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ABSTRACT 

A hybrid control system contains both continuous-time and 
discrete event components. Specifically, the plant is a continuous- 
time system modeled by differential equations, and the controller is a 
discrete event system modeled by an automaton. This paper 
presents a framework for modeling hybrid control systems including 
the necessary interface between the plant and controller. A method 
to represent the entire system as a discrete event system is shown, 
and the concept of determinism is used to analyze hybrid control 
system behavior and guide in hybrid control system design. 

1. INTRODUCTION 

In this paper, a Hybrid Control System consists of a 
conventional system which is being controlled by a Discrete Event 
System (DES). By conventional system, we mean a continuous- 
time system described by a set of differential equationd. Note that 
the use of the term "hybrid is distinct from another common use in 
the control field to refer to systems with both analog and digital 
components. A common example of a hybrid control system is the 
heating and cooling system of a typical home. Here the furnace and 
air conditioner can be modeled as continuous-time systems which 
are being controlled by a discrete event system; the thermostat. 
Recently attempts have been made to study hybrid control systems 
in a unified, analytical way [2, 6,7, 10, 111. 

In this work, we first present a flexible and tractable way of 
modeling hybrid control systems. Our aim is to develop a model 
which can adequately represent a wide variety of hybrid control 
systems, while remaining simple enough to permit analysis. 
Second, we present a few methods which can be used to analyze 
and aid in the design of hybrid control systems. These methods 
relate to the design of the interface which is a necessary component 
of a hybrid system and reflects both the dynamics of the plant and 
the aims of the controller. 

2. HYBRID CONTROL SYSTEM MODEL 

A hybrid control system, can be divided into three parts as 
shown in Figure 1. This section discusses the models we use for 
each of these three parts, as well as the way they interact. In the 
cases of the plant and controller, existing models for continuous- 
time systems and discrete event systems are used, because such 
models are well known. There exist no commonly used models for 
the required interface however, so a new one is developed here. 

DES Controller I I 

I I Interface 

Plant 

Figure 1 : Hybrid Control System 

'A timeinvariant, discrete-time system can also be used 

2.1 Plant 
The plant is modeled as a time-invariant, continuous-time 

system. Though called the plant, this part of the hybrid control 
system is intended to contain the entire continuous-time portion of 
the system, possibly including a continuous-time controller. With 
respect to the entire system however, it is the plant. Mathematically, 
the plant is represented by the familiar equations 

where x(t), r(t), and z(t) are the state, input, and output respectively. 
For the purposes of this work we assume that z(t) = x(t). Note that 
the plant input and output are continuous-time signals. 

2.2 Controller 
The controller is a discrete event system which we model as 

a deterministic automaton. This automaton can be specified by a 
quintuple, (S, E, C, 6, $}, where S is the (possibly infinite) set of 
states, E is the set of plant events, C is the set of controller events, 6 
: S x E -+ S is the state transition function, and $ : S + C is the 
output function. The events in set C are called controller events 
because they are generated by the controller. Likewise, the events in 
set E are generated by conditions in the plant. The action of the 
controller can be described by the equations 

(3) 
(4) 

where ti E S, zhi E E, and rhi E C. The index i is analogous to a 
time index in that it specifies the order of the states or events in a 
sequence. The input and output signals associated with the 
controller are asynchronous sequences of events, rather than 
continuous-time signals. Notice that there is no delay in the 
controller. The state transition, from ti-1 to ti, and the controller 
event, rhi, are generated immediately after the plant event zhi occurs. 

2.3 Interface 
The controller and plant cannot communicate directly in a 

hybrid control system because they each utilize a different type of 
signal. Thus an interface is required which can convert continuous- 
time signals to sequences of events and vice versa. The interface 
consists of two memoryless maps, y and a. The iirst map, y : C + 
Rm, converts each controller event to a constant plant input as 
follows 

r(t) = *rhi) (5) 

where rhi is the most recent controller event, previous to time t. The 
plant input, r(t), can only have certain values, where each value is 
associated with a particular controller event. Thus the plant input is 
a piecewise constant signal which may change only when a 
controller event occurs. 

The second map, a : R" + E, is a function which maps the 
state space of the plant to the set of plant events. 

