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Control theory approach
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Indiana 46556, USA

Abstract

The control of complex dynamical systems is a very challenging problem
especially when there are significant uncertainties in the plant model and the
environment . Neural networks are being used quite successfully in the control
of such systems and in this chapter the main approaches are presented and the
advantages and drawbacks are discussed. Traditional control methods are
based on firm and rigorous mathematical foundations, developed over the last
hundred years and so it is very desirable to develop corresponding results when
neural networks are used to control dynamical systems.

1. INTRODUCTION

Problems studied in Control Systems theory involve dynamical systems and
require real time operation of control algorithms. Typically, the system to be
controlled, called the plant, is described by a set of differential or difference and
perhaps nonlinear equations; the equations for the decision mechanism, the
controller, are then derived using one of the control design methods. The
controller is implemented in hardware or software to generate the appropriate
control signals; actuators and sensors are also necessary to translate the
control commands into control actions and the values of measured variables
into appropriate signals. Examples of control systems are the autopilots in
airplanes, the pointing mechanisms of space telecommunication antennas,
speed regulators of machines on the factory floor, controllers for emissions
control and suspension systems in automobiles, controllers for temperature
and humidity regulators at home, to mention but a few. The model of the plant
to be controlled can be quite poor either because of lack of knowledge of the
process to be controlled, or by choice to reduce the complexity of the control
design. Feedback is typically used in control systems to deal with uncertainties
in the plant and the environment and achieve robustness in stability and
performance. If the control goals are demanding, that is the control
specifications are tight, while the uncertainties are large then fixed robust
controllers may not be adequate. Adaptive control may be used in this case,
where the new plant parameters are identified on line and this information is
used to change the coefficients of the controller. The area is based on firm
mathematical foundations, although in practice engineering skill and
intuition are used to make the theoretical methods applicable to real practical
systems, as it is the case in many engineering disciplines.



Intelligent Autonomous Control Systems. In recent years it has become quite
apparent that in order to achieve high autonomy in control systems, that is to
be able to control effectively under significant uncertainties even for example
when certain types of failures occur (such as faults in the control surfaces of an
aircraft), one needs to implement methods beyond conventional control
metheds. Decision mechanisms such as planning and expert systems are
needed together with learning mechanisms and sophisticated FDI (Failure
Diagnosis and Identification) methods. One therefore needs to adopt an
interdisciplinary approach involving concepts and methods from areas such as
Computer Science, Operations Research in addition to Control Systems and
this leads to the area of Intelligent Autonomous Control Systems; see Antsaklis
and Passino (1992a) and the references therein. A hierarchical functional
intelligent controller architecture, as in Fig. 1, appears to offer advantages;
note that in the figure the references to pilot, vehicle and environment ete come
from the fact that such functional architecture refers to a high autonomy
controller for future space vehicles as described in Antsaklis and Passino
(1992b) and Antsaklis, Passino and Wang (1991). A three level architecture in
intelligent controllers is quite typical: The lower level is called the Execution
level and this is where the numerical algorithms are implemented in
hardware or software, that is this is where conventional control systems
reside; these are systems characterized by continuous states. The top level ie
the Management level where symbolic systems reside, which are systems with
discrete states. The middle level is the Coordination level where both
continuous and discrete state systems may be found. See Antsaklis and
Passino (1992b) and the references therein for details.

Pilot and Crew/Ground Station/OnBoard Systems

'

Management and : Upper Manag ‘
ization Level Control Executive Decision Making and
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. Adaptive Control & | Algorithms in
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Figure 1. A hierarchical functional architecture
for the intelligent control of high autonomy systems

Neural Networks in Control Systems. At all levels of the intelligent controller
architecture there appears to be room for potential applications of neural
networks. Note that most of the uses of neural networks in control to date have
been in the Execution and Coordination levels - they have been used mostly as
plant models and as fixed and adaptive controllers. Below, in the rest of the
Introduction a brief summary of the research activities in the area of neural
networks in control is given. One should keep in mind that this is a rapidly
developing field. Additional information, beyond the scope o_f this contnbut.lor_l.
can be found in Miller, Sutton and Werbos {1990), in Antsaklis (1990), Antsaklis
(1992) and in Warwick (1992), which are good starting sources; see also
Antsaklis and Sartori (1992).

It is of course well known to the readers that neural networks consist of
many interconnected simple processing elements called units, which have
multiple inputs and a single output. The inputs are weighted and_adQed
together. This sum is then passed through a nonlinearity called the activation
function, such as a sigmoidal function like fix) = 11 + ™) or f{x) = tanh(x), or
a gaussian-type function, such as f{x) = exp(-xz). or even a hal_-d ljmit.er or
threshold function, such as f{x) = sign(x) for x = 0. The terms artificial neural
networks or connectionist models are typically used te describe these
processing units and to distinguish them from biological networks of neurons
found in living organisms. The processing units or neurons are
interconnected, and the strength of the interconnections are denoted by
parameters called weights, These weights are adjusted, t‘lependmg on t_he tagk
at hand, to improve performance. They can be either assigned values via some
prescribed off-line algorithm, while remaining fixed during operation, or
adjusted via a learning process on-line. Neural networks are classified by their
network structure topology, by the type of processing elements used, and by the
kind of learning rules implemented. ) .

