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Abstract

In this report, a generalization of polynomial interpolation to the matrix case is
introduced and applied to problems in systems and control. It is shown that this
generalization is most general and it includes all other such interpolation schemes that have
appeared in the literature. The polynomial matrix interpolation theory is developed and then
applied to solving matrix equations; solutions to the Diophantine equation are also derived.
The relation between a polynomial matrix and its characteristic values and vectors is
established and it is used in pole assignment and other control problems. Rational matrix
interpolation is discussed; it can be seen as a special case of polynomial matrix
interpolation. It is then used to solve rational matrix equations including the model
matching problem.






I. INTRODUCTION

A theory of polynomial and rational matrix interpolation is introduced in this paper
and its application to certain Systems and Control problems is discussed at length. Note
that many system and control problems can be formulated in terms of matrix equations
where polynomial or rational solutions with specific properties are of interest. It is known
that equations involving just polynomials can be solved by either equating coefficients of
equal power of the indeterminate s or equivalently by using the values obtained when
appropriate values for s are substituted in the given polynomials; in the latter case one uses
results from the theory of polynomial interpolation. Similarly one may soive polynomiat
matrix equations using the theory of polynomial matrix interpolation presented here; this
approach has significant advantages and these are discussed below. In addition to equation
solving, there are many instances where interpolation type constraints are being used in
systems and control without adequate justification; the theory presented here provides such
justification and thus it clarifies and builds confidence into these methods.

Polynomial interpolation has fascinated researchers and practitioners alike. This is
probably due to the mathematical simplicity and elegance of the theory complemented by
the wide applicability of its results to areas such as numerical analysis among others. Note
that although for the scalar polynomial case, interpolation is an old and very well studied
problem, only recently polynomial matrix interpolation appears to have been addressed in
any systematic way [1-5]. Rational, mostly scalar interpolation has been of interest to
systems and control researchers recenly. Note that the rational interpolation results
presented here are distinct from other literature results as they refer to matrix case and
concentrate on fundamental representation questions. Other results in the literature attempt
1o characterize rational functions that satisfy certain interpolation constraints and are optimal
in some sense and so they rather complement our results than compete with them.

In this report polynomial matrix interpolation of the type Q(s;) aj = bj, where Q(s) is
a matrix and aj, bj vectors, is introduced as a generalization of the scalar polynomial
interpolation of the form q(s;) = bj. This generalization appears to be well suited to study
and solve a variety of multivariable system and control problems. The original motivation



for the development of the matrix interpolation theory was to be able to solve polynomial
matrix equations, which appear in the theory of Systems and Control and in particular the
Diophantine equation; the results presented here however go well beyond solving that
equation, It should be pointed out that the driving force while developing the theory and
the properties of matrix interpolation has always been system and control needs. This
explains why no attempt has been made to generalize more of the classical polynomial
interpolation theory results to the matrix case. This was certainly not because it was felt
that it would be impossible, quite the contrary. The emphasis on system and control
properties in this paper simply reflects the main research interests of the authors.

Characteristic values and vectors of polynomial matrices are also discussed in this
paper. Note that contrary to the polynomial case, the zeros of the determinant of a square
polynomial matrix Q(s) do not adequately characterize Q(s); additional information is
needed that is contained in the characteristic vectors of Q(s), which must also be given
together with the characteristic values, to characterize Q(s).

The use of interpolation type constraints in system and control theory is first
discussed and a number of examples are presented.

Motivation: Interpolation type constraints in Systems and Control theory

Many control system constraints and properties that are expressed in terms of
conditions on a polynomial or rational matrix R(s), can be written in an easier to handle
form in terms of R(sj), where R(s;j) is R(s) evaluated at certain (complex) values s =sj j =
1, 2. We shall call such conditions in terms of R(s;), interpolation (type) conditions on
R(s). This is because in order to understand the exact implications of these constraints on
the structure and properties of R(s), one needs to use results from polynomial interpolation
theory. Next, a number of examples from Systems and Control theory where polynomial
and polynomial matrix interpolation constraints are used, are outlined. This list is not
complete, by far.

Eigenvalue / eigenvector controllability tests: It is known that all the uncontroilable

eigenvalues of x = Ax + Bu are given by the roots of the determinant of a greatest left
divisor of the polynomial matrices sI - A and B. An alternative, and perhaps easier to
handle, form of this result is that sj is an uncontrollable eigenvalue if and only if
rank(s;ji-A, B] < n where A is nxn (PBH controllability test [11]). This is a more



restrictive version of the previous result which involves left divisors, since it is not clear
how to handle multiple eigenvalues when it is desirable to determine all uncontrollable
eigenvalues. The results presented here can readily provide the solution to this problem.

Selecting T(s): In the Model Matching Problem, the plant H(s) and the desired
transfer function matrix T(s) are given and a proper and stable M(s) is to be found so that
T(s) = H(s)M(s), The selection of T(s) for such M(s) to exist can be handeled with matrix
interpolation.

The state feedback pole assignment problem has a rather natural formulation in
terms of interpolation type constraints; similarly the outpur feedback pole assignment
problem.

More recently, stability constraints in the H* formulation of the optimal control
problem have been expressed in terms of interpolation type constraints{18-20]. It is rather
interesting that [18, 19] discuss a "directional” approach which is in the same spirit of the
approach taken here (and in [1-7]).

The above are just a few of the many examples of the strong presence of
interpolation type conditions in the systems and control literature; this is because they
represent a convenient way to handle certain types of constraints. However, a closer look
reveals that the relationships between conditions on R(sj) and properties of the matrix R(s)
are not clear at all and this needs to be explained. Only in this way one can take full
advantage of the method and develop new approaches to handle control problems. Our
research on matrix interpolation and its applications addresses this need.

The main ideas of the polynomial matrix interpolation results can be found in earlier
publications [1-5], with state and static output feedback applications appearing in [6, 7];
some of the material on rational matrix interpolation has appeared before in [5]. Here a
rather complete theory of polynomial and rational matrix interpolation with applications is
presented. Note that all the algorithms in this paper have been successfully implemented in
Matlab. In summary, the contents of the paper are as follows:

Summary

Section II presents the main results of polynomial matrix interpolation. In
particular, Theorem 2.1 shows that a pxm polynomial matrix Q(s) of column degrees d; i =



1, m can be uniquely represented, under certain conditions, by 2 = X d; + m triplets (sj,
aj, b)) j=1, & where s; is a complex scalar and a;, bj are vectors such that Q(s;) aj=bj j
=1, 2. It is shown that this formulation is most general and it includes as special cases
other interpolation constraints which have been used in the literature.

In Section III, equations involving polynomial matrices are studied using
interpolation. All solutions of degree r are characterized and it is shown how to impose
additional constraints on the solutions. The Diophantine equation is an important special
case and it is examined at length. The conditions under which a solution to the Diophantine
equation of degree r does exist are established and a method based on the interpolation
resulits to find all such solutions is also given.

In Section IV the characteristic values and vectors of a polynomial matrix Q(s) are
discussed and all matrices with given characteristic values and vectors are characterized.
Based on these results it is possible to impose restrictions on Q(s) of the form Q(sj) aj=0
that imply certain characteristic value locations with certain algebraic and geometric
multiplicity. This problem is completely solved here. The cases when the desired
multiplicities require the use of conditions involving derivatives of Q(s) are handled in
Appendix A.

In Section V, the results developed in the previous section on the characteristic
values and vectors of a polynomial matrix Q(s) are used to study several Systems and
Control problems. The pole or eigenvalue assignment is a problem studied extensively in
the literature. It is shown how this problem can be addressed using interpolation, in a way
which is perhaps more natural and effective; dynamic (and static) output feedback as well
as state feedback is used and assignment of both characteristic values and vectors is
studied. Tests for controllability and observability and control design problem with
interpolation type of constraints are also discussed.

Section VI introduces rational matrix interpolation. It is first shown that rational
matrix interpolation can be seen as a special case of polynomial matrix interpolation and the
conditions under which a rational matrix H(s) is uniquely represented by interpolation
triplets are derived in Theorem 6.1. It is aiso shown how additional constraints on H(s)
can be incorporated. These results are then applied to rational matrix equations and resuits
analogous to the results on polynomial matrix equations derived in the previous sections are
obtained.

Appendix A contains the general versions of the results in Section IV, that are valid
for repeated values of sj, with multiplicities beyond those handled in that section. Smith
forms are defined and the relation between Smith and Jordan canonical forms is shown.



Appendix B contains one of the key references [1] for completeness. Appendix C contains
Matlab code that implements the polynomial and rational matrix interpoiation results
presented here.






II. POLYNOMIAL MATRIX INTERPOLATION

In this section the theory of polynomial matrix interpolation is introduced. The
main result is given by Theorem 2.1 where it is shown that a pxm polynomial matrix Q(s)
of column degrees d; i = 1, m can be uniquely represented, under certain conditions, by 2
= Y d; + m triplets (s}, aj, bj) j=1,42 where sj a complex scalar and aj, bj are vectors
such that Q(sj) aj=b;j j =1, £. One may have fewer than X d; + m interpolation points .8
in which case the matrix (with column degrees d; ) can satisfy additional constraints. This
is very useful in applications and it is shown in (2.6); in Corollary 2.2 the leading
coefficient is assigned. Connections to the eigenvalues and eigenvectors are established in
Corollary 2.3. In Lemma 2.4 the choice of the interpolation points is discussed. In
Theorem 2.1 the vector aj postmultiplies Q(s); in Corollary 2.5 premultiplication of Q(s) by
a vector is considered and similar (dual) results are derived. The theory of polynomial
matrix interpolation presented here is a generalization of the interpolation theory of
polynomials and there are of course alternative approaches which are discussed; they are
shown to be special cases of the formulation in Theorem 2.1. In particular, Q(s) is seen as
a matrix polynomial and alternative expressions are derived in Corollary 2.6; in Coroilary
2.7 interpolation constraints of the form Q(zk) = Rk k = 1, q are considered, which may be
seen as a direct generalization of polynomial constraints. Finally in Theorem 2.8
derivatives of Q(s) are used to generalize the main interpolation results.

The basic theorem of polynomial interpolation can be stated as follows:

Given 2 distinct complex scalars s j = 1, 2 and £ corresponding complex values bj, there
exists a unique polynomial q(s) of degree n = 2 - 1 for which

asp=bj j=1,2 2.1)
That is, an nth degree polynomial q(s) can be uniquely represented by the £ = n+1
interpolation (points or doublets or) pairs (sj» bp) j =1, X. To see this, write the n-th
degree polynomial q(s) as q(s) = q [1, s, ..., s"]' where q is the (1x(n+1)) row vector of
the coefficients and [ ]’ denotes the transpose. The 2 = n+1 equations in (2.1) can then be
written as

D T
$1 sp
qv:q . =[b1, ey b'!]:B'!
-1 2-1
_Sf Sp



Note that the matrix V (£x42) is the well known Vandermonde matrix which is nonsingular
if and only if the £ scalars s; j = 1, £ are distinct. Here s; are distinct and therefore V is
nonsingular. This implies that the above equation has a unique solution q, that is there
exists a unique polynomial q(s) of degree n which satisfies (2.1). This proves the above
stated basic theorem of polynomial interpolation .

There are several approaches to generalize this result to the polynomial matrix case
and a number of these are discussed later in this section. It is shown that they are special
cases of the basic polynomial matrix interpolation theorem that follows:

Let S(s) := bik diag([ 1, s, ..., s4i]'} where d; i = 1, m are non-negative integers;
let aj# 0 and bj denote (mx1) and (px1) complex vectors respectively and sj complex
scalars.

Theorem 2.1: Given interpolation (points) triplets (sj, aj, bj) j = 1, £ and nonnegative
integers d; with £ = 3, dj + m such that the (X d;j + m)x£ matrix

S =[S(s1)ay,..., S(sp)as] (2.2)
has full rank, there exists a unique (pxm) polynomial matrix Q(s), with ith column degree
equal to dj, i= 1, m for which

QGsj) aj=b; j=1, A (2.3)

Proof: Since the column degrees of Q(s) are d;j, Q(s) can be written as

Q(s) = QS(s) 2.4)
where Q (px(Zd; + m)) contains the coefficients of the polynomial entries. Substituting in
(2.3), Q must satisfy

QSy =By (2.5)
where By := [by, ..., by}. Since Sy is nonsingular, Q and therefore Q(s) are uniquely
determined. (|

It should be noted that when p=m =1 and dj =2 - 1 = n this theorem reduces to the
polynomial interpolation theorem. To see this, note that in this case the nonzero scalars a; j
= 1, 4, can be taken to be equal to 1, in which case Sy =V the well known Vandermonde
matrix; V is nonsingular if and only if s; j = 1, 2 are distinct.

Example 2.1: Let Q(s) be a 1x2 (=pxm) polynomial matrix and let £ = 3 interpolation
points or triplets be specified:
((sj» a5, bp j = 1, 2, 3} = ( (-1,{1, O, O), (O,[-1, 1]} 0), (4, [0, 1]', )}.



In view of Theorem 2.1, Q(s) is uniquely specified when d; and d3 are chosen so that
A(=3) = Zdj + m = (d; + dp) + 2 ordy + dz =1 assuming that S3 has full rank. Clearly
there are more than one choices for dj and dz; the resulting Q(s) depends on the particular
choice for the column degrees d; and different combinations of d;j will result to different
matrices ((s). In particular:

(i) Letd; = 1, and d2 = 0. Then S(s) = blk diag({1,s]',1} and (2.5) becomes:
1-10
Q S3=Q[S(s1)a1,5(s2)a2,5(s3)a3] = Q [(1) (1) (1) ] =[0,0, 1] =B3

from which Q =[1, 1, 1] and Q(s) = QS(s) = [s+1, 1].