(6) 

It would appear from equation (6) that, as x changes, zh also 
continuously changes. That is. there is a continuous generation of 
plant events by the interface because each state is mapped to an 
event. This is not the case due to two reasons. First, a must be a 
function which induces equivalence classes on R", which form 
contiguous regions. Second, a plant event is generated only when 

zhi = a(x(t)) 
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the state first enters one of these regions. The overall effect is that 
the state space of the plant is partitioned into a number of regions 
and each is associated with a unique plant event which is generated 
whenever the state enters that region. For example, if x(t) E R1 , a 
could map all positive x to one event and all negative x to a second 
event. As this system operated a plant event would be generated 
whenever x changed sign. 

2.4 DESPlanr 
If the plant and interface of a hybrid control system are 

viewed as a single component, this component behaves like a 
discrete event system. It is advantageous to view a hybrid control 
system this way because it allows it to be modeled as two interacting 
discrete event systems which are more easily analyzed than the 
system in its original form. The discrete event system which models 
the plant and interface is called the DES Plant and is modeled as an 
automaton similar to the controller. The automaton is specified by a 
quintuple, (P, E, C, yr, h) ,  where P is the set of states, E and C are 
the sets of plant events and controller events, yr : P x C + P is the 
state transition function, and h : P + E is the output function. The 
behavior of the DES plant is as follows 

where qi E P, rhi E C, and zhi E E. There are two differences 
between the DES plant and the controller. First, as can be seen from 
equation (7), the state transitions in the DES plant do not occur 
immediately when a controller event occurs. This is in contrast to 
the controller where state transitions occur immediately with the 
occurrence of a plant event. The second difference is that the 
automaton which models the DES plant may be non-deterministic, 
meaning qi+l in equation (7) is not determined exactly but rather is 
limited to a subset of P. The reason for these differences is that the 
DES plant is a simplification of a continuous-time plant and an 
interface. This simplification results in a loss of information about 
the internal dynamics, leading to non-deterministic behavior. 

The set of states, P, of the DES plant is based on the set of 
equivalence classes of a. Specifically, each state in P corresponds 
to a region, in the state space of the continuous-time plant, which is 
equivalent under a. Thus there is a one-to-one correspondence 
between the set of states, P, and the set of plant events, E. This can 
be used to develop an expression for the state transition function, w. 
Starting with the continuous-time plant, we integrate equation (1) to 
get the state after a time t, under constant input r(t) = y(Ck) 

x(t) = Fk(X0, t) (9) 

Here xg is the initial state, t is the elapsed time, and Ck E c. Fk(xg, 
t) is obtained by integrating f(x(t), r(t)), with r(t) = 'y(Ck). Next we 
define 

Equation (10) gives the state, x(t), where it will first cross into a 
new region. Now the dynamics of the DES plant can be derived 
from equations (6,7, and 8). 

zhi+l = X<V(qi, rhi)) (11) 
zhi+l = a(ek(X0)) (12) 

V(4i. rhi) = l-'(a(*k(W))) (13) 

where rhi = ck and xo E (x  I ~ ( x )  = k(qi)). As can be seen, the 
only uncertainty in equation (1 3) is the value of xg. xg is the state of 
the continuous-time plant at the time of the last plant event, zhi, i.e. 
the time that the DES plant entered state qi. It is only known to 
within an equivalence class of a. The condition for a deterministic 
DES plant is that the state transition function, v. must be invariant to 

this uncertainty. 

Theorem 1: The DES plant will be deterministic iff given any qi E P 
and Ck E C, there exists qi+l E P such that for every xo E [ x I a(x) 
= h(qi)) we have a(*k(xO)) = h(qi+l). 

Proof 
To prove that the theorem is sufficient, notice that the set (x I 

a(x) = h(qi)] represents the set of all states, x, in the continuous- 
time plant which could give rise to the state qi in the DES plant. The 
theorem guarantees that the subsequent DES plant state, qi+l, is 
unique for a given input and thus the DES plant is deterministic. 

