First, the errors at the output of each layer are defined. The error between the 
desired output and actual output for the ih neuron of the kh layer is given by 

where 1 5 i 5 Uk. 1 5 j 5 p, and the error for the iLh neuron of the output layer is 
the quantity 

O(Vk) = Dk (16) 

(17) 
"k .  
El 0) = <a, - Y;W, 

t(i) = dl(i) - YPW. (18) 
where 1 5 i 5 n. 1 5 j 5 p. Next. in comparing the delta terms of (14) and (15) of 
the back-propagation algorithm, the error for the i" neuron of the k~ layer (not 
equal to the output layer) can be viewed as 

Combining (18) and (19) the desired output for the iLh neuron of the k* layer can 
be viewed as 

$0) = y;(i, + # y S k ; ' ( i )  h = l  w"H'. (20) 

Using (20). the matrix Vk can be chosen such that 

(21) 
h=l 

where 1 5 i 5 #k. 1 5 j C p. With Vk.  Problem (LO) can be solved to find the 
weights of the klh layer. Since the hyperbolic tangent function is one-to-one and 
is assumed to be the nonlinear function of each neuron, vkQ) can be formed by 
applying the inverse of the function to both sides of (21). Thus, by back- 
propagating the error through the multi-layer neural network, a quadratic 
problem is formulated for each layer, and the results for the Problem (LQ) in 
relation to the Problem (L) are applicable here for each layer. This method docs 
not guarantee convergence, but does tend to give good results with a fast 
computation time. 

In implementing this quadratic optimiration procedure for a multi-layer 
neural network, several observations are useful. First. in practice, limiting the 
neural network to two layers provides adequate results. Second, since a quadratic 
function is minimized for each layer, the hiddcn layer should be adjusted first, 
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and then the output layer can be updated using the newly found values for the 
hidden layer's weights. Third, when a one-to-one function is the hidden layer's 
nonlinearity and when the values v!(j) are found by inverting the one-to-one 

function. care must be taken to insure that d!(j) lies in the range of the function. 
For instance. if the hyperbolic tangent function is the nonlinearity for the 
hidden layer, its range is (-1. 1) and hence d.'(j) c (-1. 1). To insure this, the 
output layer's weights need to be first initialized to small values around zero, for 
instance W: [ -&, &I. Next, when computing the desired output for the hidden 
layer, if the right-hand side of (21) is not in the range of the hidden layer's 
nonlinearity. the weights of the output layer can be scaled to insure this: if W2 = 
max(wi for 1 I; i I; #I + 1 and 1 I; h I; #2) > lml ,  then (21) is modified to 

#1  P(0) 

6 0.1063 
5 0.1189 
4 0.1330 

for 1 S i 5 #I + 1 and 1 S j I; p. If the right-hand side of (22) is still not in the 
range of the hidden layer's nonlinearity, the output layer's weights can continue 
to be scaled by 1 2 1  until h i s  occurs. Fourth, in practice, the weights for the 
output layer rend to be large in magnitude. which is attributed to the fitting of the 
mapping between U' and V' with the linear equation 

uZu'-w' = U'VZ. (23) 
To aid in avoiding the computational inaccuracies which may occur due to the 
large magnitudes of W2. it is suggested to choose v:(j) < 0.5 for 1 5 i I; #2 and 1 

I; j I; p. This can be accomplished by scaling the desired outputs appropriately. 
This also aids in insuring that d:(j) is properly valued. With these observations, 
the Quadratic Optimization Algorithm used in practice to train a multi-layer 
neural network IS as follows: 

1) Given D, find V2 such that vz(j) < 0.5 for 1 5 i 5 #2 and 1 5 J 5 p. 

2) Initialize W' and W2 with magnitudes less than 1/#1. 

3)  Test t (W1,  W'). If small enough. then stop 
4)  Find V' using either (21) or (22). 
5) Find W1 by solving U'U''W' = U'V'. 
6) Find U' for the new weights W'. 
7)  Find W' by solving U'U''W' = U'V'. 

t $(O flops f +(t) flops 
1 0.0212 132024 1244 0.0208 1442790 
1 0.0244 10256 1169 0.0240 1158168 
1 0.0246 820  427 0.0240 351273 

8) Goto3). 
In applying the Quadratic Optimization Algorithm to various problems, 

several advantages and disadvantages are evident. First. finding the weights of a 
multi-laver neural network via the auadratic ootimization aDoroach described .. 
here tends to work well for classification problems in that the desired outputs are 
achieved and the generalization behavior of the neural network is accurate. The 
algorithm also tends to converge to a solution in a single step achieving a small 
value for $(W', W') and then to slowly vary around this value with more 
iterations. Thus, it is recommended to use the Quadratic Optimization Algorithm 
for a single iteration on classification problems. 