(ii) Let dy =0, d2 = 1. Then S(s) = blk diag{1, {1, s]') and (2.5) gives Q = [0, 0, 1] from
which Q(s) = [0, s], clearly different from (i) above. a

Discussion of the Interpolation Theorem
Representations of Q(s)

Theorem 2.1 provides an alternative way to represent a polynomial matrix, or a
polynomial, other than by its coefficients and degree of each entry. More specifically:

A polynomial q(s) is specified uniquely by its degree, say, n and its n+1 ordered
coefficients. Alternatively, in view of (2.1) the 2 pairs (sj, bp j = 1, 2 uniquely specify
the nth degree polynomial q(s) provided that £ = n+1 and the scalars s; are distinct.

Similarly, a polynomial matrix Q(s) is specified uniquely by its dimensions pxm, its
column degrees dj i= 1, m and the d;+1 coefficients in each entry of column i. In view of
Theorem 2.1, given the dimensions pxm, the polynomial matrix Q(s) is uniquely specified
by its column degrees d; i =1, m and the £ triplets (s, aj, bj) j = 1, 2 provided that 2 =
Yd; + m and (Sj aj) are so that Sy in (2.2) has full rank. Notice that when p = m = 1 these
conditions reduce to the well known polynomial interpolation conditions described above,
namely that s; must be distinct.

Number of Interpolation Points

It is of interest to examine what happens when the number of interpolation points £,
in Theorem 2.1, is different from the required number determined by the number of
columns m and the desired column degrees of Q(s), d; i = 1, m. That is what happens
when £ # Y dj+m:



The equation of interest is QS4 = B in (2.5). A solution Q (px(2d; + m)) of this equation
exists if and only if

S
rank[Bi]--rankS,g

This implies that there exists a solution Q for any B  if and only if rank (Sg) = 4, that is if
and only if Sy, a (X d; + m)x£ matrix has full column rank.

(i) When £ > ¥ d; + m, the system of equations in (2.5) is over specified; there are more
equations than unknowns as Sy is a (X d; + m)x2 matrix. If now the additional (£ - (3. d;
+ m)) equations are linearly dependent upon the previous (2, dj + m) ones, then a Q(s) with
column degrees d; i = 1, m is uniquely determined provided that (X d; + m) interpolation
triplets (sj, aj, bj) satisfy the conditions of Theorem 2.1. Otherwise there is no matrix of
column degrees di i = 1, m which satisfies these interpolation constraints. In this case
these interpolation points represent a matrix of column degrees greater than d; .

(ii) When 2 < ¥ dj + m, then Q(s) with column degrees d; i = 1, m is not uniquely
specified, since there are more unknowns than equations in (2.5). That is, in this case
there are many (pxm) matrices Q(s) with the same column degrees d; which satisfy the £
interpolation constraints (2.3) and therefore can be represented by these 2 interpolation
triplets (sj, aj, bj)-

Additional Constraints

This additional freedom (in (ii) above) can be exploited so that Q(s) satisfies
additional constraints. In particular, k := (T dj + m) - £ additional linear constraints,
expressed in terms of the coefficients of Q(s) (in Q), can be satisfied in general. The
equations describing the constraints can be used to augment the equations in (2.5). This is
a very useful characteristic and it is used extensively in later sections. In this case the
equations to be solved become

Q[Se,Cj=[Ba, D] 2.6)

where QC = D represent k := (X dj + m) - 2 linear constraints imposed on the coefficients
Q; C and D are matrices (real or complex) with k columns each. The following examples
illustrate the above.

Example 2.2 (i) Consider a 1x2 polynomial matrix Q(s) and £ =3 interpolation points:
{Gj,a b i =1, 2,3) ={ (-1,{1, OT', 0), (O,[-1, 1], O}, (1, [0, 1], D)}.

as in Example 2.1. Letd; =1,d =0. It was shown in Example 2.1 (i) that the above
uniquely represent Q(s) = [s+1, 1]. Suppose now that an additional interpolation point (s4,
a4, ba) = (1, [1, O}, 2) is specified. Here £ =4> 3 dj+ m = 1+2 = 3 and



1-101
QS4=Q[-1 00 1]=[0,0, 1,2] =Bs
0110

Notice however that the last equation Q[1 1 0]' = 2 can be obtained from QS3=B3,bya
postmultiplication of {-1 -2 2]'. Clearly the additional interpolation point does not impose
any additional constraints on Q(s) as it does not contain any new information about Q(s).
If now the new interpolation point is taken to be (s4, a4, bs) =[1, [1, 0]', 3) then, as it can
be easily verified, there is no Q(s) with d; +dy = 1 which satisfies all 4 interpolation
constraints. In this case one should consider Q(s) with higher column degrees, namely d;
+dy=2.

(ii) Consider again a 1x2 polynomial matrix Q(s) but with £ =2 interpolation points:

(Gsj, aj, b j = 1,2} = { (-L,[1, O, 0, (O,[-1, IT', 0))}

from Example 2.1. Letd; =1,dy =0. Here £ =2 < 3dj +m = 142 = 3. In this case it is
possible, in general, to satisfy (¥d; + m) - £ = | additional (linear) constraint. In particular

1-1¢y

QI[S2, C]=Q['1 0 c2 ]=[0, 0, d] = [B2, D]
01cs

where Q[c ¢2 ¢3]' = d is the additional constraint on the coefficients Q of

1
Q(s) =Q5(s) =[q192 qs][a (i.)]
For example, if it is desired that the coefficient q) = 2, this can be enforced by taking ¢ =
c3=0andca2=1,d=2. Then Q =[22 2] and Q(s) = [2s+2 2] satisfies all requirements.
O
The additional constraints on Q(s) (or Q) do not have of course to be linear. They
can be described for example by nonlinear algebraic equations or inequalities. However, in
contrast to the linear constrains, it is difficult in this case to show general results.

Determination of the Leading Coefficients

It is well known that if the leading coefficient of an nth degree polynomial is given,
then n, not n+1, distinct points suffice to uniquely determine this polynomial. A
corresponding result is true in the polynomial matrix case:
Let C; denote the matrix with ith column entries the coefficients of sdi, in the ith column of
Q(s); that is the leading matrix coefficient (with respect to columns) of Q(s). Letalso S; :=
blk diag{([1, s, ..., s4i"1]'} i = 1, m where the assumption that d; is greater than zero is

10



made for S1 to be well defined. Note that this assumption is relaxed in the alternative
expression of these results discussed immediately following the Corollary.

Corollary 2.2: Given (s;, aj, bj) j = 1, £ and nonnegative integers dj with £ = ¥ dj such
that the (X d;)x2 matrix Sy := [S1(s1) a1,..., S1(sg)a,] has full rank, there exists a unique
(pxm) polynomial matrix Q(s), with ith column degree d;, and a given leading coefficient
matrix C. which satisfies (2.3).

Proof: Q(s) = CcD(s) + Q1Si(s) with D(s) := diag[sdi] for some coefficient px(2d;) matrix
Q1. (2.3) implies

Q1 S12 =By - C: [D(s1)ay , ..., D(sp)ag] (2.7)
which has a unique solution ) since Sj, is nonsingular. Q(s) is therefore uniquely
determined. O

Note that here the given C, provides the additional m constraints (for a total of Ydj+m)
needed to uniquely determine Q(s) in view of Theorem 2.1. It is also easy to see that when
p = m = 1, the corollary reduces 1o the polynomial interpolation result mentioned above.

The results in Corollary 2.2 can be seen in view of our previous discussion for the
case when only £ < Xd; + m interpolation points are given. In that case it was possible to
satisfy, in general k := (X d; + m) - 2 additional constraints. Here, the requirement that the
leading coefficients should be C; can be written as

QIS2.Cl=[By, Cc] (2.8)
where C is chosen to extract the leading coefficients from Q. Since C has k = m columns,
A2 = ¥ d; interpolation points will suffice to generate ¥, d; + m equations with ¥ dj + m
unknowns, to uniquely determine Q(s).

Example 2.3 Consider a 1x2 polynomial matrix Q(s) with column degrees d; =1, dz =0.
Assume that the interpolation point (£ = 3d; = 1) is (51, a1, by) = (-1, [1, 07', 0) and the
desired leading coefficient is C¢ = [c1, ¢2]). Then

100
Q[81,C]=Q['1 1 0]=[001 c2] = [B1, ]
001

from which Q = [¢y, c1, ¢2] and Q(s) = [c1+¢C1s, ¢2). O

11



Interpolation Constraints with B3 = 0
Often the interpolation constraints (2.3) are of the form

QG aj=0 j=1,4 (2.9)
leading to a system of equations
QSg=0 (2.10)

where Sy is a (2 dj + m)x2 matrix; see Theorem 2.1. In this case, if the conditions of
Theorem 2.1 are satisfied then the unique Q(s) which is described by the £ = (T d; + m)
interpolation points is Q(s) = 0. It is perhaps instructive to point out what this result means
in the polynomial case. In the polynomial case this result simply states that the only nth
degree polynomial with n+1 distinct roots s is the zero polynomial, a rather well known
fact. It is useful to determine nonzero solutions of Q of (2.10). One way to achieve this is
to use:

Q[Ss.C]1={0,D] 2.11)
where again Sy is a (X d; + m)x£ matrix but the number of interpolation points £ is taken
tobe £ < Xd; + m . In this way Q(s) is not necessarily equal to a zero matrix. The
matrices C and D each have k := (¥ d; + m) - £ columns, so that Q(s) can satisfy in
general k additional constraints; see Example 2.3,

Eigenvalues and Eigenvectors
An interesting result is derived when Corollary 2.2 is applied to an (nxn) matrix
Q(s)=sI- A. Inthiscasedi=1, i=1,n. Cc=1,S1(s)=1and Q; = A; also £ =n, St
=[ay, ..., 3p] and (2.7) can be written as:
A [a1, ..., ap] = By - [ay, ..., ap] diag[s;] (2.12)
When [by, ..., by] = By = 0 then in view of (2.12) and Corollary 2.2 the following is true:

Corpllary 2.3: Given (s, aj) j = 1, n such that the (nxn) matrix Sy, = [ay, ..., a5] has full
rank, there exists a unique nxn polynomial matrix Q(s) with column degrees all equal to 1
and a leading coefficient matrix equal to I which satisfies (2.3) with all bj = 0; that is Q(sj)a;
=(sjl- A)aj=0.

The above corollary simply says that A is uniquely determined by its n eigenvalues s; and
the n corresponding linearly independent eigenvectors aj, a well-known result from matrix
algebra. Here this result was derived from our polynomial matrix interpolation theorem,
thus pointing to a strong connection between the polynomial matrix interpolation theory
developed here and the classical eigenvalue eigenvector matrix algebra results.

12



Choice of Interpolation Points

The main condition of Theorem 2.1 is that S, a (X d; + m)x2 matrix, has full
(column) rank 2. This guarantees that the solution Q in (2.5) exists for any By and it is
unique. In the polynomial case S can be taken to be a Vandermonde matrix which has
full rank if and only if s j =1, 2 are distinct, and this has already been pointed out. In
general however, in the matrix case, s; j = 1, 2 do not have to be distinct; repeated values
for s; , coupled with appropriate choices for aj will still produce full rank in S in many
instances, as it can be easily verified by example. This is a property unique to matrix case.

Example 2.4 Consider a 1x2 polynomial matrix Q(s) with d; = 1, dz = 0 (as in Example
2.1). Suppose that 2 = 3 interpolation points are given:
{(sj, a5, bj) j =1, 2,3} = { (O,[1, 01, 1), (0,[0, 1}, 1), (1, [1, O], 2)).

Here S(s) = blk diag{[1, s]', 1} and
101
Sy= 001]= 1,1,2]=B
QS3 Q[o 1o [ ]=B3

from which Q(s) = QS(s) =[1 1 1]S(s) = [s+1, 1]. Note that the first two columns of S3
are S(0)(1 0]' and S(0)[0 1]'. They correspond to the same sj =0 j=1,2 and they are
linearly independent. O

If sj j=1, 2 are taken to be distinct, then there always exist a; # 0 such that Sy has
full rank. An obvious choiceisaj=¢ejforj=1,d;+ 1,3 =exforj=d) +2,..,d; +d2
+ 2 etc, where the entries of column vector e; are zero except the ith entry which is 1; in this
way, Sy is block diagonal with m Vandermonde matrices of dimensions (dj + 1) x (d; + 1)
i =1, m on the diagonal, which has full rank since s;j are distinct (in fact we only need
groups of d; + 1 values of s;j to be distinct).

