M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” Proco fI SCA S,
San Diego, CA, May 10-13, 1992.

NEURAL NETWORK TRAINING VIA QUADRATIC OPTIMIZATION

Michael A. Sartori! and Panos J. Antsaklis®

! Carderock Division - Code 1941
Naval Surface Warface Center
Bethesda, Maryland 20084

Abstract - A new technique using quadratic optimization is proposed to find the
weights of a single neuron, or a single-layer neural network, and extended to the
multi- hycr neural network. It is proposed here to find the weights for a neuron
by i g a cost fu that is quadratic with respect to the neuron'’s
weights and 1o use these weighis as an answer for minimizing a cost function
that is quadratic with respect to the neuron's outputs. Previous methods, such as
the least mean squares algorithm which is a gradient descent method and a
precursor of the back-propagation algorithm, iteratively find weights for the
neuron which minimize the cost function directly involving the nonlinearity of
the neuron. By back-pmpagat.ing the output error through the neural network's
layers, the proposed method is ded to the multi-layer neural network. The
described Qndnnc Optimization Algorithm for the multi-layer neural ne!wotk
tends to work best for classification problems and tends to achi

2Depanment of Electrical Engineering
University of Notre Dame
Notre Dame, Indiana 46556

Assume that a training set {u(j), d(j)) for 1 < j < p consists of p pairs of
input vectors and desired output scalars, where u(j) « ™", u_(j) = 1, and d(j) «
R for 1 <j<p. The Neuron Training Problem (N) is defined as follows:

min e(w)
where o ™)
A
F(w) = (d - $(U'w))'(d - $(U'w))
and where d = [d(1), ... d(p)]' ¢ RP*! is the desired output vector, U = [u(1), ..,
u(p)] « R™P is the mawix of input vectors, and ¢(z) = [f(z,), .. Mz € Rr™
wnh z=[z,, ... « RP*!. The notation $(z) represents a map which takes a p-

results in a single iteration.

I INTRODUCTION

A new training method based on quadratic optimization is presented in this
paper to find the weights of a single neuron, or a single-layer neural network,
and is extended to a multi-layer neural network. Instead of minimizing a cost
function that directly involves the nonlinearity of the neuron, a function which
is q\ladnuc with respect to the neuron’s weights is minimized. The solution from
this minimization problem is used as a solution for the original problem. In
[1,2], the relationship b the two probl is blished l.hrough a careful
error analysis and an examination of the relationship between the minima. Due
to the class of nonlinear functions often chosen for the neuron (e.g., the
hyperbolic tangent fu or the sig fu), the error for using the

lution from the quadratic minimization as a for the original problem
is small, and even zero if the error from solving the quadratic minimization is
zero, which is a case studied here. Furthermore, with the quadratic optimization
procedure used to find the weights of the single neuron, it always converges and
is faster than using a gradient descent algorithm on the original problem. By
back-propagating the output error through a multi-layer neural network's hidden
layers, the proposed method is extended to the multi-layer case. The so-called
Quadratic Optimization Algorithm for the multi-layer neural network tends to
work best for classification problems and tends to achieve successful results in a
single iteration.

In Section II, the neuron considered in this paper and the problem of finding
its weights, termed here the Neuron Training Problem (N), are defined. In
Section I1I, the Neuron Quadratic Optimization Problem (NQ) is defined, and its
solution is used as one for Problem (N). In Section 1V, the single-layer neural
network and the Single-Layer Neural Network Training Problem (L) are defined.
The quadratic optimization procedure is then described for the single-layer neural
network in terms of the Problem (L) and termed the Single-Layer Neural Network
Quadratic Optimization Problem (LQ). In Section V, the multi-layer neural
network and the Multi-Layer Neural Network Training Problem (M) are defined,
and the back-propagation algorithm, one of the most common methods used to
train the multi-layer neural network, is described. In Section VI, it is proposed
to solve the Problem (LQ) for each layer of the multi-layer neural network by
back-propagating the output layer's error to each hidden layer. The resulting
procedure is termed the Quadratic Optimization Algorithm. Finally, in Section
VII, two examples are given that illustrate the training procedure of this paper.