Several types of neural networks appear to offer promise for use in control
systems. These include the multi-layer neural network trained with the back-
propagation algorithm commonly attributed to Rumelhart et al, (1986), the
recurrent neural networks such as the feedback network of Hopfield (1982), the
cerebellar model articulation controller (CMAC) model of Albus (1975), the
content-addressable memory of Kohonen (1980}, and the gaussian node network
of Moody and Darken (1989). The choice of which neural ne‘t.v:rork to use a_nd
which training procedure to invoke is an important decision and varies
depending on the intended application. ) )

The type of neural networks most commonly used in contro} systems is the
feedforward multilayer neural network, where ne infqrmatlor} is fed bgck
during operation. There is however feedback information avall_able during
training. Supervised learning methods, where the neural network is trained to
learn input/output patterns presented to it, are typicaly used. Most often,
versions of the backpropagation algorithm are used to adjust the neural
network weights during training. This is generally a slow and very time
consuming process as the algorithm usually takes a long time to converge.
However other optimization methods such as conjugate directions and quasi-
Newton have also been implemented; see Hertz et al. (1991), Aleksander and
Morton (1990). Most often the individual neuron activation functions are
sigmoidal functions, but also signum or radial basie Gaussian functions. Note



that in this work the emphasis is on multilayer neural networks. The reader
should keep in mind that there are additional gystems and control results
involving recurrent networks, especially in system parameter identification;
one should also mention the work in associative memories, which are useful in
the higher levels of intelligent control systems.

One property of multilayer neural networks central to most applications to
control is that of function approximation. Such networks can generate
input/output maps which can approximate any continuous function with any
desired accuracy. One may have to use a large number of neurons, but any
desired approximation of a continuous function can be accomplished with a
multilayer network with only one hidden layer of neurons or two layers of
neurons and weights; if the function has discontinuities, a two hidden layer
network may be necessary-see below, Section 2.2. To avoid large numbers of
processing units and the corresponding inhibitively large training times, a
smaller number of hidden layer neurons is often used and the generalization
properties of the neural network are utilized. Note that the number of inputs
and outputs in the neural network are determined by the nature of the data
presented to the neural network and the type of output desired from the neural
network, respectively,

To model the input/output behavior of a dynamical system, the neural
network is trained usind input/output data and the weights of the neural
network are adjusted most often using the backpropagation algorithm. The
objective is to minimize the output error (sum of squares) between the neural
network output and the output of the dynamical system (output data) for a
specified set of input patterns. Because the typical application involves
nonlinear syestems, the neural network is trained for particular classes of
inputs and initial conditions. The underlying assumption is that the nonlinear
static map generated by the neural network can adequately represent the
system’s behavior in the ranges of interest for the particular application.
There is of course the question of how accurately a neural network, which
realizes a static map, can represent the input/output behavior of a dynamical
system. For this to be possible one must provide to the neural network
information about the history of the system-typically delayed inputs and
outputs. How much history is needed depends on the desired accuracy. There
is a tradeoff between accuracy and computational complexity of training, since
the number of inputs used affects the number of weights in the neural network
and subsequently the training time. One sometimes starts with as many
delayed signals as the order of the system and then modifies the network
accordingly; it also appears that using a two hidden layer network-instead of a
one hidden layer-has certain computational advantages. The number of
neurons in the hidden layer(s) is typically chosen based on empirical criteria
and one may iterate over a number of networks to determine a neural network
that has a reasonable number of neurons and accomplishes the desired degree
of approximation.

When a multilayer neural network is trained as a controller, either an open
or closed loop controller, most of the issues are similar to the above. The
difference is that the desired output of the neural network, that is the controller
generated appropriate control input to the plant, is not readily available, but
has to be derived from the known desired plant output. For this, one may use
the mathematical model of the plant if available, or some approximation based

on certain knowledge of the process to be controlled; or one may use a neural
model of the dynamics of the plant or even of the dynamica of the inverse of the
plant if such models have been derived. Neural networks may be combined to
both identify and control the plant, thus implementing an adaptive controiler,

In the above, the desired outputs of the neural networks are either known or
they can be derived or approximated. Then, supervised learning via the
backpropagation algorithm can be used to train the neural networks. Typical
control problems which can be solved in this way are problems where a desired
output is known. Such is the case in designing a controller to track a desired
trajectory; the error then to be minimized is the sum of the squares of the
errors between the actual and desired points along the trajectory. There are
control problems where no desired trajectory is known but the objective is to
minimize say the control energy needed to reach some goal state(s). Thia is an
example of a problem where minimization over time is required and the effect
of present actions on future consequences must be used to solve it. Two
promising approaches for this type of problems are either constructing a model
of the process and then using some type of backpropagation through time
procedure, or using an adaptive critic and utilizing methods of reinforcement
learning. These are discussed below.

Neural networks can also be used to detect and identify system failures, and
to help store information for decision making, thus providing for example the
knowledge to decide when to switch to a different controller among a finite
number of controllers.

In general there are potential applications of neural networks at all levels of
hierarchical intelligent controllers that provide higher degree of autonomy to
systems. Neural networks are useful at the lowest Execution level where the
conventional control algorithms are implemented via hardware and software,
through the Coordination level, te the highest Organization level, where
decisions are being made based on possibly uncertain andfor incomplete
information. One may point out that at the Execution level, the conventional
control level, neural network properties such as the ability for function
approximation and the potential for parallel implementation appear to be mest
relevant. In contrast, at higher levels, abilities such as pattern classification
and the ability to store information in a say associative memory appear to be of
most interest.