Example 2.5 In Example 2.4 (Q(s) 1x2, £ =3, d; = 1, d2 = 0) take sy, s2, and s3 distinct
andletaj=az=¢1=[1 0] andaz=e3=[0 1]'. Thenin QS3=B3,

110
S3 =[ s152 0 :|
001
which has a block diagonal form with 2(=m) Vandermonde matrices on the diagonal.
Clearly S3 has full rank since sy and s are distinct; so there is a unique solution Q for any

Bs. 0O
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It is also important to know, especially in applications, what happens to the rank of
Sp for given aj. It turns out that Sy has full rank for almost any choice of aj when s; are
distinct. In particular:

Lemma 2.4: Letsj j=1, 2 with £ < ¥ dj + m be distinct complex scalars. Then the (Xd;
+m)x2 matrix Sy in (2.2) has full column rank £ for almost any set of nonzero a3 j=12

Proof: First note that Sy has at least as many rows (T dj + m) as columns (£). The
structure of S(s) together with the fact that aj # 0 and s; distinct imply that the 2th order
minors of Sy are nonzero multivariate polynomials in ajj, the entries of a; j =1, 2. These
minors become zero only for values of ajj on a hypersurface in the parameter space.
Furthermore note that there always exists a set of aj (see above) for which at least one Lth
order minor is nonzero. This implies that rank Sy = £ for almost any set of aj=0. 0

Example 2.6 Let S(s) = blk diag{[1, sJ, 1} and take s; =0, s3 = 1 (distinct). Then
ail a12
§2 = [S(s1)a1, S(s2)az) =[ 0 a12]
421 a22

where a) = [a11, a21]' and a3 = [a12, a72])' (# 0). Rank S, will be less than 2 (=2) for
values of aj; which make zero all the second order minors: aja;2, 211222 - 21221, 312221.
Such a case is, for example, when aj) = a2 = 0. O

Alternative Bases

Note that alternative polynomial bases, other than [1, s, s2, ...]', which might offer
computational advantages in determining Q(s) from interpolation equations (2.5) can of
course be used. Choices include Chebychev polynomials, among others, and they are
discussed further later in this paper in relation to applications of the interpolation results.

Alternative Approaches to Matrix Interpolation
(i) Dual Version : In Theorem 2.1, aj are column vectors which postmultiply Q(s;) in (2.3)
to obtain the interpolation constraints Q(s;)aj = b;j ; bj are also column vectors. It is clear
that one could also have interpolation constraints of the form

3jQGs)=h j=124 (2.13)
where aj and bj are row vectors. (2.13) gives rise to an alternative (“dual") matrix
interpolation result which we include here for completeness.

14



Let S(s) = blk diag {[1,s, ..., sdi]} where d; i = 1, p are non-negative integers; let g;= 0
and b; denote (1xp) and (1xm) complex vectors respectively and s; complex scalars.

Coroilary 2.5: Given (sj, a5, by j = 1, 2 and nonnegative integers d; with £ =¥ d; + p
such that the 2x(2d; +p) matrix

218(s1)
Se=f - (2.14)
mi(sz)

has full rank, there exists a unique (pxm) polynomial matrix Q(s), with ith row degree
equal tod; i= 1, p, for which (2.13) is true.

Proof: Similar to the proof of Theorem 2.1: Q(s) can be written as

Q(s) =8(s)Q (2.15)
where Q ((Zd;i + p) x m) contains the coefficients of the polynomial entries of Q(s).

Substituting in (2.8) where Ba=[by, .. b_; I', Q must satisfy

52 Q=By (2.16)
Since S is nonsingular, Q and therefore Q(s) are uniquely determined. a
Example 2.7 Let Q(s) be a 1x2 (=pxm) polynomial matrix and let £ = 2 interpolation

points be specified: {(sj, 2;, ) j=1,2} ={ ¢-1,1,{0 1]), (0,1,{1 1])}. Here £ =2=3g;
+ p from which d; = 1; that is a matrix of row degree 1 may be uniquely determined. Note
that $(s) = [1, s]. Then

1-1 01
549:[1 O]Q =111
from which
11
Q= [1 0
and Q(s) = S(s)Q = [s+1, 1] a

(ii) Q(s} as a matrix polynomial : The relation between representation (2.4) used in
Theorem 2.1 and an alternative, also commonly used, representation of Q(s) is now
shown, namely:

15



Q(s) = QS4(s) = Qg + ... + Qqgsd (2.17)
where S4(s) :=[I, ..., Is9]' a m(d+1)xm matrix with d = max(di) i=1,mand Q= [Qo,
-» Qd] the (pxm(d+1)) coefficient matrix. Notice that S(s) = KS4(s) where K ((2d;j + m)
x m(d + 1)) describes the appropriate interchange of rows in S4(s) needed to extract S(s)
(of Theorem 2.1). Representation (2.17) can be used in matrix interpolation as the
following corollary shows:

Corollary 2.6: Given (sj» aj, bj) j = 1, 2 and nonnegative integer d with £ =m(d+1) such
that the m(d+1)x£ matrix

Sae=[Sq(s1) at,..., Sa(sa)as] (2.18)
has full rank, there exists a unique (pxm) polynomial matrix Q(s) with highest degree d
which satisfies (2.3).

Proof: Consider Theorem 2.1 with d; = d; then

QSye=By (2.19)
is to be solved. The result immediately follows in view of S(s) = KS4(s) which implies
that S44 is nonsingular, since here K is nonsingular. 0

Notice that in order to uniquely represent a matrix Q(s) with column degrees d; i =1, m,
Corollary 2.6 requires more interpolation points (sj» aj, bj) than Theorem 2.1 since md 2
2d;i . This is, however, to be expected as in this case less information about the matrix
Q(s) is used (only the highest degree d), than in the case of the theorem where the
individual column degrees are supposed to be known (d; i =1, m).

Example 2.8 Let Q(s) be 1x2 ( = pxm), d = 1 and let the & = m(d+1) = 4 interpolation
points (s;, aj, bj) be as follows: let the first 3 be the same as in Example 2.1 and the fourth

be (2, [0, 1], 1). The equation (2.19) now becomes
1-10

Qsu=Q|% 5 00l=10.01,11=B

0012
from which Q = {1, 1, 1, 0] and Q(s) = QSq(s) = Qys + Qg = [ s+1, 1] as in Example 2.1
(i). If the fourth interpolation point is taken to be equal to (2, [0, 1], 2) then By = {0, 0, 1,
2] while Sqp remains the same. Then Q = [0, 0, 0, 1] and Q(s) = QSq4(s) = [ 0, s] as in
Example 2.1(i1) O
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Similarly to the case of Theorem 2.1, if the number of interpolation points £ <
m(d+1) then Q(s) of degree d is not uniquely specified. In this case one could satisfy in
general k := m(d+1) - £ additional linear constraints by solving

Q[Saz. Cl = [By, D] (2.20)
where QC = D represent the k linear constraints imposed on the coefficients Q. Constraints
on Q other than linear can of course be imposed in the same way as in the case of Theorem
2.1,

(iii) Constraints of the form (zx, Ry} k = 1, q : Interpolation constraints of the form

Q@) =Rk k=1,q (2.21)
have also appeared in the literature. These conditions are but a special case of (2.3). In
fact for each k, (2.21) represents m special conditions of the form Q(sj) aj =bjj =1, 2in
(2.3). To see this, consider (2.3) and blocks of m interpolation points where sj=2z1 i=1,
m with aj = €;, Sm+i = z2 1 = 1, m with a4 = ¢j and so on, where the entries of ¢; are zero
except the ith entry which is 1; then R of (2.21) above is Ry = [by, ..., bm], R2 = [bm+1,
.-» b2m] and so on. In this case s; are not distinct but they are m-multiple. This is
illustrated in Example 2.9 below where: m =2 and sy =s3 =0 with a1 = [1,0]', a2 = [0,
1]' and Ry = [b1, b2] = [1,1]; also s3 =s4 =1 with a3 =[1,0]',a4 =[0, 1]'and R} =
[b3, ba] = {2,1].

A simple comparison of the constraints (2.21) to the polynomial constraints (2.1)
seems to suggest that this is an attempt to directly generalize the scalar results to the matrix
case. As in the polynomial case, zx k = 1, q therefore should perhaps be distinct for Q(s)
to be uniquely determined. Indeed this is the case as it is shown in the proof of the
following corollary:

Corpllary 2.7. Given (z, Rx) k = 1, q with q = d + 1, and Rg pxm, such that the
m(d+1)xmq matrix

Sdk: = [S4(z1),..., Sa(z)] (2.22)
has full rank, there exists a unique (pxm) polynomial matrix Q(s) with highest degree d
which satisfies (2.21).

Proof: Direct in view of Corollary 2.6; there are £ = mq interpolation points. Notice that
here Sgi (after some reordering of rows and columns) is a block diagonal Vandermonde
type matrix, and it is nonsingular if and only if zy are distinct. O
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Example 2.9 Let Q(s) be 1x2 (=pxm), d = 1 and let the q = d+1 = 2 interpolation points be
(z, Rk k=1,2} ={(0, [1, 1]), (1, [2, 1])). In view of Q(s) = Q Sa(s) = (Qis + Qp)

Q[Sd(z1), S¢(z2)] = [Ry, Ry) or

2.1 and 2.8. a

Note that if, instead of the degree d, the column degrees d; i = 1, m of Q(s) are
known, then a resuit similar to Corollary 2.7 but based directly on Theorem 2.1 can be
derived and used to determine Q(s) which satisfies (2.21) given (z, Rx) k = 1, q. In this
case, for a unique solution, q is selected so that mq 2 (X dj + m) .

In Corollaries 2.6 and 2.7 above, it is clear that the dual interpolation results of
Corollary 2.5, instead of Theorem 2.1, could have been used to derive dual versions.
These dual versions involve the row dimension p instead of m and they could lead in
certain cases to requirements for fewer interpolation points, depending on the relative size
of p and m. These altemative versions of the Corollaries can be easily derived and they are
not presented here.

(iv) Using Derivatives : In the polynomial case, there are interpolation constraints which
involve derivatives of q(s) with respect to s. In this way, one could use repeated values 8§
and still have linearly independent equations to work with. In the matrix case it is not
necessary to have derivatives to allow some repeated values for 8j, since the key condition
in Theorem 2.1 is Sy of (2.2) to be of full rank which, in general, does not imply that S
must be distinct; see Example 2.4 and Corollary 2.7 above. Nevertheless it is quite easy to
introduce derivatives of Q(s) in interpolation constraints and this is now done for generality
and completeness.

Notice that the kth derivative of S(s) := blk diag {[ 1, s, ..., sdi]'} i = 1, m with
respect to s, denoted by S(K)(s), is easily determined using the formula (s9i)(®) = d; (d; -
1)...(dj - k +1)s9i* for k less or equal to d; and (s9i)&) = O for k larger than dj. The
interpolation constraints Q(s; )aj = bj in (2.3) now have a more general form



Q(k)(sj' Yagj=bxj k=0,1,.. (2.23)
for each distinct value sj. Clearly, Q(s) = QS(s) implies QK)(s) = QSX)(s) and
QS&)(s; dagj = b (2.24)

in view of (2.23). There is a total of £ relations of this type which can be written as QS =
Bs , as in (2.5). To be able to uniquely determine Q(s), the new matrix Sy , which now
contains columns of the form S(k)(Sj )agj, must have full (column) rank. In particular, the
following result can be shown:

Theorem 2.8: Consider interpolation triplets (sj, akj, bxj) where sj j =1, ¢ distinct

complex scalars and aj; # 0 (mx1), bij (px1) complex vectors. If k =0, 2;- 1, let the total
c

number of interpolation points be £ = . 2;. For nonnegative integers dj i =1, m and 2
1

=¥ di + m assume that the (Xd; + m)x2 matrix Sy with columns of the form S&)(s;) ay
i=1,0,k=0, 2;- 1 namely

Sa = [8Ospapn, ..., S¥1- Dspag -y, 1, ... , SO(sg)ags, -] (2.25)
has full column rank. Then there exists a unique pxm polynomial matix Q(s) which
satisfies (2.23).

Proof Similar to Theorem 2.1. Solve QS s = By to derive the unique Q and Q(s) = QS(s).
0

Example 2.10: Consider a 1x2 polynomial matrix Q withd; =1,dp =0 and let the R =
Xd; + m = 3 interpolation points {(s1, ag1, bo1), (s1. a11, b11), (52, 202, bo2))= {(-1,[1

07,0),(-1,[1 0].1), (0,[0 17',1)} satisfy Q(s1)ag1 = bo1, Q)(s1)a1) = b1 and Q(s2)ap2
o)

=bg. Here6=2,41=2,8=1and 2= 2j=3. Now
1

10
QS3 = QIS@(s1)a01,5(V(s1)a, 1,50 (s2)agz] = Q[ol (; (.i)] =[0 1 1] = [bo1, b11, boz2] = B3

from which Q =[1 1 1] and Q(s) = QS(s) = [s+1, 1]. 0
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III SOLUTION OF POLYNOMIAL MATRIX EQUATIONS

In this section equations of the form M(s)L(s) = Q(s) are studied. The main result
is Theorem 3.1 where it is shown that all solutions M(s) of degree r can be derived by
solving an equation MSs = By derived using interpolation. In this way, all solutions of
degree r of the polynomial equation, if they exist, are characterized. The existence and
uniqueness of solutions is discussed, as well as methods to impose constraints on the
solutions. Alternative bases are examined in numerical considerations. The Diophantine
equation is an important special case and it is examined at length. Lemma 3.2 and
Corollary 3.3 establish some technical results necessary to prove the main result in
Theorem 3.4 that shows the conditions under which a solution to the Diophantine equation
of degree r does exist; a method based on the interpolation results to find all such solutions
is also given. Using this method, it is quite easy to impose additional constraints the
solutions must satisfy and this is shown.

Consider the equation

M(s)L(s) = Q(s) (3.1)
where L(s) (txm) and Q(s) (kxm) are given polynomial matrices. The polynomial matrix
interpolation theory developed above will now be used to solve this equation and determine
the polynomial matrix solutions M(s) (kxt) when one exists.