To prove that the theorem is necessary, assume that it does 
not hold. There must then exist a qi E P and ck E C, such that no 
qi+l exists to satisfy the condition: a&(xo)) = I(qi+l) for every xo 
E [x I a(x) = k(qi)). This is not a deterministic system because 
there is uncertainty in the state transition for at least one state and 
input. 0 

Theorem 1 states that the DES plant will be deterministic if 
all the state trajectories in the continuous-time plant, which start in 
the same region and are driven by the same input, move to the same 
subsequent region. 

3. PARTITIONING 

A particular problem in the design of a hybrid control system 
is the selection of the function a, which partitions the state-space of 
the plant into various regions. Since this partition is used to 
generate the plant events, it must be chosen to provide sufficient 
information to the controller to allow control without being so fine 
that it leads to an unmanageably complex system or simply 
degenerates the system into an essentially conventional control 
system. 

The partition must accomplish two goals. First it must give 
the controller sufficient information to determine whether or not the 
current state is in an acceptable region. For example, in an aircraft 
these regions may correspond to climbing, diving, turning right, etc. 
Second, the partition must provide enough additional information 
about the state, to enable the controller to drive the plant to an 
acceptable region. In an aircraft, for instance, the input required to 
cause the plane to climb may vary depending on the c m n t  state of 
the plane. So to summarize, the partition must be detailed enough to 
answer: 1) is the current state acceptable; and 2) which input can be 
applied to drive the state to an acceptable region. 

To design a partition, we can start by designing a primary 
partition to meet the fiist goal mentioned above. This primary 
partition will identify all the desired operating regions of the plant 
state space, so its design will be dictated by the control goals. The 
final partition will represent a refinement of the primary partition 
which enables the controller to regulate the plant to any of the 
desired operating regions, thus meeting the second goal. 

An obvious choice for the final partition is one which makes 
the DES plant deterministic and therefore guarantees that the 
controller will have full information about the behavior of the plant. 
In addition to being very hard to meet, this requirement is overly 
smct because the controller only needs to regulate the plant to the 
regions in the primary partition, not the final partition. For this 
reason we define quasideterminism, a weaker form of determinism. 
In the DES plant, the states which are in the same region of the 
primary partition can be grouped together, and if the DES plant is 
deterministic with respect to these groups, then we say it is 
quasideterministic. So if the DES plant is quasideterministic, then 
we may not be able to predict the next state exactly, but we will be 
able to predict its region of the primary partition and thus whether or 
not it is acceptable. 

Definition 1: The DES plant will be quasideterministic iff given any 
91 E P and ck E C, there exists Q C P such that for every xg E [ x I 
a(x) = h(qi)) we have aP(q(x0)) = Sp(qi+l) where qi+l E Q and 

0 $(q) is the same for all q E Q. 
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The functions ap and are analogous to a and h but apply 
to the primary partition. They are useful for comparing states but 
they are never implemented and their actual values are irrelevant. 
For example, if a,(x(l)) = ap(x(2)), then x(1) and ~ ( 2 )  are in the 
same region of the primary partition. Or, if ?(XU)) = $(q1), then 
x(1) is in the same region of the primary partition as q1 in the DES 
plant. When used with a, we define f as 

min 
fk(X0) = Fk(xg, t), where t = (t I ap(F(xo, t)) f ap(xo))(14) 

We would like to find the coarsest partition which meets the 
conditions of Definition 1 for a given primary partition. Such a 
partition is formed when the equivalence classes of a are as follows, 

E[a] = inf (E[ap], E[apo fk] I Ck E c) .  (15) 

Where we use E[*] to denote the equivalence classes of 0. The 
infimum, in this case, means the coarsest partition which is at least 
as fine as any of the partitions in the set. 

Theorem 2: The regions described by equation (15) form the 
coarsest partition which generates a quasideterministic DES plant. 

Proof 
First we will prove that the partition does, in fact, lead to a 

quasideterministic system. For any two states, x1 and x2, which are 
in the same equivalence class of a, we apply some control r(t) = 
y(ck). The two states will subsequently enter new regions of the 
primary partition at @k(Xl) and fk(x2) respectively. The actual 
regions entered are ap(fk(X1)) and ap(fk(X2)). NOW according to 
equation (15), if xi and x2 are in the same equivalence class of a, 
then they are also in the same equivalence class of ap 9. 
Therefore a&k(Xl)) = ap(fk(x2)) and the system is deterministic. 