When neural networks are used in the control of systems it is important
that results and claims are based on firm analytical foundations. This is
especially important when these control systems are to be used in areas where
the cost of failure is very high, for example when human life is threatened, as
in aircraft, nuclear plants ete. It is also true that without a good theoretical
framework it is unlikely that the area will progress very far, as intuitive
invention and tricke cannot be counted on to provide good solutions to
controlling complex systems under high degree of uncertainty. The analytical
heritage of the control field, was in fact pioneered by the use of a differential
equation model by J.C.Maxwell to study certain stability problems in Watt’s
fiyball governor in 1868, and this was a case where the theoretical study
provided the necessary knowledge to go beyond what the era of Intuitive
Invention in control could provide.

In a control system which contains neural networks it is in general hard to
guarantee typical control systems properties such as stability. The main



reason is the mathematical difficulties asscciated with the study of nonlinear
systems controlled by highly nonlinear neural network controllers-note that the
control of linear systems is well understood and neural networks are typically
used to control highly nonlinear systems, In view of the mathematical
difficulties encountered in the past in the adaptive control of linear systems
controlled by linear controllers, it is hardly surprising that the analytical study
of nonlinear adaptive control using neural networks is a difficult problem
indeed. Some progress has been made in this area and certain important
theoretical results have begun to emerge, but clearly the overall area is still at
its early stages of development.

In Section 2, the different approaches used in the modeling of dynamical
systems are discussed. The function approximation properties of multilayer
neural networks are discussed at length, radial basis networks and the
Cerebellar Model Articulation Controller (CMAC) are introduced and the
modeling of the inverse dynamics of the plant, used in certain control methods
is also discussed. In Section 3, the use of neural networks as controllers in
problems which can be solved by supervised learning are discussed; such
control problems for example would be following a given trajectory while
minimizing some output error. In Section 4, control problems which involve
minimization over time are of interest; an example would be minimizing the
control energy to reach a goal state-there is not known desired trajectory in this
case. Methods such as back propagation through time and adaptive critic with
reinforcement learning are briefly discussed. Section 5 discusses other uses of
neural networks in the failure detection and identification area (FDI), and in
higher level control. Sections 6 and 7 contain the concluding remarks and the
references respectively.

2. MODELING OF DYNAMICAL SYSTEMS
2.1 Modeling the dynamics of the plant

In this approach, the neural network is trained to model the plant's
behavior, as in Fig. 2. The input to the neural network is the same input used
by the plant. The desired output of the neural network is the plant's output.

Neural
Network

Figure 2. Modeling the plant's dynamics.

The signal e = y - ¥ from the summation in Fig. 2 is the error between the

E |

plant's output and the actual output of the neural network. The goal in
training the neural network is to minimize this error. The method to
accomplish this varies for the type of neural network used and the type of
training algorithm chosen. In the figure, the use of the error to aid in the
training of the neural network is denoted by the arrow passing through the
neural network at an angle. Once the neural network has been successfully
trained, it is actually an analytical model of the plant that can be further used
to design a controller or to test various control techniques via s:m_ulatnon of this
neural plant emulator. This type of approach is d:scum‘aed in Section 3.

In Fig. 2, the type of plant used is not restricted. The plant could be a very
well behaved single-input single-output system, or it could be a nonlinear
multi-input multi-output system with coupled equations. The actual plant or a
digital computer simulation of the plant could be used. The .plant. may also
operate in continuous or discrete time; although for training the neural
network, discrete samples of the plants inputs and outputs are often used. If
the plant is time-varying, the neural network .clear_ly needs to be gpdated on-
line and so the typical plant considered is time invanant or if tit is time varying
it changes quite slowly. The type of information supplied to the neu_ral ngtwork
about the plant may vary. For instance, the current input, previous inputs,
and previous outputs can be used as inputs to the qeura] network. This is
illustrated in Fig. 3 for a plant operating in discrete time. The boxes w1t:h the
"A" gymbol indicate the time delay. The bold lines stress the fact that qlgna].a
with varying amounts of delay can be used. The plant's states, derivatives 9f
the plant's variables, or other measures can be used as .t.he neural network's
inputs. This type of configuration ie conducive to training a neural network
when the information available about the plant is in the form of an input-output
table.

uck)

Neural
Network

Figure 3. Modeling the discrete time plant’s dynamics using delayed
signals.

Training a neural network in this manner, by using input-output pajrs, car
be viewed as a form of pattern recognition, where the neural network is being
trained to realize some (possibly unknown) relation between two sets. If &
multi-layer neural network is used to model the plant via the configuratior
depicted in Fig. 3, a dynamic system identification can be performed with i