First consider the left hand side of equation (3.1). Let

M(s) := Mg + ... + M,sF (3.2)
where r is a non-negative integer, and let d; ;= degei[L(s)]i=1, m. If

A

Q(s) := M(s)L(s) 3.3)

then degci[é(s)] =dj + rfor i =1, m. According to the basic polynomial matrix
A

interpolation Theorem 2.1, the matrix Q(s) can be uniquely specified using 3 (dj+r) + m =

Zdi + m(r+1) interpolation points. Therefore consider 2 interpolation points (s;, aj, bj) j

=1, & where

2 =Y d; + m(r+1) 3.4
Let S¢(s) := blk diag{[1, s, ..., s9i*7]'} and assume that the (3d; + m(r+1))x2 matrix
Sra = [S¢(s1) a1,..., Se(sp)as] (3.5)

has full rank; that is the assumptions in Theorem 2.1 are satisfied. Note that in view of
Lemma 2.2, for distinct s;, S,-,gAwill have full column rank for almost any set of nonzero aj.
Now in view of Theorem 2.1 Q(s) which satisfies

Qspaj=b; j=1,4 (3.6)
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is uniquely specified given these £ interpolation points (sj» aj, byp). To solve (3.1), these
interpolation points must be appropriately chosen so that the equation
Q(s) (= M(s)L(s)) = Q(s) is satisfied:
Write (3.1) as

MLi(s) = Q(s) 3.7
where

M := [Mo,.., Ml (kxt(r+1))

L(s) :=[L(S)’, ..., STL(s)T (t(r+1)xm).

Let s = s and postmultiply (3.7) by aj j = 1, 4; note that sj and a; j = 1, £ must be so that
Sre above has full rank. Define

bj:=Q(spaj j=1,2 (3.8)
and combine the equations to obtain
MLy =Bs (3.9

where

Lrp := [Ly(s1) a1,..., Le(sp)ag] (t(r+1)x2)
Bp :=[by, ..., bp] (kxR).

Theorem 3.1: Given L(s), Q(s) in (3.1), let d; := degci[L(s)] i = 1, m and select r to satisfy
degcilQ(s)] <dj+r i=1,m (3.10)

Then a solution M(s) of degree r exists if and only if a solution M of (3.9) does exist;
furthermore, M(s) = M[I, sI, ..., s71]".

Proof: First note that (3.10) is a necessary condition for a solution M(s) in (3.1) of degree
r to exist, since degci[M(s)L(s)] = dj + r. Assume that such a solution does exist; clearly
(3.9) also has a solution M. That is, all solutions of (3.1) of degree r map into solutions of
(3.9). Suppose now that a solution to (3.9) does exist. Notice that the left hand side of
(3.9) MLgy = QS where Q(s) = M(s)L(s) = QS(s). Furthermore, the right hand side of
(3.9) By = QS;4, in view of (3.8); also note that Q(s) is uniquely represented by the £
interpolation pomts (sj» aj, bj) in v1ew of (3.10) and the interpolation theorem. Therefore
(3.9) implies that QSr,g QSgpor Q Q, since S;y is nonsingular, or that M(s)L(s) = Q(s)
= Q(s); that is M(s) = Mg+ ..., + Mst = M[I, s, ..., s'T] is a solution of (3.1). O

Alternative Expression
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It is not difficult to show that solving (3.9) is equivalent to solving

M(sjej=b; j=1,2 (3.11)
where

cj :=L(spaj, bj :=Q(spaj j=1,2 (3.12)
In view now of Corollary 2.6, the matrices M(s) which satisfy (3.11) are obtained by
solving

MS,2 =B, (3.13)

where Sgp := [SH(s1)C1,..., Se(sg)cp] (t(r+1)x8), with Si(s) := (I, sI, ..., sTI]' (t(r+1)xt)
and By := [by, ..., bg] (kx2); M(s) is then M(s) = M[I, sl, ..., s’} where M (kxt(r+1))
satisfies (3.13). Solving (3.13) is an alternative to solving (3.9).

Discussion

Theorem 3.1 shows that there is a one-to-one mapping between the solutions of
degree r of the polynomial matrix equation (3.1) and the solutions of the linear system of
equations (3.9) (or of (3.13)). In other words, using (3.9) (or (3.13)), we can characterize
all solutions of degree r of (3.1). Note that the conditions (3.10) of the theorem are not
restrictive as they are necessary conditions for a solution M(s) in (3.1) of degree r to exist;
that is, all solutions of M(s)L(s) = Q(s) of any degree can be found using Theorem 3.1.
Also note that no assumptions were made regarding the polynomial matrices in (3.1), that
is Theorem 3.1 is valid for any matrices L(s), Q(s) of appropriate dimensions.

To solve (3.1), first determine the column degrees dj i = 1, m of L(s) and select r to
satisfy (3.10). Choose (sj ,aj) j =1, £ with £ = 3, dj + m(r+1), so that Srp := [S(s1)
al,..., S¢(sg)ap] has full rank; note that in view of Lemma 2.2, for sj distinct Sgp will have
full rank for almost any aj. Calculate bj := Q(sj)aj (Bx) and Lys in (3.9), or S in (3.13).
Solving (3.9) (or (3.13)) is equivalent to solving (3.1) for solutions M(s) of degree <r;
M(s) = M(L, s, ..., s'I]. When applying this approach, it is not necessary to determine in
advance a lower bound for r; it suffices to use a large enough r. Theorem 3.1 provides the
theoretical guarantee that in this way all solutions of (3.1) can be obtained. Searching for
solutions is straightforward in view of the availability of computer software packages to
solve linear system of equations. Even when an exact solution does not exist, it can be
approximated using, for example, least squares approximation.

Existence and Uniqueness of Solutions
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A solution M(s) of degree < r might not exist or, if it exists, might not be unique.
A soiution M to (3.9) exists if and only if

rank [11;;'] = rank L,y (3.14)

If rank Ly = 2, full column rank, (3.14) is satisfied for any By, which implies that the
polynomial equation (3.1) has a solution for any Q(s) such that (3.10) is satisfied. Such
would be the case, for example, when L(s) is unimodular (real or complex scalar in the
polynomial case). In the case when Lys does not have full column rank, a solution M exists
only when there is a similar column dependence in B (see (3.14)), which implies certain
relatonship between L(s) and Q(s) for a solution to exist. Such would be the case, for
example, when L(s) is a (right) factor of Q(s). A necessary condition for L4 to have full
column rank is that it must have at least as many rows t(r+1), as columns £ =
2 di + m(r+1). It can be easily seen that if t < m, this is impossible to happen. This
implies that if L(s) has more columns that rows, solutions M(s) exist only under certain
conditions on L(s) and Q(s), a known fact. For example, when IL(s)| # 0 (t=m), solution
exists if and only if, L(s) is unimodular. When t > m, more rows than columns in L(s), a
necessary condition for Ly to have full column rank is:

r2 ¥y di-1 (3.15)

t -m
In this case if (3.9) has a solution, then it has more than one solutions. Similar results can
be derived if (3.13) is considered. This is the case in solving the Diophantine equation,
which is considered in detail later in this section.

Example 3.1 Consider the polynomial equation
M(s)L(s) = M(s)(s+1) = Q(s)
Here m=1 and d; =deg L(s) = 1. Then £ = Xd; + m(r+1) = 2 + r interpolation points will
be taken where r is to be decided upon. Note that since m=1, aj = 1 and Sr¢ will have full
rank if sj are taken to be distinct. Suppose Q(s) = s2 + 3s + 2, a second degree
polynomial. In view of Theorem 3.1, deg Q(s) = 2 £ dj +r =1 + r from which
r=1,2,... Letr=1, and wake {sj, j = 1, 2, 3} = {0, 1, 2}. Then from (3.9)
Ml¢s = [Mp, M1] [L0), L(1), Lr(2)]

= 0o, M1 [ 3 ]

=[Q(0), Q(1), Q)1 = (2, 6, 12]) =B,.
Here rank{L;y', B»'l' = rank L¢3y = 2 so a solution exists. It is also unique: [Mg, M1] = [2,
1]. That is M(s) = (s+2) is the unique solution of M(s)(s+1) =s2 + 3s + 2.



It is perhaps of interest at this point to demonstrate the conditions for existence of
solutions in the polynomial equation M(s)(s+1) = Q(s) via (3.9) and the discussion above;
note that the polynomial equation has a solution if and only if Q(s)/(s+1) is a polynomial or
equivalently Q(-1) = 0. From the above system of equations (r=1), for a solution to exist
Q(2) =-3Q(0) + 3Q(1) or d] =d3 + dg if Q(s) = d2s2 + dis + dp, But this is exactly the
condition for Q(-1) = 0 as it should be. Similarly it can be shown that Q(-1) = 0 must be
true forr=2,3, ....

If now degQ(s) = 0 or 1 then r = 0 satisfies degQ(s) < d; +rand £ =2
interpolation points are needed. Let {sj j=12) = {0, 1}. Then

MLgs = [Mo, M;] [L(0), L(1)]
= [Mo, My](1, 2} = [Q(0), Q(1)] =B,.
Clearly a solution exists only when Q(1) = 2Q(0). That is for degQ(s) = 1, and Q(s) =d; s
+ dp a solution exists only when d; + dg = 2dg or d; = dgp or when Q(s) = dg(s+1) in which
case M(s) =dp. For degQ(s) = 0 and Q(s) = dp, a constant, it is impossible to satisfy Q(1)
= 2Q(0), that is a solution does not exist in this case. O

It was demonstrated in the examnple that using the interpolation results in Theorem
3.1 one can derive the conditions for existence of solutions in polynomial equations.
However the main use of Theorem 3.1 is in finding all solutions of polynomial matrix
equation of certain degree when they exist.

Example 3.2 Consider

ML) = M) 51 1] = [s+1, 11 = Q)
Herem=2,d;=1anddy =0; £ = 2d; + m(r+1) = 1 + 2(r+1) = 3 + 2r. To selectr,
consider the conditions of Theorem 3.1 :
deg1 Q(s)=1<sdy+r=1+r
deg2Q(s)=0<dy+r=0+r
sor=0, 1, ... satisfy the conditions. Letr= 0, then £ = 3; take (sj, aj,j = 1, 2, 3} = {(0,
{1, 019, (0, [0, 119, (1, [1, O])) and note that S;4 does have full rank. Then

ML,y = Mp[L(0)a1, L(0)az, L(1)a3] = Mp [0 1 11 (1)]

= [Q(0)ay1, Q(1)az, Q(2)as]
={1,1,2]=By.
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This has a unique solution M(s) = Mg = [2, -1]. Note that here L(s) is unimodular and in
fact the equation has a unique solution for any (1x2) Q(s). O

Constraints on Solutions
When there are more unknowns (t(r+1)) than equations (£ = Yd; + m(r+1)) in

(3.9) or (3.13), this additional freedom can be exploited so that M(s) satisfies additional
constraints. In particular, k := t(r+1) - £ additional linear constraints, expressed in terms
of the coefficients of M(s) (in M), can be satisfied in general. The equations describing the
constraints can be used to augment the equations in (3.9). In this case the equations to be
solved become

M[Lrp, C] =[Bg, D] (3.16)
where MC = D represents k := t(r+1) - 2 linear constraints imposed on the coefficients M;
C and D are matrices (real or complex) with k columns each. Similarly, if (3.13) is the
equation to be solved, then to satisfy additional linear constraints one solves

M{Ss,Cl =By, D] (3.17)
This formulation for additional constraints is used extensively in the following to obtain
solutions of the Diophantine equation which have certain properties. It should also be
noted that additional constraints on solutions which cannot be expressed as linear algebraic
equations on the coefficients M can of course be handled directly. One could, for example,
impose the condition that coefficients in M must minimize some suitable performance
index.

Numerical Considerations

In ML, = B (3.9), the matrix Lpy (t(r+1)x2) is constructed from Ly(s) = [L(s),
w.r STL(s)T and (sj, aj) j = 1, 2. The choice of the interpolation points (s, aj) certainly
affects the condition number of Lp. Typically, a random choice suffices to guarantee an
adequate condition number. This condition number can many times be improved by using
an alternative ( other than [1, s, ... ]) polynomial basis such as Chebychev polynomials.
Similar comments apply to equation MSy =By (3.13). It is shown below how (3.9) and
(3.13) change in this case.

Let [pos ..., Pr]’ = T[l,s, ..., sT]" where pj(s) are the elements of the new
polynomial basis and T = [t;;] i,j = 1, r + 1 is the transformation matrix,
Then M(s) = ML, s, ..., sT' = M(pol, ..., pI]' from which



M= M{T®I (3.18)

where ® denotes the Kronecker product. M and M are of course the representation of M(s)
with respect io the different bases. (3.9) now becomes

R A 1(\4]:1= By (3.19)
where Ly involves L(s) = [poL(s), ..., prL(s)] instead of L(s). Here

A
) L = [T@L]Lrs (3.20)
where Lyg will have improved condition number over L for appropriate choices of pi(s) or
T. Similarly, (3.13) becomes in this case

A A

MS =B, (3.21)
where

A

Sp= [TRLIS, (3.22)

The Diophantine Equation
An important case of (3.1) is the Diophantine equation:

X(s)D(s) + Y(s)N(s) = Q(s) (3.23)
where the polynomial matrices D(s), N(s) and Q(s) are given and X(s), Y(s) are to be

found. Rewrite as
D(s)

[X(s), Y(s)] [ ] = M(s)L(s) = Q(s) (3.29)

N(s)
from which it is immediately clear that the Diophantine equation is a polynomial equation of
the form (3.1) with

D(s)
] (3.25

M(s) = [X(s), Y(s)], L(s)= [

N(s)

and all the previous results do apply. That is, Theorem 3.1 guarantees that all solutions of
(3.24) of degree r are found by solving (3.9) (or (3.13)). In the theory of Systems and
Control the Diophantine equation used involves a matrix L(s) = {D'(s), N'(s)]' which has
rather specific properties. These now will be exploited to solve the Diophantine equation
and to derive results beyond the results of Theorem 3.1. In particular conditions are
derived which, if satisfied, a solution to (3.24) of degree r does exist.
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Consider N(s) (pxm) and D(s) (mxm) with ID(s)l # 0; N(s)D-1(s) = H(s) a proper

transfer matrix, that is
s}i_l)an(s) < oo

Then L(s) ((p+m)xm) in (3.25) has full column rank and, as it is known, the
Diophantine equation (3.24) has a solution if and only if a greatest right divisor (grd) of the
columns of L(s) is a right divisor (rd) of Q(s). Let (N,D) be right coprime (rc), a typical
case. This implies that a solution M = [X|, Y] of some degree r always exists. We shall
now establish lower bounds for r, in addition to (3.10), for the system of linear equations
(3.9) (or equivalently (3.13)) to have a solution for any By; that is, in view of (3.14) we
are interested in the conditions under which Ly ((p+m)(r+1)x2) has full column rankA2.
Clearly these equations can be used to search for solutions for lower degree than r, if
desirable. Such solutions M(s) may exist for particular L(s) and Q(s), as discussed above;
approximate solutions of certain degree may also be obtained using this approach.