Next we will prove that the partition is as coarse as possible. 
Assume there is a coarser partition which also generates a 
quasideterministic system. That is, there exists two states, x3 and 
U ,  in the same region of the primary partition such that a(x3) # 

a(-), but ap(fk(X1)) = ap($k(X2)) for any possible input. These 
two states would lie in the same equivalence class of ap f k  for all 
ck E c and therefore in the same equivalence class of inf(E[ap], 
Erap * fd I ck E C). This violates the assumption that x3 and xq do 
not lie in the same equivalence class of a, so two such states could 

0 

Note that the partition described in equation (15) and 
discussed in Theorem 2 is not dependent upon any specific sequence 
pf controller events. It is intended to yield a DES plant which is as 
controllable' as possible, given the continuous-time plant and 
available inputs. If the specific control goals are know, it may be 
possible to derive a coarser padtion which is still adequate. This 
can be done in an ad hoc fashion, for instance, by combining 
regions which are equivalent under the inputs which are anticipated 
when the plant is in those regions. 

4. EXAMPLES 

not exist and therefore a coarser partition can not exist. 

4.1 Surge Tank 
This first example will illustrate how a simple hybrid control 

system can be modeled. The system consists of a surge tank which 
is draining through a fixed outlet valve, while the inlet valve is being 
controlled by a discrete event system. The controller allows the tank 
to drain to a minimum level and then ouens the inlet valve to refd it. 
When the tank has reached a maximum level, the inlet valve is 
closed. The surge tank is modeled by a differential equation, 

X(t) = r(t) - [ x ( t ) p  (16) 

where x(t) is the liquid level and r(t) is the inlet flow. The interface 

partitions the state space into three regions as follows 

e1 x(t) 1 max 
(17) a(x(t)) = e2 min < x(t) < max { e3 x(t) S min 

Thus when the level reaches max, plant event el is generated, and 
when the level falls to min. plant event e3 is generated. The 
interface provides for two inputs corresponding to the two controller 
events c1 and c2 as follows 

Since r(t) = y(rhi), this means the inlet valve will be open following 
controller event c1. and closed following controller event q. 

The controller for the surge tank is a two state automaton 
which moves to state si whenever e3 is received, moves to state s2 
whenever e l  is received and returns to the current state if e2 is 
received. Furthermore $(SI) = c1 and $(s2) = c2. 

4.2 Double Integrator 
To illustrate the work presented in this paper we give this 

second example of a hybrid control system. The plant is a double 
integrator 

The general control goal in this system, which motivates the design 
of the interface, is to move the state of the doubb integrator between 
the four quadrants of the state-space. In the interface, the function a 
partitions the state space into four regions as follows, 

and the function y provides three set points, 

So whenever the state of the double integrator enters quadrant 1, for 
example, the plant event e l  is generated. When the controller 
(which is unspecified) generates controller event c1, the double 
integrator is driven with an input of -10. 

Now we know that the DES plant will have four states 
because there are four regions in the state space of the actual plant. 
By examining the various state trajectories given by equation (22), 
we can find the DES plant which is shown in Figure 2. Equation 
(22) is obtained by integrating equation (19) and adding x(0). 

Figure 2: DES Plant of Double Integrator 

AS can be seen, the DES plant is not deterministic. If we consider qi 
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= p2 (corresponds to k(qi) = e2) and rhi = cl, there exists no unique 
qi+l thus violating Theorem 1. This presents a problem for the 
controller because if it generates controller event c l  after receiving 
plant event e2, the subsequent behavior of the plant is not 
predictable. 

If we want a quasi-deterministic plant, using the four 
quadrants as the primary partition, Theorem 2 can be used to obtain 
a new partition. This partition is shown in Figure 3 and the 
resulting DES plant is shown in Figure 4. The final partition refined 
the regions in quadrants 2 and 4. Notice that the DES plant is now 
quasi-deterministic (in fact completely deterministic.) All the 
transitions are unique. 

Figure 3: Partition for Quasideterministic System 

Figure 4: DES Plant of Quasideterministic Double Integrator 
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