static model. The past history information needed to be

dynamic systems via a static model is provided by delayed i:l;:ft t;;'nclln :ﬁalau:
signals. If the back-propagation algorithm is used in conjunction with a multi-
layer neural network, considerations need to be made concerning which
among the current and past values of the inputs and outputs to utilize in
training the neural network; this is especially important when the
identification is to be on line. In Narendra and Parthasarathy (1990) it is
shown t.haj. when a series-parallel identification model is used (and the
corresponding dela_yed signals), then the usual backpropagation algorithm can
be employed to train the network; when however a parallel identification model
i8 used tl.xen a recurrent network results and some type of backpropagation
through time, see Section 4, should be used. A moving window of width p time
steps could be employed in which only the most recent values are used. An
important question to be addressed here concerns the number of delays of
previous inputs and outputs to be used as inputs to the neural network; most
?t?ifil:a lt.]l;e number of delays is taken to be equal to the order of the plant, at least
 If there is some apriori knowledge of the plant's operation, thi
incorporated into the training. This knowledg]; can be%mbeddéd insasﬁ?:;ig- l())i
nonlinear mgdel of the plant, or incorporated via some other means; see Sartori
and An_tsgkhs ( 1992:3). A possible way of utilizing this information via a plant
model ig illustrated in Fig. 4; this can be viewed as modeling the unmodelled
dynamics of the plant with a neural network,

Parallel f
Plant Model ¥

et

Neural
Network :

“mmmaaa

>

Figure 4. Using apriori knowledge of the plant.

Modeling the plant’s behavior via a multilayer sigmoidal neural
has been studied by a number of researchers; sei amo%’nr; others Naren[:i‘:';w:;g
Parthasarathy (1990), Parthasarathy (1991), Bhat et al (1990), Qin, Su and
McAvoy (1992), Hou and Antsaklis (1992). In general, the results Bl;OW that
neural networks can be very good models of dynamical systems behavior. This

is of course true for stable plants, for certain ranges of inputs and initial
conditions and for time invariant or slowly varying systems.

22 Function approzimation

Neural neiworks are useful as models of dynamical systems because o
their ability to be universal function approximators. In particular, it turns oul
that feedforward neural nets can approximate arbitrarily well any continuous
function; this in fact can be accomplished using a feedforward network with ¢
single hidden layer of neurons with a linear output unit.

More specifically, consider the nonlinear map g: R™ =+ R where
n
glu) = Tw;l S(w'a) (1)
i=1

with w € R™ the input vector, w' = [w;], ..., Wj,] the input layer weights anc
w;l the output layer (first layer} weights of unit i. 5{(.) is the unit activatior
function. Such maps are generated by networks with a single hidden layer anc
a linear output unit. Consider now S(x) to be a sigmoid function, defined as ¢
function for which limy_e S(x) = 1 and limy_, .. S(x) = 0. Hornik ef al. (1989
has shown that when the activation sigmoid function 3(x) i8 non-decreasing
the above net can approximate an arbitrary continuous function flu) uniformls
on compact sets; in fact it is shown that the set of functions g above is dense ir

the set of f, the continuous functions mapping elements of compact sets in R"
into the real line. Cybenko (1989) extended this result to continuous activatior
sigmoid functions S(x); Jones (1990) showed that the result is still valid wher
8(x) is bounded. Typical proofs of this important approximation result ar
based on the Stone-Weierstrass theorem and use approximations of ths
function via trigonometric functions, which in turn are approximated by sum
of sigmoidal functions. Similar resulte have appeared in Funahashi (1989)
among others. An important point is that the exact form of the activatior
function S(x) is not important in the proof of this result, however it may affec
the number of neurons needed for a desired accuracy of approximation of &
given function f. These results show that typically one increases accuracy by
adding more hidden units; one then stops when the desired accuracy has beer
achieved. It should be noted that for finite number of hidden units, depending
on the function, significant errors may occur; this reminds us of the Gibb
phenomenon in Fourier Series. How many hidden units then one needs in th
hidden layer? This is a difficult question to answer and it has attracted mucl
attention. Several authors have shown (with different degrees of ease ang
generality) that p-1 neurons in the hidden layer suffice to store p arbitran
patterns in the network; see Nilsson (1965), and Baum (1988), Sartori anc
Antsaklis (1991) for constructive proofs. The answer to the original questio
also depends of course on the kind of generalization achieved by the network
also note that certain sets of p patterns may be realizable by fewer than p-
hidden neurcns. The question of adequate approximation becomes mor
complicated in control applications where the functions which must b
approximated by the neural network may be functions that generate the contro
signals, the range and the shape of which may not be known in advance
Because of this, the guidelines to select the appropriate number of hidder
neurons are rather empirical at the moment.



The above discussion dealt with continuous functions f, which can be
approximated by a neural network with one hidden layer of neurons. When the
function under consideration has discontinuities, then two hidden layers may
have to be used; Cybenko (1988), Chester (1990), Sontag (1990). In control
considerations, Sontag has pointed out that one may need a two hidden layer
neural network to stabilize certain plants. It is true of course that a two hidden
layer network can approximate any continuous function as well. In addition,
experimental evidence tends to show that using a two hidden layer network has
advantages over a one layer as it requires shorter training time and overall
fewer weights. Because of this a two hidden layer network is many times the
network of choice.

There are many other issues relevant to function approximation and control
applications, such us issues of network generalization, input representation
and preprocessing, optimal network architectures, methods to generate
networks, methods of pruning and weight decay. These topics are of great
interest to the area of neural networks at large, and a number of these are
currently attracting significant research efforts. We are not directly

addressing these topics here; the interested reader should consult the vast
literature on the subject.