Ly(s) in (3.7) has column degrees dj+ri = 1,m and it can be written as
Li(s) = LeS(s) (3.26)
where S((s) := blk diag[1, s, ..., s9i*7]'. It will be shown that under certain conditions Ly

m
((p+m)(r+1)x[§, d; + m(r+1)]) has full column rank. Then in view of

Les := [Le(s1) a1,..., Le(sp)as]
=L¢ [S¢(s1) a1,..., Sr(s4)ap) = LiSra (3.27)

and the Sylvester's inequality it will be shown that Lyy ((p+m)(r+1)x2) also has full
column rank, thus guaranteeing that a solution to MLy = By (3.9) does exist.

N(s), D(s) are right coprime with N(s)D-1(s) = H a proper transfer matrix. Let v be
the observability index and n := degiD(s)|, the order of this system. Assume that D(s) is
column reduced (column proper); note that degq;(L(s)) = d; = degc;D(s) since the transfer
matrix is proper. Then n = Xd;.

lemmal2: Rankl,=n+m(@+l) forr2v-1.

Proof ; First note that Ly has more rows than columns when r 2 n/p -1. It is now known
that the observability index satisfies v 2 n/p. Therefore, forr 2 v - 1 L has more rows
than columns and full column rank is possible. Forr=v -1, rankLy=n+mv=n+
m(r+1), since L. in this case is the eliminant matrix in [10] which has full rank when N, D
are coprime. Let now r = v and consider the system defined by Ne(s) := Ly.1(s), De(s) :=
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sV D(s) with He(s) = Ne(s)De(s)"1. It can be quite easily shown that N and D, are right
coprime and Dy is column reduced; furthermore, the observability index of this system is v,
= 1. This is because there are n + mv nonzero observability indices 2 1 since Lr.j, the
output map of a state space realization of H(s), has n + mv independent rows; in view of
the fact that the order of the system is degls¥ D(s)l = n + mv, all these indices must be equal

to 1. Now
Ne(s) Ly-1(s)
[ ] = = LeSv(s)
De(s) sV D(s)

and rank Le = n + mv + m since N, D, satisfy all the requirements of the eliminant matrix
theorem [10]. This implies that for r = v rank Ly = n +mv + m, since L (s) = [Ne(s)',
De(s)', s¥ N(s)']' and addition of rows to L, to obtain Ly , does not affect its full column
rank. A similar proof can be used to show, in general, that if rank L = n + m(r+1) for
somer=ry >V -1 then it is also true forr =r; +1. In view of the fact that it is also true for
r=v- 1 (alsor =v), the statement of the lemma is true, by induction. a

The following corollary of the Lemma is now obtained. Assume that (s;, a;) are
selected to satisfy the assumptions of Theorem 3.1, Sy full column rank, and let D(s) be
column reduced:

Corollary 3.3 : Rank L;p =rank S;p =42 < 3d; + m(r+1) forr2v -1.
Proof : In (3.27), Lra = LSrq where Lyy ((p+m)(r+1)x2 ), Ly ((p+m)(r+1)x[Zd;
+m(r+1)]. Applying Sylvester's inequality,

rank Ly + rank Sgp - [2d; + m(r+1)] < rank L;y < min [rank L;, rank S,s].
Forr2v-1,rank Ly =n + m(r+1) with n = ¥.d; (D(s) column reduced) in view of Lemma
3.2. Therefore rank Ly = rank S;y which equals the number of columns 2, as it is
assumed in Theorem 3.1. a

The main result of this section can now be stated: Consider the Diophantine
equation of (3.24) where N(s)(pxm), D(s)(mxm) right coprime and H(s) = N(s)D-1(s) a
proper transfer matrix. Let v be the observability index of the system and let D(s) be
column reduced with d; := deg;D(s). Let 2 = 3d; + m(r+1) interpolation points (sj» aj, by)
j=1, 2 be taken such that S;y has full rank (condition of Theorem 3.1). Then

Theorem 3.4 ; Letr satisfy
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degei[Q(s)) €dj+r i=1l,mandr2v-1. (3.28)

Then the Diophantine equation (3.23) has solutions of degree r, which can be found by

solving ML;» = B (3.9) ( or (3.13)).
Proof : In view of Theorem 3.1 all solutions of degree r, if such solutions exist, can be
found by solving (3.9). If, in addition r 2 v -1, in view of Corollary 3.3 L,y has full

column rank which implies that a solution exists for any By, or that a solution of the
Diophantine of degree <r exists for any Q(s). O

The theorem basically says that if the degree r of a solution to be found is taken
large enough, in particular r 2 v - 1, then such a solution to the Diophantine does exist. All

such solutions of degree r can be found by using the polynomial matrix interpolation results
in Theorem 3.1 and solving (3.9) (or (3.13)). The fact that a solution of degree r 2 v-1
exists when D(s) is column reduced and certain constraints on the degrees of Q(s) has been
known (see for example Theorem 9.17 in [12]). This same result was derived here using a
novel formulation and a proof based on interpolation results.

Example 3.3 : Let
32 0 s+1 O
D(s)=[ : _s+1],N(s)=[ 7 7] and

[s3+2s2-35-5 -55-5]
Qw=[ ¥ 3375200 30,

Here D(s) is column reduced with dy =2,dy =1 and v = 2. According to Theorem 3.1,
degcilQ(s)l < dj+r i=1,2,implies3 <2 +rand2 <1 +r from whichr21; 2 =

m
)1: dj + m (r+1) = 5 + 2r interpolation points. For such r, all solutions of degree r are
given by (3.9) or (3.13). Herer2 v -1 = 1, therefore in view of Theorem 3.4 a solution of

degree r = 1 does exist. All such solutions are found using MLy = By (3.9) or (3.13).
Forr=1,s5j=-3,-2,-1,0,1,2,3 and

s=[o} [} Lo} [ [5]. [3] [1]

a solution is
5 -3 -10
MO =X, Y= [ 5 (24 0%, &) u
If in D(s) the column reduced assumption is relaxed then:
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Corollary 3.5 : Rank Ly =rank Ly =n + m(r+1) for £ =Xdj + m(r+1) andr2v- 1.

Proof : First note that Sys in this case is square and nonsingular which in view of (3.27)
implies that rank Lry = rank Ly . Since D(s) is not column reduced then n < ¥d;. In
general in this case, forr 2 v - 1 rank Ly = n +m(r+1) < Xd; + m(r+1) (with equality
holding when D(s) is column reduced); that is n + m(r+1) is the highest rank L, can
achieve. This can be shown by reducing D(s) to a column reduced matrix by unimodular
multiplication and using Sylvester's inequality together with Lemma 3.2. (]

When D(s) is not column reduced, then, in view of Corollary 3.5, Lyg in MLy =
B+ (3.9) will not have full column rank £ butrank L;» =n + m(r+1) < Xd; + m(r+1) = 2.
In view of (3.14), solution will exist in this case if Q(s) is such that the rank condition in
(3.14) is satisfied; this wiil happen when only n+m(r+1) equations in (3.9), out of £ , are
independent. Ifr is chosen larger in this case, that is if it is selected to satisfy Ydeg:iQ + m
< n + m(r+1) or 2deg;iQ < n + mr, instead of Ydeg:iQ < Xd; + mr as required by
Theorem 3.4, then in view to Theorem 2.1, there are £ - (Xdegc;Q + m) more interpolation
equations than needed to uniquely specify Q(s) and these additional columns in By will be
linearly dependent on the previous ones. If similar dependence exists between the
correspondmg columns of L,-,g then (3.14) is sansficd and a solution exists. In other

b_gsansﬂ&m_;hm_cm (after D(s) is reduced to column reduced form by a mulnplxcanon of
the Diophantine equation by an appropriate unimodular matrix). It should also be stressed
at this point that numerically it is straightforward to try different values for r in solving
Miry =By (3.9).

Constraints on Solutions

In the equation MLy = By (3.9) there are at each row t(r+1) = (p+m)(r+1)
unknowns (number of columns of M = [My, ..., M¢] = [(Xp, Y0), .... Xy, YD) and £ =
2d; + m(r+1) linearly independent equations (number of columns of L, 4). Therefore, for r
sufficiently large, there are p(r+1) - 2.d; more unknowns than equations and it is possible
to satisfy, in general, an equal number of additional constraints on the coefficients M of
M(s) = [X(s), Y(s)]. These constraints can be accommodated by selecting larger values for
r and they are exceptionally easy to handle in this setting when they are linear. Then, the
equation to be solved becomes

M [L¢, C] = [By, D] (3.29)
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where M C = D are the, say kq desired constraints on the coefficients of the solution; the
matrices C and D have k4 columns each. The degree of the solution r should then be
chosen so that

p(r+1) - Xd; 2 kg (3.30)
in addition to satisfying the conditions of Theorem 3.4.

Typically, we want solutions of the Diophantine with IX(s)! # 0. This can be
satisfied by requiring for example that X; = I (or any other nonsingular matrix) which, in
addition guarantees that X-1(s)Y(s) will be proper. Note that to guarantee that X; = I one
needs to use m linear equations, that is in this case the number of columns of C and D will
be at least m.

To gain some insight into this important technique, consider the scalar case which
has been studied by a variety of methods. In particular, consider the polynomial
Diophantine where p = m = 1. Let dj = deg D(s) = n, nq = degQ(s) and note that v =n.
Therefore r, according to Theorem 3.4, must be chosen to satisfyr2ng-nandr2n-1.
Select Q(s) so that ng = 2n - 1 then r 2 n -1 satisfies all conditions, as it is well known. In
view of the above, to guarantee that X-1Y will be proper, one needs to set an additional
constraint such as X; = 1 (m = 1), which in view of (3.30) implies that X-1(s)Y(s) proper
can be guaranteed if r is chosen to satisfy r 2 n. In the case when N(s)D-1(s) is strictly
proper (instead of proper), however, this additional constraint is not needed and X-1(s)Y(s)
proper can be obtained for r 2 n - 1. This is because in this case a solution with Xy =0
leading perhaps to a nonproper X-1(s)Y(s) is not possible. Notice that forr=n - 1 the
solution is unique.

Example 3.4:

Consider Example 3.3, p(r+1) - Xd; = 2(1+1) - (2+1) = 1. From (3.30), one can
add one extra constraint on the solution in the form of (3.16) or (3.17). Assume that in
addition to solve for [X(s), Y(s)] in Example 3.3, it is desirable that X(s) has a zero at
s=-10 and X(-10)[1 2]'=[0 0]'. This can be easily incorporated as an extra interpolation
triplet using (3.17). The solution obtained is

M) = (X6, YOI = [56 o1s 1502 1eerti]):

Note that X(s) has a zero at -10 and {X(s), Y(s)] is a solution of the Diophantine equation
(3.23) with the D(s), N(s) and Q(s) given in Example 3.3. (|
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Example 3.5: Let
pw=[ 5 sl vo=[F! ] adew=[g 9

From which d) = d3 = 1; degeiQ(s) =0, i=1, 2; and £ = 2 + 2(r+1)
Forr=1,5=-2,-1,0,1,2,3 and

4= [(1)] [;] [(i] [31] [11] [11]
a solution is
Mo =X0, YO = [1j3 13 3 13seass) -

Example 3.6: Let
b= [ 52, 5] v0-[ 5 {]amacw-[3 3

From which dj =d3 = 1; degiQ(s) =0, i=1, 2; and £ = 2 + 2(r+1)
Forr=1,sj=-2,-1,0,1,2,3 and

s=[1] [o] [1] [51 [1].[1]

a solution is
M(s) = [X(s), Y(s)]
-.4665s-.2954 3805 .4665s+.2085 -.3805(s+1)
3401s5-.4040 .0320 -.3401s+.7761 -.0320(s+1)J-

Note that, in this example, the rows of [Mg, M;] forms the basis for the left null space of
Sas O

Note that in Example 3.5 and 3.6 we solved the problem
X(s) Y(8)rD(s)1 _r1
[-ﬁ(s) ]’j(s)] [N(s)] - [0]

separately, where X(s) and Y(s) are the solution of the Bezout identity and D-1(s)N(s) =
N(s)D-1(s) gives the left coprime factorization.