II THE NEURON
The peuron considered here is described by

y= f(zu. w,) = f(u'w),
i=l
where f:R — R is the nonlinearity of the neuron, u = [“1' .-

(1)

ule R™! is the
input vector, w = [w,, .., w_]'€ R™! s the weight vector, and u_, = 1 is the
bias input for the neuron. The type of nonlinearity of the neuron is restricted to
those functions commonly used in neuron models (e.g., the hyperbolic tangent
function or the signum function).

49

1 vector z and returns another p-dimensional vector with element

f(z;), where f is the neuron’s nonlinearity. In equation (N), F(w) is actually the

sum of the squares of the error between the desired scalars and the output of the
neuron:

A 2 . . 2
Fw) = ¥ (d() - fu@yw))”. 2

=

If the popular gradient descent algorithm is used to solve (N), an iterative
update equation is applied. In general, the gradient descent algorithm does not
guarantee convergence to a global minimum due to the potential local minima
entrapment. In addition, at regions of very low gradient, a gradient descent
algorithm takes small orthogonal steps which result in a “zigzagging" effect of
the updates and slow convergence [3.4].

III QUADRATIC PROBLEM FORMULATION
Since the Neuron Training Problem (N) is actually an unconstrained
minimization problem, a variety of optimization techniques exist which may be
employed to solve it. Unfortunately, due to the type of nonlinearities which are
usually chosen for this problem (for example, the hyperbolic tangent function),

the surface of the function F(w) is, in general, very complicated, and finding a w
which minimizes the surface may be a very difficult task. It is proposed here that

instead of finding a w which minimizes F(w) solve the following Problem (NQ)
and use the solution of (NQ) as an answer for (N). The Neuron Quadratic

Optimization Problem (NQ) is defined as follows:

min F(w)
w
where NQ
F(w) = (v-U'w)(v - U'w)
and where v is such that ¢(v) = d. The function F(w) can be re-written as:
F(w) = w'Aw - h'w +c, 3)

where A= UU' €« R™™, h'=2v'U' « R"™, andc= v'v « R™". So, finding a
w that minimizes F(w) in (NQ) is equivalent to finding a w that minimizes (3).

Solving (NQ) is, in general, easier than solving (N). It is proposed here 1o
solve (NQ) instead of (N) and to use the solution from (NQ) as an answer for (N).
Intuitively speaking, if the w* found from solving (NQ) also solves (N) with a
small error, then this validates minimizing F(w) instead of mxmrmzmg F(w)

In [1] and summarized in {2], both a careful analysis comparing the error for
solving Problem (NQ) with the ervor for solving Problem (N) and the
relationship between the solutions of Problems (NQ) and (N) are provided.

IV THE SINGLE-LAYER NEURAL NETWORK

The single-layer neural network idered here is d of n parallel
neurons. With the appropriate extensions to the above, the
Network Training Problem (L) is defined as follows:
A
min F(W)
w
where L

FW) = (@ - GU'W))(D - D(U'W)))

0-7803-0593-0/92 $3.00 1992 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

A

With n = 1, (L) reduces to (N). In equation (L), F(W) is actually a sum of the
squares of the error between the individual desired output elements and the
outputs of the neurons:

nop
Fwy=3 3 (@0 - fmGyw’
k=1 j=i

4)

A
It is proposed here that instead of finding 2 W which minimizes F(W), solve
the following Problem (LQ) and use the solution of (LQ) as an answer for (L).

le-Layer Neural Network Quadratic ization Problem (LQ) is defined
as follows:
min F(W)
w
where Q)
F(W) = tr((V - UW)'(V - U'W))
With n = 1, (LQ) reduces to (NQ). The function F(W) can be re-written as:
n
F(W)= Y w/Aw, -hiw, +¢)

i=1
where A =UU' ¢ R™", hi'=2v/U e]Rlxm. and ¢;=v,'v, € R™ for1<i<n.
Thus, with A symmetric and positive definite, F(W) is the sum of quadratics. The
solving of (LQ) can be accomplished in many ways including either minimizing
the n quadratics of (5) or finding a W that solves