23 Radial basis networks

To approximate desired functions, networks involving activation functions
other than sigmoids can be used. Consider again a feedforward neural
network with one hidden layer and a linear output unit. Assume that the
hidden neurons have radial basis functions as activation functions, in which

case the neural network implements the nonlinear map g R™ - R where
n

glu) = .zlwil Glira - ¢jl) (2
1=

with u € R™ the input vector and wil the output layer (first layer) weights of
unit i, G(.)is a radially symmetric activation function, typically the Gaussian
function

G(hu - ¢;n) = exp ( -s; la - ¢;1i2) (B3]

where & =1/0;2. The vectors ¢; i = 1,...,n are the centers of the Gaussian
function and if for a particular value of the input u =¢; then the ith unit gives

an output of +1. The deviation o; controls the width of the Gaussian and for

large llu - ¢;u, more than 3 o, the output of the neuron is negligible; in this way,
practically only inputs in the locality of the center of the Gaussian contribute to
the neuron output . It is known from Approximation Theory, see for example
Poggio and Girosi (1990), that radially symmetric functions, as g(u) above, with
appropriate values for the coefficients in fact minimize the sum of the squares
of the errors between g(c;) and some desired value subject to certain
smoothness constraints. It is then hardly surprising that single hidden layer
neural networks with gaussian hidden units and linear output unit, can
approximate any continuous fuction f as it was the case when sigmoidals were
used. The Stone-Weierstrass theorem can be utilized to prove this result,

namely that g(u) above can approximate any continuous function f: R™ - R

bi

on compact sets. The issue now is how to select the‘ weights wil , centers ¢;
and deviations s; to achieve some desired approximation. For' large number .Of
points methods from pattern recognition can be used bo‘debermme c; ands; ;in
Moody and Darken (1989) k-means clustering algorithms are uselgl for t.hﬁ
centers and P nearest neighbor algor'-ltl.:.ms for the dewgt:lon;a. lur ;’ﬁ 1
number of points the centers and deviations can be empx:llcal y hﬁ: ecte to
satisfy the problem requirements Parthgsarathy _(1991); an go;n. is giv n
in Sartori and Antsaklis (1991b) to qahsfy certain constraints _e;.l\::et;) gtl,vt?
points (see also Sartori and Antsaklis (1992) for similar algorit hs ube0;
networks involving sigmoids). After the centers and the deviations a\rfe1 e‘t
decided upon, the problem is linear with respect to the output weigths w;l as i
is clear from the expression for g above. This can be used to advantatﬁe as t.:l‘;l‘:
linear system identification results _may_be used to derive c{n‘ova yfs" le
adaptive control systems; this line of inquiry hae been pursued successfully
Parthasarathy (1991) and elsewhere.

241\1%?1%&3975) introduced the Cerebellar Model Articulation Controller

(CMAC), which is briefly described below. CMAC networks havelbee_n ga_lmn]g
popularity in control applications egpecxally in robotics, but a C?)O ;{r} s&gnid,
speech and image processing; see Miller, Glanz and Kraft (1990), tha a d
Campagna (1990). The main reasons for‘the appeal ot: the CMAC are t t: spe_i
of training and the fact that it can be inplemented in hardwarg quite easi {
using logic cell arrays; note also that CMAC accepts real numbers alq mtpu
and outputs also real numbers and t:hat it exhibits lpcal geréezl-)a iza ;gn
properties. However, the size of required memory, which coqlfﬁ uft'm e
thousands, and the collisions caused by Hash coding may cause de ¢ 1es.t.

The input to CMAC is quantized and mapped to 8 number (C) of co_nsq(f:iu m:
association cells; C may be for example 32, 256 or‘larger. 'Therells E;ng}]:h cf[‘l
overlap between the association cells excited by different 1.nputi) evels; b: 1?
each association cell, also called state-space glebgctor, is excited y & num “r 95
input levels. Overlap determines generalization. Each asgoc:atmnl ce t.l
assigned an address which is then mapped via gome Hagh coding to adpfga wr:
in a memory where the weights are stored. Coll!smns occur when t“;‘oal 11 ertein
association cells are mapped to the same location. The welght‘s 0 active
memory locations are then summed to produce the output. That is

. ; (4)
yi =& getive Wi X;J

where x;jis 1 for i active and 0 otherwise; w;is the weight in the ith memory
location and the superscript j denotes the jth input pattern or leve!. In CM}?C
networks, the training algorithms determine tbe weights; all ot er
paramete;'s C, overlap, pize of memory etc are deglg'n parameters fixed in
advance. T;) determine the weights, supervised learning methodg, .ty-pr:ally the
least mean square (LMS) training rule, are used. Each training input w
produces a vector xj of 18 and 0s which indicate the memory locations that have
been excited; this is determined by the fixed interconnections. Then the
weights are updated by the LMS rule
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Aw = n(di-w'xijlxij )

where di is the desired output. For convergence results see Wong and Sideris
(1992).

CMAC networks are being used in control systems to implement adaptive
controllers; the speed of convergence of the training algorithm aliows the use of
CMAC on line for adaptive control. They are also being used to model
dynamical systems, to implement fuzzy controllers etc. One should expect to see
more applications of CMAC in the future.

25 Models of inverse of the plant

Instead of training a neural network to identify the forward dynamics of the
plant as discussed in Section 2.1, a neural network can be trained to identify the
inverse dynamics of the plant as illustrated in Fig. 5. This type of model is
useful in certain control approaches as discussed in the next section. The

neural network's input is the plant's output, and the desired neural network
output is the plant's input.