IV. CHARACTERISTIC VALUES AND VECTORS

When all the n zeros of an nth degree polynomial q(s) are given, then q(s) is
specified within a nonzero constant. In contrast, the zeros of the determinant of a
polynomial matrix Q(s) do not adequately characterize Q(s); information about the structure
of Q(s) is also necessary. This additional information is contained in the characteristic
vectors of Q(s), which must also be given, together with the characteristic values, to
characterize Q(s). The characteristic values and vectors of Q(s) are studied in this section.

We are interested in cases where the complex numbers sjj =1, 2 used in
interpolation, have special meaning. In particular, we are interested in cases where s;j are
the roots of the nontrivial polynomial entries of the Smith form of the polynomial matrix
Q(s) or, equivalently, roots of the minors of Q(s), or roots of the invariant polynomials of
Q(s) (see Appendix A). Such resuits are useful in addressing a variety of control problems
as it is shown later in this and the following sections. Here we first specialize certain
interpolation results from Section II to the case when bj, in the interpolation constraints
(2.3), are zero and we derive Corollary 4.1. This corollary characterizes the structure of all
nonsingular Q(s) if all of the roots of IQ(s)l together with their associated directions, i.e.
(sj, aj), are given. We then concentrate on the characteristic values and vectors of Q(s) and
in Theorems 4.2, 4.3, 4.7 and in Appendix A, we completely characterize all matrices with
given such characteristic values and vectors.

Note that here only the right characteristic vectors are discussed (Q(sj)aj = 0);
similar results are of course valid for left characteristic vectors (a; Q(sj) = 0; see also
Corollary 2.5) and they can be easily derived in a manner completely analogous to the
derivations of the results presented in this and the following sections. These dual results
are omitted here.

Consider the interpolation constraints (2.3) with bj = 0; that is

Q(sjaj=0 j=1, 2 4.1)
In this case one solves (2.5) with By = 0; that is
QSy=B,=0 (4.2)

where Sy = [S(s1)ay, ..., S(sg)ag] (Xdj + m)xk and Q (px(Xd; + m)). This case, By =0,
was briefly discussed in Section II, see (2.11); see also the discussion on eigenvalues and
eigenvectors. We shall now start with the case when Q(s) is nonsingular. The following
corollary is a direct consequence of Corollary 2.2:
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Corollary 4.1: Let Q(s) be (mxm) and nonsingular with n = deglQ(s)l. Letd;ji=1, m be
its column degrees and let 3d; = n. If (s}, 2j) j = 1, 2 with 2 = n are given and they are
such that S1 has full rank, then a Q(s) which satisfies (4.1) is uniquely specified within a
premultiplication by an (mxm) nonsingular leading coefficient matrix C.

Proof; Since deglQ(s)l = n = Xd; the leading coefficient matrix C; of Q(s) must be
nonsingular. The rest follows directly from (2.7). O

This corollary says that if all the n zeros s; of the determinant of Q(s) are given
together with the corresponding vectors a; which satisfy (4.1) then, under certain
assumptions (S1y full rank), Q(s) is uniquely determined within a nonsingular leading
coefficient matrix C provided that its column degrees d; (given) satisfy 3d; =n. If d; are
not specified, there are many such matrices. One could relax some of the assumptions (Sy
full rank) and further extend some of the results of Section II by using derivatives of Q(s)
and Theorem 2.8. Instead, we start a new line of inquiry which concentrates on the
meaning of (s, aj) when they satisfy relations such as (4.1). We retum to Corollary 4.1
later on in this section.

If a complex scalar z and vector a satisfy Q(z) a = 0, where Q(s) is a pxm matrix
and the vector a # 0, then under certain conditions z and a are called characteristic value and
vector of Q(s) respectively. This is of course an extension of the well known concepts in
the special case when Q(s) = sI-A; then z and a are an eigenvalue and the corresponding
eigenvector of A respectively. Note that in the general matrix case, the fact that z and a
satisfy Q(z) a = 0 does not necessarily imply that they do have special meaning; for
example, for Q(s) = [1 0] and a = {0 1]', Q(z) a = O for any scalar z. On the other hand if
Q(s) is square and nonsingular, Q(z) a = 0 would imply that z is a root of the determinant
of Q(s); in fact in this case z and a are indeed characteristic value and vector of Q(s).
Conditions of the form Q(z) a = 0 imposed so that to force Q(s) to have certain
characteristic values and vectors are very important in applications. The definitions of
characteristic values and vectors are given below.

Given a pxm polynomial matrix Q(s), its Smith form is uniquely defined; see
Appendix A. The characteristic values (or zeroes) of Q(s) are defined using the invariant
polynomials &; (s) of Q(s).
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Definition 4.1: The characteristic values of Q(s) are the roots of the invariant polynomials
of Q(s) taken all together. If a complex scalar sj is a characteristic value of Q(s), the mx1
complex nonzero vector aj which satisfies

Q(sj)aj=0 4.3)
is the comresponding characteristic vector of Q(s).

Q(s) may have repeated characteristic values and the algebraic and a geometric
multiplicity of s;j are defined below for Q(s) square and nonsingular; it is straightforward to
extend these definitions 10 a pxm Q(s). In the case of a real matrix A, if some of the
eigenvalues are repeated one may have to use generalized eigenvectors. Here generalized
characteristic vectors of Q(s) are also defined. The general definition involves derivatives
of Q(s) and it is treated in the Appendix. In the results below, only characteristic vectors
that satisfy relation (4.1), which does not contain derivatives of Q(s), are considered for
reasons of simplicity and clarity; a general version of these results can be found in the
Appendix A.

Let Q(s) be an (mxm) nonsingular matrix. If sj is a zero of IQ(s)l repeated n; times,
define n; to be the algebraic multiplicity of sj; define also the geometric multiplicity of s as
the quantity (m - rank Q(s;)).

Theorem 4.2: There exist complex scalar s; and 2j nonzero linearly independent (mx1)
vectors ajj i = 1, £j which satisfy

Q(sjajj =0 (4.4)

if and only if s; is a zero of IQ(s)l with algebraic multiplicity (=nj) 2 A j and geometric
multiplicity (= m - rankQ(s;)) 2 &£;.
Proof: This is a special case of the Theorem A.1 of Appendix A forkjj=1i=1,4;. 0O

The complex values sj and vectors ajj are characteristic values and vectors of Q(s).
In the case when £j = 1, the theorem simply states that sj is a zero of IQ(s)! if and only if
rankQ(sj) < m, an obvious and well known result. The conditions of Theorem 4.2 imply
certain structure for the Smith form of Q(s), as it is shown in Corollary A.3 in Appendix A.
In particular, if the conditions of Theorem 4.2 are satisfied then the Smith form of Q(s)
contains the factor (s - s;) in 2; separate locations on the diagonal.
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In the following it is assumed that n = deglQ(s)! is known and the matrices Q(s)
with given characteristic values and vectors s; and a;j are characterized.

Theorem 4.3: Let n = deglQ(s)l. There exist ¢ distinct complex scalars s; and (mx1)
(o]

nonzero vectors ajji =1, 4j j = 1, ¢ with )_&j = n and ajj i = 1, £; linearly independent
1

which satisfy (4.4) if and only if the zeros of IQ(s)! have ¢ distinct values s; j = 1, ©, each
with algebraic multiplicity (= nj) = £; and geometric multiplicity (= m - rank Q(sj)) = &;.

Proof: This is a special case of the Theorem A.4 in the Appendix. O
Note that the independence condition on the mx1 vectors ajj, agj , ...,agjj implies
that £; <m; that is no characteristic value is repeated more that m times. One should use the
general Theorem A 4 if this is not sufficient.
The following corollary of Theorem 4.3 formalizes the most familiar case:

Corollary 4.4: Let n = deg IQ(s)l. There exist n distinct complex scalars s; and (mx1)
nonzero vectors aj j = 1, n which satisfy (4.1) if and only if the zeros of IQ(s)l have n
distinct values s;. 0

If a matrix Q(s) satisfies the conditions of Theorem 4.3, its Smith form contains the
factor (s - s;) in exactly 2; different locations on the diagonal; see Corollary A.5 and (A.4).
This is true for each distinct value s j=1, 6. In view of the divisibility properties of the
diagonal entries of the Smith form, this information specifies uniquely the Smith form; that
is:

Corollary 4.5: All Q(s) which satisfy the conditions of Theorem 4.3 have the same Smith
form. (]

If a Smith form with factors (s - s)¥ij kjj = 1 in certain location is desired, one then
must use Theorem A.4 and Corollary A.5 that utilize the derivatives of Q(s).

Example 4.1: Suppose for some Q(s), deg IQ(s)l = n =2 and, Q(sj)aj; = 0 is satisfied for 51
=1and a1 =[1, 0]'and ag) = [0, 1]". Here 2j=2) =2. Since &1 = 2 = n, Theorem 3.3
implies that ¢ = 1, or that s; = 1 is the only distinct root of IQ(s)l and it has an algebraic
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muldplicity (=n) = 2 = 21 and geometric multiplicity = 2 = 2;. Its Smith form hass- 1 in

21 =2 locations on the diagonal and it is uniquely determined. It is
s-1 0
B0 =[%0 51

(See also Example A.1). a

Additional structural information about matrices Q(s) which satisfy the conditions
of Theorem 4.3 is given by applying Corollary 4.1. Corollary 4.1 has the condition that
S14 must have full (column) rank. Notice that the repeated values s; give rise to 2; linearly
independent columns S(s;)aj; i = 1, £; in S1 4 because ajj i = 1, 2; are linearly independent;
therefore Sy, has full rank for almost any set of (s;, ajj) of Theorem 4.3. Corollary 4.1
then implies that the matrices Q(s) which satisfy the conditions of Theorem 4.3 are
uniquely specified within a premultiplication by a nonsingular matrix C; if the column
degrees d; are given and they satisfy >d; = n; note that it is not possible to have Yd; <n
since n = degiQ(s)l. It should be pointed out that this result does not contradict the fact that
if the eigenvalues and the eigenvectors of a matrix A are known, then si-A = Q(s) is
uniquely determined, since in this case the additional facts thatd;=1i=I,nand Cc =1 are
being used; see Corollary 2.3. If ¥d; > n then Q(s) is underdefined and there are many
such matrices Q(s) (note that C; is singular in this case). To obtain such matrices in this
case (Xd; > n) one could select a Q(s) with X dj = n and then premultply Q(s) by an
arbitrary wnimodular matrix U(s); note that IQ(s)! and 1U(s)Q(s)! have exactly the same
zeros. Therefore, the conditions of Theorem 4.3 specify Q(s) within a unimodular
premultiplication.

Lemma 4,6: Theorem 4.3 is satisfied by a matrix Q(s) if and only if it is satisfied by
U(s)Q(s) where U(s) is any unimodular matrix.

Proof: Straight forward. Note that (4.3) is satisfied if and only if it is satisfied for
U(s)Q(s) with the same s; and ajj; this is because U(s;) is nonsingular. a

It is of interest at this point to briefly summarize the results so far: Assume that, for

an (mxm) polynomial matrix Q(s) yet to be chosen, we have decided upon the degree of
IQ(s) | as well as its zero locations - that is about n, sj and the algebraic multiplicities n;.
Clearly there are many matrices that satisfy these requirements; consider for example all the
diagonal matrices that satisfy these requirements. If we specify the geometric multiplicities
Ajas well, then this implies that the matrices Q(s) must satisfy certain structural
requirements so that m-rankQ(s;) = 2; is satisfied; in our example the diagonal matrix, the
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factors (s-s;) must be appropriately distributed on the diagonal. If k;; are also chosen to be
equal to 1 as it is the case studied here (see Appendix for kjj # 1), then the Smith form of
Q(s) is completely defined, that is Q(s) is defined within pre and post unimodular matrix
multiplications. Note that this is equivalent to imposing the restriction that Q(s) must

satisfy n relations of type (4.4), as in Theorem 4.3, without fixing the vectors a% . Ifin

ij
addition a]i(j' are completely specified then Q(s) is determined within a unimodular

premultiplication; see Lemma 4.6.

If an (mxm) nonsingular polynomial matrix Q(s) satisfies all conditions of Theorem
4.3 with the exception that deglQ(s)! is not specified, then in view of Theorem 3.2 the
foliowing can be shown.

Corollary 4.7: Let IQ(s)l # 0. There exist ¢ distinct complex scalars sj and (mx1) nonzero
4]

vectors ajji=1,4j j=1,0 with 3 2j=n and a;j i = 1, £j linearly independent which
1

satisfy (4.4) if and only if fi := deglQ(s)l 2 n with sj j =1, o roots of IQ(s)l, and with
algebraic and geometric multiplicity of s in Q(s) 2 2; . O

In view of this corollary, it can now be shown that the conditions of Theorem 4.3,
with the exception that the deglQ(s)l is not given, specify Q(s) within a premultiplication by
a polynomial matrix. That is:

Corollary 4.8: Let IQ(s)l # 0 and let (4.4) be satisfied for (sj, ajj) i = 1, 2j j=1, ¢ with
o
Z,Ej =n with ajj i = 1, 2j linearly independent and s; j = 1, & distinct. Then Q(s) is
1

specified within a premultiplication by a polynomial matrix. This polynomial matrix is
unimodular if deglQ(s)l = n. a

Note that if fi = n, then the conditions of Corollary 4.7 are same as the ones in
Theorem 4.3 and the fact that Q(s) is specified within a premultiplication by a unimodular
matrix in Corollary 4.8 agrees with Lemma 4.6. Corollary 4.8 also agrees with Corollary
4.1 when it is applied with Xd; > n (see discussion following Example 4.1).