UU'wW =UV. (6)

V THE MULTI-LAYER NEURAL NETWORK
The multi-layer neural network considered here consists of many layers of
parallel neurons connected in a feedforward manner. Defining the symbol #k as
the number of neurons in the klh]axei‘ the output of the klh layer is described by
Y* = oUW %))
y‘kk] e RP** is the matrix of outputs, yk‘= [y:(l). o yf(p)]'

= (), - u*(p)]

is the matrix of input vectors, uk(j) = [yki'(j). y“(l;l)(j). 10 e

is the vector of inputs for the ju’ input pattern and is equal to the
outputs from the previous layer plus the bias of one for the last term, wh= [w:,

where Y* = [y:.

. .th k
e RP*! is the vector of outputs for the it neuron, U
& R¥&-D+Drp

R(ﬁ(k-l)ol)xl

- #k . .
w:] e R¥& D+Dxkk is the matrix of weight vectors, WT = [Wlki.
wm‘(_ll‘M Je R*EDDA 4 the vector of weights, and ©(Z) € RP*" is the same
A

as defined previously for the single-layer neural network. Using U' = U, the
output of the first hiddeqn layer is described by

v =oulwh. ®
with U* = [Y' 1] ¢ R”*"*D where 1 ¢ R™', the output of the second hidden
layer is described by

Y2 = oW, ®
Continuing this inductive process, each successive layer is defined appropriately
until the desired number of layers is reached. The last layer is called the output
layer and is described by

Y%= oUW
where the superscript “o" denotes “output".

The Multi-Layer Neural Network Training Problem (M) is defined as follows:
A
min KW, ., Wo)

(10)

1. we
where v M)
BW1, ., Wo) = tr((D - YO)(D - Y®))
and where "tr” is the trace of a square matrix, (Wl, .., WO) are the weight
matrices of all the layers of the multi-layer neural network, D = [d,, ... d.]' €

RP™ is the desired output matrix, and Y° is the output of the output layer of the
multi-layer neural network. In relation to the previous training problem (L), the
input matrix U is not directly in (M) since the input is "buried” beneath the
hidden layers. If there are no hidden layers, then (M) reduces to (L). In equation

A
(M), F(W1, ., W) is actually the sum of the squares of the error between the

individual desired output elements and the outputs of the neurons in the output
layer:

A 22

FOWL .. W9 = 5 3 6,0 - y,0)° an
k=1 j=1

One method to solve (M) is the back-propagation algorithm {5], which is a

constant-step-size, gradient-descent algorithm that minimizes the least-squares
cost function F(W1, .., W®). The sigmoid function is often considered 1o be the
nonlinear function of the neurons (i.e., f(z) = 1/(1 + ¢)) and has the property
that f'(z) = f(z)(1 - f(z)). Here, the hyperbolic tangent function, f(z) = tanh(z), is
used as the neuron’s nonlinearity, and f'(z) =1 - f(z)z, The weights of the neural
network are adjusted after every gpoch (i.e., one pass of the training set) by the
constant-step-size gradieni-descent rule:

50

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” Proco fI SCA S,
San Diego, CA, May 10-13, 1992.

k Koy o OF
w, i(:+1)= whl(t)—a wk.

(12)

After some manipulation of the partial derivative term, the back-propagation
algorithm's rule for changing the weights of the multi-layer neural network is
given by

b
wie D =wi o +a X 8050 (3
1

where Bli‘(j) is known as the delta term. If the K" layer is the output layer, then
8G) =146 -y [1 - Y61)
For the hidden layers,

#k+1)
Sh= X 8w 1y (as)
r=1

VI THE QUADRATIC OPTIMIZATION ALGORITHM

In this section, the Multi-Layer Neural Network Training Problem (M) is
solved by applying the solution of Problem (LQ) to each layer. The technique
proposed here is based on the back-propagation algorithm, in which the
propagation of the output error of the multi-layer neural network is used to form a
desired output for each layer and hence to form a quadratic weight cost function at
each layer. The solution of Problem (LQ) for each layer is then used as a solution
for Problem (M). Several implementation considerations are discussed as well as
the advantages and disadvantages of using this approach.