Figure 5. Modeling the plant's inverse dynamics,

The error e = u - 4 is to be minimized and can be used to train the neural
network. The type of neural network and the training algorithm used are not
restricted. The plant can be continuous or discrete and can also be single-input
single-output or multi-input multi-output. The desired output of the neural
network is the current input to the plant. The type of information used by the
neural network to model the inverge dynamics of the plant may vary. For
instance, the neural network's inputs may contain the current and previous
outputs and the previous inputs of the discrete time plant, as illustrated for the
neural network plant emulator in Fig. 3. In addition, other signals, such as
the plant's states, derivatives of the plant's variables, or other measures can
also be used as inputs to the neural network. When modeling the inverse
dynamics of the plant with a neural network, the assumption is being made,
either implicitly or explicitly, that the neural network can approximate well the
inverse of the plant. This of course means that the inverse exists and it is
unique; if not unique then care should be taken with the ranges of the inputs to
the network. It also means that the inverse is stable,

3. CONVENTIONAL CONTROLLERS AND SUPERVISED LEARNING

network can also be used as a conventional controller in both oper
loo: :glérat;llosed loop configurations. Because of its ability to ad_u]mlt ite
parameters via training, it can in principal implement adaptn_ve_con:;-o i}v:';
For on line implementation the speed of convergence of the traaumn%1 gpnﬁ |
is of course of great importance. Its use as an open loop controller is firs
examined. ) ) dthe

rol. There are cases in control where t.hg plant is stgble and |
gx}:g:riglo!‘:tﬁl:: the plant parameters and the external disturbances is neghg:blls
and can be ignored. Then open loop control, also called feedforward c.ont.r(;I
may be appropriate and neural networks can then be used in thal:: capacity. b
this case one may try to approximate the inverse of the plant, if this is possible
aiming to achieve the so called ideal control situation. I}Iote that in tl.he tr'am;xl:;
of the neural network to model the inverse dynamics of the p anl: in tl:
previous section, the purpose often is to use the trained neural network exa%h_
as a feedforward controller for the plant in an open loop conﬁguraﬁ.lon. Th"
desired output of the plant is the input to the neural network contro] er, il
method is quite popular gmong researchers attempting to apply neura
control of robot arms. ) .

net}:&r;l;:;o o:'htiaining the neural network to mode! the inverse dynamics ofl th
plant, as in Fig. 5, the neural network can be trained directly as an open looj
controller. This is shown in Fig. 6.

Neural
Network

Controller

Figure 6. Error back-propagated through plant for an open loop controller.

The error e = yq - ¥ is used to train the neural network. In thi

ion, there does not exist a desired cutput for the neural network, an
Eﬁgigr:;?tinformation must be "back-propagated” through the plant Lo acco;;in
for this. The arrow passing through both the‘ pl.ant gnd the controlle
represents the back-propagated error. Note that th1s_s:t.uat10n 9]wgys angfast }1:
both open and closed loop control whenever supervised learmqg is used;
desired neural network output is not known and must be deter:mpt;ld to ;:seﬁaa
the backpropagation algorithm. For the backpl_'opagatmn algont. m the t;g
derivative of the plant output with respect to thp input to the plant is ctlum;:u
This can be approximated by slightly changing the input to t.l'}e phan an
determining the plant's new output. In using this a"pproach to train the neulrtq
network, the plant can be thought of as being the "output layer” of the mu i
layer neural network. Similarly if the mathematical model of the plarllt i
available then these derivatives may be calculated directly. Alternatively,
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neural network model of the plant can also be used. If a multii-layer neural
network is trained to emulate the plant as described in Sect. 2.1, the error can
be back-propagated through the neural network model quite easily. If of course
the model of the inverse of the plant is available then one can propagate the
error forward in the neural network model.

Closed loop control. The use of a neural network in a closed loop configuration
as a simple unity or error feedback controller is illustrated in Fig. 7.

A

c 4
Network
Controller

Figure 7. Neural network controller in a conventional closed loop
configuration.

Note that the feedback is not restricted to output feedback, state feedback
could also be used, and the desired output y4 can be zero as in a regulator loop.
As previously discussed, signals, other than e, can also be used as inputs to the
neural network. Note that the desired output of the neural network must be
determined, from the known desired plant output, before any supervised
learning algorithm such as the backpropagation algorithm can be used.
Methods to accomplish this were discussed in the open loop control case above.

Once trained, the neural network controller can be updated on-line to cope with

unforeseen situations or with a slowly time-varying plant. The neural network

can also be trained to be a part of an existing control structure; for instance, as
part of an internal model control scheme or in conjunction with a PID
controller. For this application, the neural network is trained to perform an
operation or to augment the operation of an existing controller. The issues
involved however are the same as in the case of the simple unity feedback
controller shown in Fig. 7.

As another application of a neural network controller, the neural network
can be trained to mimic an existing control law, This is illustrated in Fig. 8.