The above Theorems and Corollaries show that the existence of appropriate (sj, ajj)
which satisfy (4.4) implies (and it is implied by) the occurrence of certain roots in 1Q(s)I
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and certain directions associated with these roots. How does one go about selecting such
a5 and how does one go about finding an appropriate Q(s)? This can of course be done by
Corollary 4.1. (sj, a;;) are chosen so that Sy has full rank as it was discussed following
Example 4.1. Note that in view of Lemma 2.4, if s; are distinct the corresponding
(nonzero) aj can be chosen almost arbitrarily as in this case Sy 4 will have full rank for
almost any set of nonzero aj. Therefore if one is interested in determining a polynomial
matrix Q(s) with IQ(s)l having n distinct zeros, one could (almost) arbitrarily choose n
nonzero vectors aj and apply Corollary 4.1 to determine such Q(s). If additional
requirements are imposed, such as certain algebraic and geometric multiplicities for the
zeros, then the results in this section and in the Appendix should be utilized.

In the following, the results in Corollaries 4.7 and 4.8 derived for Q(s) square and
nonsingular are extended to the nonsquare case.

Given (mxm) Q(s), let n = deglQ(s)l and assume that

Q(spajj=0 4.3)

is satisfied for ¢ distinct sj j = 1, o with ajj i = 1, 2j linearly independent and 3.2; = n.
That is assume that sj and ajj and Q(s) satisfy Theorem 4.3.

Theorem 4.9: Q(s) is a right divisor (rd) of an (rxm) polynomial matrix M(s) if and only if
M(s) satisfies
M(Sj)aij =0 (4.6)

with the same (sj, a;j) as in (4.5) above.

Proof: Necessity: If Qis ard of M, M =NIQ. Premultipiy (4.5) by NMI(s;) to obtain (4.6).
Sufficiency: Let M(s) satisfy (4.6) and let G(s) be a greatest rd of M and Q: Then there
exist a unimodular matrix U such that U[Sl] = [g] This implies that G satisfies the
same n relations as Q(s) and M(s) in (4.5) and (4.6) respectively. Therefore degIG(s)l 2n

in view of Corollary 4.6. Since G is a rd of Q, Q = OG which implies that Q is
unimodular since deglQ|l = n. Therefore M = MG = (MO 1)Q, thatisQisardofM. [
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Theorem 4.9 is very important; a more general version is given in Theorem A.7 in
the Appendix. From the theoretical point of view, it generalizes the characteristic value and
vector results to the nonsquare, nonfull rank case. In addition, from the practical point of
view it provides a convenient way to impose the restriction on a rxm M(s) that can be
written as

M=WQ 4.7)

where the square and nonsingular Q has specific characteristic values and vectors and W is
a " do not care" polynomial matrix.

In the polynomial case, Theorem 4.9 states that the polynomial m(s) has a factor
q(s) if the (distinct) roots of q(s) are also roots of m(s). For repeated roots one should use
Theorem A.7 in the Appendix.

In view of the above, it should be now clear that n relations of the form M(sjaj=0
j=1,nwith s distinct and aj nonzero (mx1) vectors will guarantee that the (rem) M(s) has
a rd Q(s) which has n distinct zeros of IQ(s)l equal to s;. Such M(s) can be determined
using Corollary 4.1.

Corollary 4.10: An rxm polynomial matrix M(s) has a rd Q(s) with the property that the
zeros of 1Q(s)! are equal to the n distinct values s; j = 1,n if and only if there exist nonzero
vectors a; such that

M(sp2j=0 j=1n (4.8)

Proof: There exists an mxm Q(s) with degiQ(s)l = n which satisfies Q(sj)aj=0. Thenin
view of Theorem 4.9, the result follows. O
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V. POLE PLACEMENT AND OTHER APPLICATIONS

The results developed in the previous section on the characteristic values and
vectors of a polynomial matrix Q(s) are useful in a wide range of problems in Systems and
Control. Several of these problems and their solutions using interpolation are discussed in
this section. The pole placement or pole assignment problem is discussed first.

Pole or eigenvalue assignment is a problem studied extensively in the literature. In
the following it is shown how this problem can be addressed using interpolation, in a way
which is perhaps more natural and effective. Dynamic (and static) output feedback is used
first to arbitrarily shift the closed loop eigenvalues (also known as the poles of the system).
Then state feedback is studied.

Output Feedback - Diophantine Equation

Dynamic Output Feedback

Here all proper output controllers of degree r (of order mr) that assign all the closed
loop eigenvalues to arbitrary locations are characterized in a convenient way. This has not
been done before.

We are interested in solutions [X(s), Y(s)] (mx(p+m)) of the Diophantine equation

. X(s) D(s) + Y(s)N(s) = Q(s) (5.1)

where only the roots of IQ(s)l are specified; furthermore X-1(s)Y(s) should exist and be
proper. This problem is known as the pole placement (eigenvalue assignment) problem
where N(s)D-1(s) (pxm) is a description of the plant to be controlled and C = X-1(s)Y(s)
(mxp) is the desired controller which assigns the closed-loop poles (eigenvalues) at desired
locations.

Note the difference between the problem studied in Section III, where Q(s) is
known, and the problem studied here where only the roots of Q(s) | (or 1Q(s) | within
multiplication by some nonzero real scalar) are given. It is clear, especially in view of
Section IV, that there are many (in fact an infinite number) of Q(s) with the desired roots in
IQ(s)|. So if one selects in advance a Q(s) with desired roots in |Q(s) | that does not
satisfy any other design criteria (and there are usually additional control goals to be
accomplished) as it is typically done, then one really solves a more restrictive problem than
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the eigenvalue assignment problem. In fact in this case one solves a problem where the
methods of Section III are appropriate, as in this case Q(s) is given; note that this approach
to the problem is closer to the characteristic value and vector assignment problem
(eigenvalue / eigenvector problem) discussed below, than just the pole assignment
problem. In the scalar polynomial case if Q(s) is selected so that the roots of IQ(s) | are the
desired ones then one reaily arbitrarily selects in addition only the leading coefficient of
Q(s), which is not really restrictive. This perhaps explains the tendency to do something
analogous in the multivariable case; this however clearly changes and restricts the original
problem. It is shown here that one does not have to select Q(s) in advance. For the pole
placement problem it is more natural to use the interpolation approach of Section IV, where
the flexibility in selecting Q(s) is expressed in terms of selecting the characteristic vectors of
Q(s); in general for almost any choice for the characteristic vectors, subject to some rather
mild rank conditions (see Section IV) the pole assignment is accomplished. These vectors
can then be seen as design parameters and they can be selected almost arbitrarily to satisfy
requirements in addition to pole assignment. Note that this design approach is rather well
known in the state feedback case as it is discussed later in this section.

Consider now the Diophantine equation (5.1). The results of Sections III and IV
will be used to solve the pole assignment problem.

The Diophantine equation (5.1) has been studied at length in Section III and the
notation deveioped there will also be used in this section. In particular, let
M(s) = [X(s), Y(s)] and L(s) := [D'(s), N'(s)]' then (5.1) becomes M(s) L{s) = Q(s).
'f'his equation can be written as ML(s) = Q(s) (3.7) where M := [Mp, .. M] a real matrix
with M(s) := Mg + ... + MsT and Ly(s) :=[L(s), ..., s'L(s)] . If now bj:=Q(spaj j=1,
A2 and By :=[by, ..., bg] then the equation to be solved,(see (3.9)) is

MLyp=By =0 (5.2)

where Lyg := [Li(s1) ay,..., Ly(54)ap] (p+m)(r+1)x2) (see also (3.37)); the unknown
matrix M is mx(p+m)(r+1).

If the the column degrees of L(s) = [D'(s), N'(s)]' are dj and the degree of M(s) =
[X(s), Y(s)] is r, then degiX(s) D(s) + Y(s)N(s)I = degIM(s)L(s)l £ 2d; + mr ; the equality
is satisfied when X(s) D(s) + Y(s)N(s) is column reduced. In Corollary 3.3 the conditions
under which Ly has full column rank were derived: if (s;, a;) are selected to satisfy the
assumptions of Theorem 3.1, that is S to have full column rank, then rank L,y = rank Spp
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=R < ¥d; + m@r+1) forr 2 v -1, where v is the observability index [10] of the system;
note that Lyg := [Le(s1) a1,..., Le(s 8)ap] =Ly [Sr(s1) a1...., Se(sp)agl = LrSrp where Si(s) :=
blk diag[1, s, ..., sdi+r)". That is, under mild conditions on (sj, a;) and for r2v -1, Lyp
has full column rank 2 .

Suppose now that X(s) D(s) + Y(s)N(s) is forced to satisfy
M(L:s, C1=[0, D] (5.3)
where £ = 3d; + mr. Note that MLy = 0 imposes the condition that
(X(sj) D(sp) + Y(s)N(s)aj =0 j=1, 2

( = Zdj + mr); that is the Xd; + mr roots of 1X(s) D(s) + Y(s)N(s)! are to take on the values
sjj=1, 2 (see Corollary 4.8 and Theorem 4.9 for the proof of this claim) . Here (sj, aj)
must be such that Sy above has full column rank £ (see Corollaries 3.3, 3.5 and the
discussion above); note that this is true for almost any aj when s; are distinct (Lemma 2.4),
For L also to have full column rank £, we need r 2 v-1 as it was shown in Corollary 3.3,

In the case when N(s)D-1(s) is proper with ID(s)l = n, n instead of Yd; may be
used in which case £ = n+ mr poles are assigned. Note that n must be used when D(s) is
not column reduced, as in this case deg [X(s) D(s) + Y(s)N(s)l = deg IX(s) D(s)i €n + mr <
$d; + mr since X-1(s)Y(s) is also proper; Corollary 3.5 shows that rankL;y = n+mr in this
case and Corollary 4.8 shows that X(s) D(s) + Y(s)N(s)| will have the desired roots.

The equations MC = D can guarantee that the leading coefficient of X(s) is
nonsingular so that X-1(s) exists and X-1(s)Y(s) is proper. This will add m more equations
(or columns of C and D) for a total of ¥d; + m(r+1) equations. Thus the following
theorem has been shown:

Let N(s)D-I(s) be proper with N, D right coprime and [D(s)l =n.

Theorem 5.1 Letr2v-1. Then (X(s), Y(s)) exists such that all the n+mr zeros of
IX(s) D(s) + Y(s)N(s)l are arbitrarily assigned and X-1(s)Y(s) is proper. It is obtained by
solving (5.3). (I
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In (5.3) there are (at each row) (p+m)(r+1) unknowns and n+m(r+1) equations; the
fact that r = v-1 implies that there are more unknowns than independent equations as pv 2
n. Note that the Theorem was proved for the case when s;j are distinct or more generally
the case when (sj, aj) exist so that Scp has full rank. The general case, where the desired
values s; and their muitiplicities are not considered in Section IV, can be studied using the
results in the Appendix which involve derivatives of the polynomial matrices and similar
results can be derived.

Notice that the order of the compensator C(s)=X"1(s)Y(s) is mr with minimum
order m(v-1). By reducing the system to a single input controllable system and by using, if
necessary, dual results it can be shown that the minimum order of the pole assigning
compensator C(s) using this method is min (u-1, v-1), where p and v are the controllability
and observability indices of the system respectively. This agrees with the well known
results in [13]. Furthermore, in certain cases lower order compensators which assign the
desired poles can be determined. Our method makes it possible to easily search for such
lower order compensators.

Example 5.1: Let D(s) =s2 - 1, N(s) = s+2 and IQ(s)l = (s+1)(s-14j1)(s-1-j1), from which
n=v=2;r21and deglQ(s)l = 2+r. Forr=1, sj=-1, 1+j1 and aj =ap =a3 = 1. Here

52-1 0 -1+j2 -1-j2

_[s2-1 _ | s+2 |1 3+1 3-j1

. L(s)= [ s+2 ], Li(s) = s(s2-1) | Lrs -|'0 -3.|..j1 -3-j 1]
s(s+2) -1 2+_]4 2-j4

Notice that L,y is a complex matrix. To solve (5.2) only the real part of Lys needs to be
considered. A solution is M = [4 -1 -3 -1], that is X(s) = -3s+4 and Y(s) = -(s+1), where
X-1(s)Y(s) is proper. a

Example 5.2: Let
D(s) = [362 sf 1], N(s) = [si : (1)]

with n = degID(s)l =2. Here there are deg/X(s)D(s) + Y(s)N(s)| = n + mr = 2 + 2r number
of closed-loop poles to be assigned. Note thatr2v-1=1-1=0.
i) For r =0 and ((sj, aj), j = 1,2} = {(-1, [10]), (-2, [0 1)},
s-2 0 30
0 1 -1
L(s) = L(s) =[S_1 5 ] and Lee =[_2 0]
1 1 11
and a solution of {(5.2) is



M= [g

0-30
212

For this case, M = M(s) = [X(s) Y(s)].

i) Forr=1, and

(G ap, j = 1,4) = {(-1, [1 01T), (-2, [0 1]T), (-3, [-1 O]T), (-4, [0 -1]T))
~ §-2 0 T -3 0 5 07

0 s+1 0 -1 0 3
s-1 0 2 0 4 0
1 1 1 1-1 -1
Li®=1ss2 0o [-lm=] 3 0.15 o
0 s(s+1) 0 2 0 -12
s(s-1) 0 2 0-12 0
L - L1 -2 3 4
a solution of (5.2) yields
7 -1 12 s+1
XO Y= |%5 14 6 514

Note that X(s)-1Y(s) exists and it is proper. O
Example 5.3: Consider the same problem in Example 5.2. Now we'd like to add the
following two constraints. First, that the leading coefficient matrix of X(s) must be an
identity matrix; second, that the first column of Y(s) must be zero, that is, only the second
output is used in the feedback loop.