Instead of solving the Problem (M) using the back-propagation algorithm,
it is proposed here to solve the Problem (LQ) for each layer of the multi-layer
neural network and use this solution as one for (M). In solving (LQ) for the
single-layer neural network, the desired output is known, and thus a martrix V can
be found such that ®(V) = D. In solving (LQ) for the o layer of the multi-layer
neural network, the matrix V" needs to be found such that

. ®(V¥) =D
=1k k pxitk K _
where V [vl, ey v“] e R, v
d@for1<i<Hk1<j<p

Assuming that all weights in the hidden layers have initial values, there is
no problem in directly applying the methodology described for the single-layer
neural network to the output layer. A matrix V° can be chosen such that d(V°®) =
D, and Problem (LQ) can be applied to find the weights of the output layer.
Unfortunately, there do not exist desired outputs D* for the hidden layers, but by
using the back-propagation of the output error, an approximation of these values
can be obtained; the algorithm proposed here back-propagates the error between
the desired output and the actual output of the neural network to all of the hidden
layers to form an approximated desired output for cach layer.

First, the errors at the output of each layer are defined. The error between the
desired output and actual output for the i* neuron of the k™ layer is given by

£0=d6 -0, an

where 1 < i< #k, 1 <j<p, and the error for the i neuron of the output layer is
the quantity

(16)
[vik(l), v:‘(p)]' « R and f(v:‘(j)) -

o, . . .
BIORTIORAOR (18)
where 1 €£1<n, 1<j<p. Next, in comparing the delta terms of (14) and (15) of

the back-propagation algorithm, the error for the i™ neuron of the k™ layer (not
equal to the output layer) can be viewed as

+1)
Bp="F s g w.
h=1

Combining (18) and (19) the desired output for the i" neuron of the k™ layer can
be viewed as

19)

#&k+1)
&) =y + 3‘, 3G W (20)
i i & b
Using (20), the matrix V¥ can be chosen such that
+1)
D=+ S 5EG W, @
1 i h=l h ih

where 1 S i< #k, 1 <j<p. With Vk. Problem (LQ) can be solved to find the

weights of the K® layer. Since the hyperbolic tangent function is one-to-one and

is assumed to be the nonlinear function of each neuron, v_ (j) can be formed by
i

applying the inverse of the function to both sides of (21). Thus, by back-
propagating the error through the multi-layer neural network, a quadratic
problem is formulated for each layer, and the results for the Problem (LQ) in
relation to the Problem (L) are applicable here for each layer. This method does
not guarantee convergence, but does tend to give good results with a fast
computation time.

In implementing this quadratic optimization procedure for a multi-layer
neural network, several observations are useful. First, in practice, limiting the
neural network to two layers provides adequate results. Second, since a quadratic
function is minimized for each layer, the hidden layer should be adjusted first,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

and then the output layer can be updated using the newly found values for the
hidden layer's weights. Third, when a one-to-one function is the hidden layer's

nonlinearity and when the values vil (j) are found by inverting the one-to-one
function, care must be taken to insure that dil(j) lies in the range of the function.
For instance, if the hyperbolic tangent function is the nonlinearity for the
hidden layer, its range is (-1, 1) and hence d:(i) € (-1, 1). To insure this, the
output layer's weights need to be first initialized to small values around zero, for

instance w. 2g [-:—1, ;‘T]. Next, when computing the desired output for the hidden

ih
layer, if the right-hand side of (21) is not in the range of the hidden layer's
nonlinearity, the weights of the output layer can be scaled to insure this: if W=

max(wi:fotlsisﬂli-]andlShs#?.)>ll#1,dwn(21)ismodiﬁedw

2
F'73 W,
) =y,0+ 3 820—>; @2)
i i =1 vt

for1<i<#1 +1and1<j<p. If the right-hand side of (22) is still not in the
range of the hidden layer's nonlinearity, the output layer's weights can continue
to be scaled by 1/#1 until this occurs. Fourth, in practice, the weights for the
output layer tend to be large in magniwde, which is atiributed to the fitting of the
mapping between U? and V? with the lincar equauon

viiw? - V2 (23)
To aid in avoiding the computational inaccuracies which may occur due 10 the
large magnitudes of w2, itis suggested to choose vz(j) <0S5for1<i<#2and 1
< j < p. This can be accompllshed by scaling the desu'ed outputs appropriately.
This also aids in insuring that d (j) is properly valued. With these observations,
the Quadratic Optimization Algom.hm used in practice to train a multi-layer

i WS:

Given D, find V? such thar vfu) <0S5for1<is#2and1<j<p.
lmuahze W' and W? with magnitudes less than 1/#1.

Test F(W w?). If small enough, then stop.
Find V* usmg either (21) or (22).
Find w by solving U'UMW! = U
6) Find u? for the new weights wh,
7) Find W? by solving U*UW? = U?V2,
—8) _Goiwo3)

1)
2)
3)
4)

5) t

vi

In applying the Quadnllc Optimization Algorithm to various problems,
several ad are evident. First, ﬁndmg the weights of a
multi-layer neural network via the quadratic optimization approach described
here tends to work well for classification problems in that the desired outputs are

hieved and the generali behavior of the neural network is accurate. The
algorithm also tends to converge to a solution in a single step achieving a small

value for ?:(Wl. Wz) and then to slowly vary around this value with more
iterations, Thus, it is recommended to use the Quadratic Optimization Algorithm
for a single iteration on classification problems.

Both of these properties are attributed to the finding of the weights via
steps 5) and 7) of the algorithm. To achieve this type of performance, the choice
of the number of hidden layer neurons is important. Since the overall mapping
between the input patterns and the desired output patterns is accomplished via
the solving of the linear system of equations in step 7), the number of hidden
layer neurons needs to be large enough such that this linear approximation in the
output layer succeeds. Clearly, the choice of #1 is problem dependent. Thus, the
choice of the number of hidden layer neurons is a design consideration and is
dependent on the particular desired mapping of the training set. Furthermore, the
initial values for the weights of the neural network are more important as the
number of hidden layer neurons is reduced towards the level where the Quadratic
Optimization Algorithm is unable to achieve the desired training set mapping.
These properties of the algorithm are illustrated in Example 1.

The disadvantages of using the Quadratic Optimization Algorithm to train a
multi-layer neural network are outlined next. First, the algorithm may not work
well for non-classification problems in that the desired outputs may be
approximately achieved but the generalization behavior of the neural network
may be inaccurate. This behavior is atributed to the finding of the output layer's
weights by the solving of the linear system of equations in step 7). Thus, it is
suggested to restrict the use of the Quadratic Optimization Algorithm to
classification problems. Secondly, in applying the algorithm, all of the
training patterns need to be known and no values for the weights from previous
iterations are saved. Thus, this quadratic optimization training procedure may
not work for on-line leaming. Thirdly, the algorithm also requires the solving
of two linear systems of equations when there are two layers of weights: one in
step 5) with m equations and m unknowns, and the other in step 7) with #1 + 1
equations and #1 + 1 unknowns. If these numbers are large, the solving of the
linear systems may become burdensome, although there do exist many ways for
solving such systems. Finally, the values for the output layer weights may be
large, which is a potential disadvantage if impl ion of the neural network
is desired. This behavior is also attributed to the final calculation step of the
algorithm, which attempts to form the desired mapping with the solving of a

51

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” Proco fI SCA S,
San Diego, CA, May 10-13, 1992.

linear system of equations to the find the weights of the neural network’s output
layer.

The two examples in the following section illustrate these observations and
some of the advantages and disadvantages of using the Quadratic Optimization
Algorithm to train a multi-layer neural network.