Both of these properties are attributed to the finding of the weights via 
steps 5 )  and 7) of the algorithm. To achieve this type of performance, the choice 
of the number of hidden layer neurons is important. Since the overall mapping 
between the input pattems and the desired output pattems is accomplished via 
the solving of the linear system of equations in step 7). the number of hidden 
layer neurons needs to be large enough such that this linear approximation in the 
output layer succeeds. Clearly, the choice of 111 is problem dependent. Thus, the 
choice of the number of hidden layer neurons is a design consideration and is 
dependent on the particular desired mapping of the training set. Funhermore. the 
initial values for the weights of the neural network are more important as the 
numbex of hidden layer neurons is reduced towards the level where the Quadratic 
Optimization Algorithm is unable to achieve the desired training set mapping. 
These properties of the algorithm are illustrated in Example 1. 

The disadvantages of using the Quadratic Optimization Algorithm to train a 
multi-layer neural network are outlined next. First, the algorithm may not work 
well for non-classification problems in that the desired outputs may be 
approximately achieved but the generalization behavior of the neural network 
may be inaccurate. This behavior is attributed to the finding of the output layer's 
weights by the solving of the linear system of equations in step 7). Thus, it is 
suggested to restrict the use of the Quadratic Optimization Algorithm to 
classification problems. Secondly, in applying the algorithm, all of the 
training pattems need to be known and no values for the weights from previous 
iterations are saved. Thus, this quadratic optimization training procedure may 
not work for on-line learning. Thirdly, the algorithm also requires the solving 
of two linear systems of equations when there are two layers of weights: one in 
step 5 )  with m equations and m unknowns, and the other in step 7) with #I  + 1 
equations and #1 + 1 unknowns. If these numbers are large, the solving of the 
linear systems may become burdensome, although there do exist many ways for 
solving such systems. Finally. the values for the output layer weights may be 
large, which is a potential disadvantage if implementation of the neural network 
is desired. This behavior is also attributed to the final calculation step of the 
algorithm. which attempts to form the desired mapping with the solving of a 

linear system of equations to the fmd the weights of the neural networks output 
layer. 

The two examples in the following section illustrate these observations and 
some of the advantages and disadvantages of using the Quadratic Optimization 
Algorithm to nain a multi-laya neural network. 
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, 
. .  . 

Algorithm for 1 iteration and those found using the hack-propagation algorithm 

yQoA = (0.0079 -0.0256 -0.0554 0.0170 0.1238 -0.1056 -0.0906 0.12331 

8 
for 1729 iterations are 

< .  
7 and 

ysPa= [0.0531 -0.0802 -0.0789 0.0514 0.1526 -0.0809 -0.0783 0.1 1651 
where the magnitude of the desired output is 0.1. Clearly, the neural nelwork 
trained with the Quadratic Optimization Algorithm did not achieve the desired 
neural network outputs but did achieve the desired mapping for the classification 
training set. For this reason, it is recommended that the Quadratic Optimization 
Algorithm be used for classification problems and not for general function 
approximation problems. However, even though the exact desired outputs may 
not be achieved using the Quadratic Optimization Algorithm, the resulting neural 
network does have desirable generalization properties for classification training 
sets as illustrated in the following example. 

6 -  

5 7  

4 -  

I .  

. 

VI11 COSCLUDING REMARKS 
A new method based on the minimization of a quadratic function is presented 

for the training of a single neuron. a single-layer neural network. and a multi- 
layer neural network. The training procedure for the single neuron can be 
immediately applied to the single-layer neural network case but not to the multi- 
layer neural network case since there do not exist known desired outputs for the 
neural networks hidden layers. By using the concept of back-propagating the 
output error to the hidden layers, desired outputs are approximated for the hidden 
layers, and the results for the single-layer neural network are applied to each of 
the hidden layers. The training of a multi-layer neural network via the described 
Quadratic Optimization Algorithm tends to work best for classification problems 
and tends to achieve good results in a single iteralion. 

The results reported in this paper also appear in [ I ]  and [2], which is an 
expanded version of this paper. 
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Figure 2 Testing the trained neural network. 
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