Neurs
Network

Conll

e>

Figure 8. Neural network trained to mimic existing controller.
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This use for a neural network is plausible if t&}:ﬁ cont::;{l:r &\;ﬂ:el:.ll_gl ixr:e::r?) :!:
i iable. In additien, r :
for example too expensive or unrel;qb e t e neura’ nebwor
usted via training thus g
has replaced the current controller, it can t.lf 8 Bt T e e o
into account variations in the plant and the envi . kL , the
is gi i the current controller, an
neural network is given the same inputs as th nt controller, onc whe
i al network output is the output of the curre :
gf? irﬁgu?':r;etwork is equivalent to the design and use ;f an exl:)e‘:::-ltl ?i)::st:r?i) :3
capture the reasoning processfof an :x;l)frt.' Iil?::; gt;lh:‘;. :o eu:?:i;ﬁals lescribed
in Fig. 8 is quite versatile. If a controller 18 ¢ e o the
i ilable or too expensive to measure .
B O ot b dirctly i ted: however, if a neural network can be
controller can not be directly implemented; o if v ork can be
i troller using different signals,
trained to emulate the already designed con ferent sl
tual controller for the plant.
neural network can then be used as the ac pontroller for the plant.  ready
It is also possible to use a neural contreller in p. llel with &n already
isti troller to enhance its operation as it was me .
:ﬂ(;s;z%rg?r;ction has deteriorated because of aging or damage to the pl:T;ntrol
Model reference control. Besides traim;llag aL m:urgl er‘;e::v:;gut; Tl:ﬁiro control
al network controller can alse be trained the e
}:1‘:;’1:11:1 ifp tﬁ)uerplant compared to a reference model as illustrated in Fig. 9.

Neural j
Network H
Oonolle. I

Figure 9. Model reference control. Error propagated through plant.

i t be determined in

ain the desired neural cont‘roller output mus !

ordgett.z 3§elthe backpropagatiuél uallgonth‘:inéo t:c?;u;i :ll:: ‘:g;; t:l:f?tt‘,hl;enl;ﬁitl

e
propagated through the pl'ant and then us 2 ol rradalongmigioy
ller. As discussed previously, the gra f :
:et‘:g;lii;:ﬁ;oby varying the plant's inputs and measuring th_er rem'}ltll:llg
m]:Eput.s or be calculated from the mathematical ]r:wdel ﬁf; .tllxen plant rl'ala;?t: b :]i
i i i lled with a multi-layer neu

Alternatively, if the plant is first mode T 8 e the alont

as discussed in Sect. 2.1, this neural network ca !  plant
ini troller, and the back-propagatio

for the training of the neural network con » and Dack propagation of

h the plant emulator can then be accompl :
g]:tlﬁg?: ut:e?:lfg a neural model of the mvu;rse of t(,lhg plant;;i lesl azi?‘:al::::ecé control
i hat neural networks can be used in modc
onIf:' mrac:ieoar:'s t‘ot.';ner than the one shown in Fig. 9: ’_I‘he isgues are the sam:
:.nd tghue difficulties and problems encountered are similar. As a side comment,
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by using a sigmoidal nonlinearity at the output of the neural network, the
saturation property of most actuators that follow the controller can be
accommodated, since the range of the sigmoid function is from -1 to +1
(tanh(x)) and can be appropriately shifted and scaled.

There are many references of successful neural controllers; see for example
Antsaklis (1990 and 1992), Chen (1990), Hou and Antsaklis (1992), Kana and
Guez (1989), Kraft and Campagna (1990), Miller, Sutton and Werbos (1990),
Narendra and Parthasarathy (1990), Ungar, Powell and Kamens (1990), Ydstie
(1990).

4. CONTROL OBJECTIVES OVER TIME AND REINFORCEMENT
LEARNING

In all the control problems considered in the previous section a desired
trajectory of the plant output was known. This meant that the desired outputs
of the neural networks were either known or they could be derived or
approximated, and supervised learning via the backpropagation algorithm
could be used to train the neural networks. Typical control problems of this
type are the regulation and the tracking problems where the plant output must
follow a given trajectory. When the desired plant trajectories are not known
then supervised learning methods cannot be used to train the neural networks.
This is the case for example when the control objective is to minimize the
control energy needed to reach some goal state(s). This is an example of a
problem where minimization over time is required and the effect of present
actions on future consequences must be determined to solve it. Two approaches
may be used to address this type of problems: either constructing a model of the
process and then using some type of backpropagation through time (BTT)
procedure, or using an adaptive critic and utilizing methods of reinforcement
learning.

Backpropagation through time (BTT). The basic backpropagation algorithm is
an efficient way to calculate the derivatives of the (output) error with respect to
a large number of input variables in a feedforward network. BTT extends this
method to recurrent networks; see Werbos (1990). BTT is in effect a
computationally more efficient first-order calculus of variations. This method
uses noise free models to calculate the derivatives of future utility with respect
to present actions. BTT can be derived from the basic backpropagation
algorithm by unfolding an arbitrary recurrent net into a multilayer
feedforward net that grows by one layer at each time step; the algorithm takes
its name from the fact that the computation of the error derivatives is based on
information propagating from later times to earlier times in the recurrent
network. This method is difficult to use in its general form, however specific
successful applications have been reported; see for example the robot arm
applications of Kawato (1990) and the truck backer-upper of Nguyen and
Widrow (1990).