VII EXAMPLES

In this example, a comparison of the Quadratic Optimization Algorithm and
the back-propagation algorithm for the training of a multi-layer neural network
is presented for an extended XOR training set, where

111 1 2 2 2 2
U= -1 1 -1 1 -2 2 2 2
i1 1 1 1 1 1 1

«R™

and

d=(0.1 -0.1 0.1 0.1 01 -0.1 -01 0.1] « R,

Both the Quadratic Optimization Algorithm and the back-propagation algorithm
are implemented in MATLAB on a M h SE using prog that are not
optimized. Steps 5) and 7) of the algorithm are solved using the psuedo-inverse
function call for MATLAB. Using a two-layer neural network with the
hyperbolic tangent function as the nonlinearity for both the hidden layer
neurons and the output layer neuron, the number of hidden layer neurons is
changed.

The training results for the two algorithms are compared in terms of the
success of training the neural network for the desired classification, the values

A
for the cost function F, and the number of floating point operations, which is a
function call in MATLAB. The multi-layer neural network is initialized to
weights in the interval [-1/#1, 1/#1] and first trained using the Quadratic
Optimization Algorithm. Next, the same initial neural network is trained using
A
the back-propagation algorithm until the same value for F is achieved. (Note
that at each iteration step of the back-propagation algorilhm the gradient of
(13) is not computed and is instead approximated usmg a single training
pancm) ’I’hse results are shown in Table 1. The value F(l) denotes the value of

F(W w) after t iterations of the training procedure. The value "flops"
indicates the number of floating point operations as counted by MATLAB for the
t iterations. For the cases of 4 and 5 hidden layer neurons, the back-propagalmn
trained neural network did not classify the input set correctly, and the training

was continued until a lower F was achieved. The resulting neural networks
classified the input patterns correctly, and the results for the extended training
using the back-pmpagation algorithm are shown in Table 2. The values for t and
flops are for the total training time. As was described in the previous section,
the multi-layer neural network trained with the Quadratic Optimization
Algorithm requires enough hidden layer neurons such that the solution to the
linear system of equations in step 7) is able to correctly approximate the desired
mapping of the training set. For #1 = 2 and #1 = 3, the Quadratic Optimization
Algomhm was unable to find values for the weights such that the desired
mapping was achieved, while the back-propagation algorithm was able lo
fully find such weights.

Table 1 Comparing the Quadratic Optimization Algorithm
and the back-propagation algorithm.

Quadratic Optimization Back-Propagation

#1 o) I t f“-(') flops I t f‘;([) flops
6 0.1063 1 0.0212 132024 1244 0.0208 1442790
5 0.1189 1 0.0244 10256 1169 0.0240 1158168
4 0.1330 1 0.0246 820 427 0.0240 351273

Table 2 Continuing training with the back-propagation algorithm.

#1 I t ’,‘;(,) flops
5 1729 0.0093 1713385
4 1006 0.0096 476024

To illustrate some of the observations that are made at the end of Section VI,
the weights and the outputs of a neural network found via the Quadratic
Optimization Algorithm are presented. For the neural network with 5 hidden
layer neurons, the output layer weights found using the Quadratic Optimization
Algorithm for 1 iteration and those found using the back-propagation algorithm
for 1729 iterations are

wzQ0A=[10.7469 53.1767 499710 16.5357 21.8128 0.5822]

WZBPA = [-0.3481 03337 0.0400 0.0223 0.0016 0.1508]".
As described previously, the weights for the output layer may be large, and they
are for this case. However, in the simulations using the training sets of the other
examples, these values may be several orders of magnitude larger than the ones
for this extended XOR example.
As another comparison for the neural network with 5 hidden layer neurons,
the outputs of the neural network found using the Quadratic Optimization

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” Proco fI SCA S,
San Diego, CA, May 10-13, 1992.

Algorithm for 1 iteration and those found using the back-propagation algorithm 88— .

for 1729 iterations are

Yooa = [0.0079 -0.0256 -0.0554 0.0170 0.1238 -0.1056 -0.0906 0.1233] .
and Tk
Yppa = [0.0531 -0.0802 -0.0789 0.0514 0.1526 -0.0809 -0.0783 0.1165])) -
where the magnitude of the desired output is 0.1. Clearly, the neural network . L " C E
trained with the Quadratic Optimization Algorithm did not achicve the desired 6F . q o
neural network outputs but did achieve the desired mapping for the classification :
training set. For this reason, it is recommended that the Quadratic Optimization
Algorithm be used for classification problems and not for general function
approximation problems. However, even though the exact desired outputs may
not be achieved using the Quadratic Optimization Algorithm, the resulting ncural
network does have desirable gencralization properties for classification training
sets as illustrated in the following example.

Example 2

In a square of size (0, 8] x (0, 8}, consider a circle of radius 2 centered at (4.
4). Let the input patterns be points inside the square. 1f the input pattern lics 2’_
inside the circle, the corresponding desired output is 1, and if the input pattern
lies outside the circle, the corresponding de-ired output is -1. 289 training
patterns are chosen at random with a uniform distribution over the [0, 8] x {0, 8]
square region and are depicted in Figure 1. Thus, U e R¥** andd e R®*. A
two-layer neural network is provided with #1 = 30. The hyperbolic langent o
function is used as the nonlinearity for the hidden layer's neurons, and the 0 "

). .

: . -
signum function is used as the nonlinearity for the output layer's neurons. The 0 1 2 3 4 5 6 7
neural network is trained with the Quadratic Optimization Algorithm, which is
implemented in MATLAB on a Sun Sparc Station using a program that is not
optimized. Steps 5) and 7) of the algorithm are solved using MATLAB's psuedo-
inverse function. Since the signum function is the output layer's nonlinearity,
the vector v~ is chosen such that VZ(J) = 0.1(d(j)) for 1 < j < 289. The weights for

the neural network are chosen at random in the interval [-1/30, 1/30] such that

A
F(0) = 3.7221. After applying the Quadratic Optimization Algorithm for one

iteration requiring 14725850 floating point operations, %(1) = 03472 and the
training set is almost arbitrarily correctly classified. To test the generalization
ability of the result, the neural network is probed with 1089 randomly chosen
patterns. The resulting output is displayed in Figure 2. The trained neural
network clearly generalizes well over the input space.

VHI CONCLUDING REMARKS

A new method based on the minimization of a quadratic function is presented
for the training of a single neuron, a single-layer neural network, and a multi-
layer neural network. The training procedure for the single neuron can be
immediately applied to the single-layer neural network case but not to the multi-
layer neural network case since there do not exist known desired outputs for the
neural network's hidden layers. By using the concept of back-propagating the
output error to the hidden layers, desired outputs are approximated for the hidden
layers, and the results for the single-layer neural network are applied to each of
the hidden layers. The training of a2 mulii-layer neural network via the described
Quadratic Optimization Algorithm tends to work best for classification problems
and tends to achieve good results in a single iteration. o S e .

The results reported in this paper also appear in {1] and [2], which is an - o T L
expanded version of this paper. ey N .

ACKNOWLEDGEMENTS 0 1 2 3 ‘4 5' ' 6
The authors wish to acknowledge the partial support of the Jet Propulsion
Laboratory (Contract Number 957856).

Figure 2 Testing the trained neural network.

REFERENCES

m Sartori M.A., Feedforward Neural Networks and Their Application in the
Higher Level Control of Systems, Ph.D. Dissertation, Department of
Electrical Engineering, University of Notre Dame, April 1991.

{2) Sartori M.A., Neural Network Training Via Quadratic Optimization,
Technical Report #90-05-01, Department of Electrical Engineering,
University of Notre Dame, May 1990, Revised April 1991.

(3] Gill P.E., Murray W., Wright M.H., Practical Optimization, Academic
Press, New York, 1981.

[4] Bazaraa M.S., Sheuty C.M., Nonlinear Programming: Theory and
Applications, Wiley, New York, 1979.

(5] Rumelhart D.E., Hinton G.E., Williams R.J., "Learning Internal
Representations by Error Propagation,” in Rumelhart D.E., McClelland
J.L., eds., Parallel Distributed Processing: FExplorations in the
Microstructure of Cognition, vol. 1: Foundation, pp. 318-362, MIT
Press, 1986.

52

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 20:54 from IEEE Xplore. Restrictions apply.