Adaptive critic. It consists of two networks, the action network which is the
neural network controller of Fig. 10 below, and the critic network which may or
may not be a neural network. It approximates the dynamic programming
solution to the problem and it performs well in noisy environment and with
inexact models; see Barto (1990). The critic guides how the controller is
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; it generates a performance index J and the controller is rewarded
ﬁnaél::eﬂ:d:a cogtrol u leads It,f larger J and punished when u leads to sn;]aller‘J‘ in
the next time step. The neural controller needs the gradient of the cntlcelt
evaluation J with respect to the contr9l signals. One could use a nem-:;f
network model of the plant together with the critic for the derivatives. ]
however only values of performance J but not derivatives are available, as it is
the cage when a model of the evaluation procese is not ava;lable. the denvat‘ljvig
must be estimated. In this case reinforcement learning could be us:h
advantage. In reinforcement learning, contrary to gupemsed learr_nng, nlere
is no knowledge of the desired output and the learning system rece:lvzs_ﬁ nly a
measure of performance; see Barto (1990) and Sutton, Barto, an 111 iama
(1992). Note that when supervised learning can be used, it is much more
efficient than reinforcement learning.

Network
Contmlcr

Figure 10. Adaptive critic used to adjust neural network controller.

i he critic one must be able to determine the current performance
80 '3;0 g:\ig:}dtor punish the controller, based on properties of future p:an:
behavior. Optimal control requires accurate plant model and large am?;}n 8 O
computation or mathematical tractability of the model and of the o cht:l\;e
function to obtain an analytical solution and this is not usuqlly posqlblg. ll: Aﬁ
70s the problem of subgoal performance measures was studied, whx}efm the
literature progress in the problem of credit-assignment for rem_orcetfg:}t:l
learning has been reported; these are problems related to the design 3 €
critic network and along simi]ar;ines of inquiry progress has been made-see¢

for a comprehensive discussion. )

Ba%?l??(?l?l){i of courstf develop a model of t._he ]_)lant and then use conventional
dynamic programmic to solve these minimization over time control problems
or one could develop a space/time model anfi use B’I‘_T. These model baseg
methods however are not necessarily effective with inaccurate quels an]
noisy environments. Most often one needq some e'xplora_taory search ll]l contro
space, search which one typically associates with requrcement ear:;:ng
methods. So the adaptive critic and reinforcement learning methods s olu
great promige; additional progress needs to be made before it is clearly
demonstrated that this is the best way to address these optimization over time

control problems.
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6. FDI, AND HIGHER LEVEL DECISION MAKING

Neural networke discussed in this section are used in the control of the
plant, but are not actually in the conventional control loop, per se. As described
in Antsaklis and Passino (1992b), see also the Introduction above, they perform
some higher level decision making tasks in a manner which adds more
autonomy to the system. This configuration is illustrated in Fig. 11. The
neural network becomes a high level decision maker and is not directly
involved in determining the input to the plant. Instead, the neural network
supplies to the controller information to properly form centrol signals for the
plant. This may require adapting the controller based on the information
provided by the neural network and in that sense there are similarities between
this method and the adaptive critic discussed above when the critic is
implemented as a neural network. In Fig. 11, the neural network's inputs are
the desired output of the plant, and the actual input and output of the plant. As
previously discussed, this can be extended to include other signals as well.
This configuration also does not preclude the use of a reference model. The

output of the neural network is a signal that is useful for the control of the
plant.

11_.(?_.e
+

Figure 11. Neural network used as a high level decision maker.

Two uses are discussed here: changing the control parameters and
supplying failure information. In the first, the neural network is used to
determine appropriate values for parameters in the controller. For example,
for a PID controller, the neural network can be trained to determine values for
the gaine based on the operating conditions of the plant, thus providing
parameter tuning. The neural network could also be used as a scheduler; see
Sartori and Antsaklis (1991b). Given the current operating point of the plant,
the neural network decides which control law to use. Depending on the choice
of the neural network implementation, the neural network scheduler may give
rise to quite smooth control law ewitching. As another option, the neural
network can be used as an optimizer to find the minimum of a cost function,
such as in a llinear quadratic optimal controller. The output of the neural
network is the value of the controller parameters that minimize that cost

function. This would be an alternative to solving a Ricatti equation at each time
step.
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Besides being used to determine parameters for the gontroller, the neural
network can also be trained to supply failure information to the controller.
Depending on the type of training data used, the type of information can vary
from fault detection to fault identification to fault diagnosis. The controller can
then use this knowledge to take appropriate actions. A neqral ne_t.worl; tralqed
for fault detection and identification can even be usgd in conjunction with
another neural network trained to choose the appropriate control parameters
given epecific failures of the system. There are se:veral references which
address FDI problems. See for example Naidu, Zafiriou and McAvoy (1990),
Sartori, and Antsaklis (1992b), Yac and Zafiriou (1990) and the references
therein.

6. CONCLUSION

The ever-increasing demands of the complex control systems being built
today and planned for the future dictate the use of noyel and more powerful
methods in control. The potential for neural networks in sol\fmg many of the
problems involved is great, and this research area ie evolving rapidly. The
viewpoint is taken that conventional control theory should be augmented with
neural networks in order to enhance the performance of the control systems.
In the tradition of the Systems and Conirol area, su_ch developn;xents in neprgl
networks for control should be based on firm theoretical founc_latlons and this is
still at its early stages. Strong theoretical results guaranteeing control system
properties such as stability are still to come, although promising resu!ta
reporting progress in special cases have been reporied recently. The potential
of neural networks in control systems clearly needs to be further explored and
both theory and applications need to be further developed.
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