Forr=1, let X(s) = Xg + X35 and Y(s) = Yg + Yis. From the above constraints,
X1 =I and the first columns of Yy and Y are zero vectors. Here M = [Xy, Yo, X1, Y1]
and (5.2) is the same as

—-3 0 5 07
. 0 -1 0 3
2 0 4 0
1 1-1 -1
ML, = [Xo, Y0. X1, Y1] 3 0-15 0 = [0]
0 2 0 -12
2 0-12 0
--1 -2 3 4-
To find the solution M that satisfies the two extra constraints, L, is first partitioned as

3050
Ln 0-103 30-15 0 2 0-120
Lr.t=LI:,n], whv.are:]-‘ff“=['2 0 2 0 Lr.l!2=[0 2 0 -12 ,14.22=[_1-2 3 4
23 1 1-1-1

Since X1 =1, the above equation can be rewritten as
Yo Y [Lr,el]=
[Xo, Yo, Y1] | [ )" L

To zero the first columns of Yg and Y1, two additional columns are added to the equation
(X0, Y0, Y1] (Lre13, Cl=[Lye2, D]



00
00
_ [Let1 _|10 00
where Lg13 = []_4_13], C= oo adD=]g0
01
00
Solving the last equation yields
1-505100 5
M=[1 5020101}
or,
s+l - _[05(s+1)
x@ = [*7 55} ma Y= [ -(s-2)
Clearly X-1(s)Y(s) is proper. O

Q(s) = W(s)R(s)

There are cases when the equation to be solved has the form

X(s)D(s) + Y(s)N(s) = W(s)R(s) (5.4)

where R(s) is a given mxm nonsingular matrix and W(s) is not specified; D(s), N(s) are
right coprime. It is necessary to preserve the freedom in W(s) since X(s), Y(s) must
satisfy additional constraints. An instance where this type of equation appears is the
regulator problem with internal stability when the measured plant outputs may be different
from the regulated outputs; in that case X(s),Y(s) must also satisfy another Diophantine
equation (5.1) for pole assignment. The problem here in (5.4) is to select X(s), Y(s) so
that R(s) is a right divisor of X(s)D(s) + Y(s)N(s). This problem can be easily solved
using the approach presented here. The approach is based on Corollary 4.8 (Theorem 4.9
for the nonsquare case) and it is illustrated below:

Example 3.4 Let

o (2.9, o -

Solve (5.4) with
s+1
R®= 1" s+1

[s+1 0
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To solve (5.4), determine first the appropriate (sj, ajj). In this case, degiR(s)l = 2 and
s1 =-1, a1 = (1 0], ag; = [0 1]. Note that R(sjajj = 0 and the problem is reduced to
solving (5.2) with £ =2 and r = 1. A solution can be found as
_ [s+3/2 172 _ [s+ls
xo = [§i172 s Yo =[]
where X-1(s)Y(s) is proper and
_ 252+3s+3 1
W) = 172 524643 -2s+3]
H(s) = N(s)D"(s)

In the pole assignment problem, if the desired closed loop poles are different than
the open loop poles (that is the poles of H(s) = N(s)D-1(s) ) then it is not necessary to use a
coprime factorization D(s), N(s) as the transfer function matrix can be used directly. In
particular, (5.1) can be written as X(s) + Y(s)N(s)D-1(s) = Q(s)D-1(s). Substituting sj and
postmultiplying by 2; one obtains the equation to be solved
(X(s5) + Y(sp H(sj) ) aj=0 j=1,2 (5.5)
Notice that the characteristic vector corresponding to sj is in this case D'l(Sj ) 8j.

Example 5.5 Let the open loop tranfer function be
H(s) = ﬂ
T s2-1

and 1Q(s)| = s(s+2)(s+3)(s+4). i sj=-2,-3,-4,0and aj = 1i= 1,4, then a solution of
(5.9) is
. X(s)=s2+9s+14 and Y(s)=13s+7 O

Example 5.6 Let the open loop transfer funtion matrix be
s-1

1o
He = |52 | | and Q@) = s(s+2)(s+3)(s+4)(s+5).
s-2 s+l

If {si, ai} = ((-2, [1 O1), (-3, [0 1]), (-4, [-1 O1), (-5, [0 -11%), (O, [1 -1])}, then a

solution is
77.25s+]1 s -B1s+43 7s+15
X = ['7635 ss1] YO® = [ g0ss44 65014

Note that X-1(s)Y(s) is proper. O
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Static Output Feedback

This is a special case of the dynamic output feedback discussed above.
Interpolation was first used to assign closed loop poles using static output feedback in
[6,7]. It offers a convenient way to assign at least some of the poles arbitrarily and study
the locations of the remaining poles. The equations to be solved here are

(D(sp + KN(sj)aj=0 j=1,2 (5.6)
where K is a real matrix, the static output feedback gain matrix. Equivalently, it can also be
written as

(I+KH(s)aj=0 j=1,2 (5.6a)
The example below illustrates the approach.

Example 5.7 Let the open loop transfer matrix be

s+l s+2

s2  s2+1
H) =] 2 2543
$  s2+2

and the desired poles are sy = -1, -2 with a; = {-26.456 92.16]', [-0.4432 1]. From
(5.6a), KH(sj)aj = -a;. That is,
K[H(s1)ay, H(s2)az] = -[ay, a3).

The solution is
. K = [—157.08 73.39
- 321.30 -150.49

Note that by choosing a; appropriately other poles can be affected as well. The above
solution places the other two poles at -3 and -4. For details, see [7].

State Feedback

Given a state space description X = Ax + Bu, the linear state feedback control law
is defined by u=Fx. It is now known that if (A,B) is controllable then there exists F such
that all the closed loop eigenvalues, that is the zeros of IsI - (A+BF)l are arbitrarily
assigned. It will now be shown that F which arbitrarily assigns all closed loop
eigenvalures can be determined using interpolation.
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Let A, B, F be nxn, nxm, mxn real matrices respectively. Note that IsI - (A+BF)l
= IsI -AlI - (sI-A)-1BF| = isI -Allly, - F(sI-A)-1BI. If now the desired closed-loop
eigenvalues s;j are different from the eigenvalues of A, then F will assign all n desired
closed loop eigenvalues s; if and only if

Fl(sjI-A)1Baj] = a3 j=1n (5.7
The mx1 vectors aj are selected so that (sI-A)"1Baj j = 1,n are linearly independent vectors.

Alternatively one could approach the problem as follows: let M(s) (nxm) D(s)
(mxm) be right coprime polynomiai matrices such that

si-A, B[ 3] =0 (5.8)

That is (sI-A)"!B = M(s)D-1(s). An internal representation equivalent to X = Ax + Bu in
polynomial matrix form is Dz = u with x = Mz. The eigenvalue assignment problem is then
to assign all the roots of [D(s) - FM(s)l; or to determine F so that

FM(sj)aj =D(spa; j=1.n (5.9)
Relation (5.9) was originally used in [6] to determine F. Note that this formulation does
not require that sj be different from the eigenvalues of A as in (5.7). The mx1 vectors aj
are selected so that M(sj)aj j = 1,n are independent. Note that M s;) has the same column
rank as S(sj) = block diag([1,s,...,sdi"1]'} where d; are the controllability indices of (A,B)
[10,11]. Therefore, it is possible to select aj so that M(sj)aj j = 1,n are independent even
when s; are repeated. (see Section II; choice of interpolation points)

. In general, there is great flexibility in selecting the nonzero vectors a; . Note for
example that when s; are distinct, a very common case, a; can almost be arbitrarily selected
in view of Lemma 2.4. For all the appropriate choices of aj (M(sjaj j = 1,n linearly
independent), the n eigenvalues of the closed-loop system will be at the desired locations s;
j = 1,n. Different aj correspond to different F (via(5.9)) that produce, in general, different
system behavior; this is a phenomenom unique to the multivariable case. This can be
explained by the fact that the vectors aj one selects in (5.9) are related to the eigenvectors of
the closed-loop system and although the closed-loop eigenvalures are at s , for different a;
one assigns different eigenvectors, which lead to different behavior in closed-loop system.

The exact relation of the eigenvectors to the aj can be found as follows:

[sil - (A+BF)IM(sj)a; = (s; -A)M(sjaj - BFM(sja; = BD(sja;j - BD(sjaj=0
where (5.8) and (5.9) were used. Therefore M(sj)aj = vj are the closed-loop eigenvectors
corresponding to sj .

49



It is not difficult to see that the results in the Appedix can be used to assign
generalized closed-loop eigenvectors and Jordan forms of certain type using this approach.
This is of course related to the assignment of invariant polynomials of sI - (A+BF) using
state feedback, a problem originally studied by Rosenbrock. One may select ajin (5.9) to
impose constraints on the gain fjj in F. For example one may select aj so that a column of
F is zero (take the corresponding row of all aj to be nonzero), or an elements of F, fj; = 0.
This point is not elaborated further here.

In the next subsection on Assignment of Characteristic Values and Vectors, the
problem of selecting aj to achieve additional objective, beyond pole assignment is
discussed. Now the relation to a similar approach for eigenvalues assignment via state
feedback [14] is shown; note that this approach was developed in parallel but independently
to the interpolation method described above:

Consider s;I - (A+BF) and postmultiply by the corresponding right eigenvector vj
10 obtain

ist-A. BI ;] =0 (5.10)
In view of this, determine a basis for the right Kernel of [sI-A, B][14], namely
M.
I-A, B =0 5.11
st-a. B[ 5] (5.11)

where the basis has m (independent) columns; note that rank[sI-A, B] = n since (A,B) is
controllable. Since it is a basis, there exists mx1 vector aj so that Mja; = vj and Dja;j = Fv;.
Combining, we obtain

FMja;j = Djaj (5.12)
which, for j=1,n determines F (for appropriate a;). Note the similarity with (5.9); they are
exactly the same in fact if we take M(sj) = M; in (5.8) and (5.11). The difference between
the two approaches in {6], [14] is that in [6] a polynomial basis for the kemel of [sI-A, B]
is found first and then it is evaluated at s=s;, while [14] a basis for the kernel of [s;I-A, B]
is determined without involving polynomial bases and right factorizations.

)

=}
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]
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and let the desired eigenvalues be s; = -0.1, -0.2, -2, -14j1. Take
o 1.2648] [1.67744 101] [-7-j16] [-7+j16]
3 =1-0.33911' L-0.15072)-L-60 - L8+j101- L 810

Then the state feedback matrix that assigns the eigenvalues of (sI-(A+BK)) to the desired

locations is obtained by solving (5.7)
K = 1.16 0.64 17.76 9.44 6.6 O
~ L-0.08 -1.32 -8.88 -3.22 -3.3

Assignment of Characteristic Values and Vectors

In view of the discussion above on state feedback, the characteristic vectors aj of
(D(s) - FM(s)) or the eigenvectors vj = M(sj)a; of sI - (A+BF) can be assigned so that
additonal design goals are attained, beyond the pole assignment at sj j=1,n. Two
examples of such assignment follow:
Optimal Control: It is possible to select (sj, aj) so that the closed-loop system satisfies some
optimality criteria. In fact it is straightforward to select (sj, aj) so that the resulting F
calculated using the above interpolation method, is the unique solution of a Linear
Quadratic Regulator (LQR) problem; see for example [11].
Unobservalble eigenvalues:
It is possible under certain conditions to select (s;, a;) so that s; become an unobservable
eigenvalue in the closed loop system. Suppose X = Ax + Bu, y = Cx is equivalent to
D(Q)z =u, Y = N(q)z; H(s) = C(sI - A)'1B = N(s)D-1(s). Let M(s) be such that

(sI-A)M(s) = BD(s)
fs satisfied, or,
M(s)D-1(s) = (sI-A)-1B.

Assume that it is possible to select (sj» aj) so that CM(sj)aj = N(sj)aj = 0. Now if (s;, aj) is
used in (5.9) or (5.12) to determine F, then sj will be an unobservable closed-loop
eigenvalue. This is because of the fact that its eigenvectors M(s;j)a; satisfies CM(sj)a; = 0;
see PBH test below. This can be used to derive solutions for problems such as diagonal
decoupling and disturbance decoupling, among others.

Example 5.9

]
Let H(s) = N(s)D-1(s) = —>¥
© =N =5 52

a=[% 4] =0 amdac=nu

Here, CM(s) = N(s) = s+1 and CM(-1) = 0. Obviously, if a desired closed-loop pole is
chosen at -1, it will be unobservable. Indeed, if the desired closed-loop poles are -1 and

, and the corresponding state space model is
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-2, a solution of (5.7) is F = [0 -1], which makes the eigenvalues of (A+BF) =
{-1, -2). The closed-loop transfer function is, however, 1/(s+2). Clearly, the eigenvalue
at -1 is unobservable. (|

Characteristic Value / Vector Tests for Controllability and Observability -
PBH Test

It is known that sj is an uncontrollable eigenvalue if and only if rank(s;jI-A, B] <
rankfsI-A, B] or if and only if there exists a nonzero row vector vj such that vj'[sJ'I -A,B]
= 0 (PBH controllability test [11]). The dual result is also true, namely that sj is an
unobservabie eigenvaiue if and only if rank[(sjI-A)’, C] < rank[(sI-A)', C] or if and only
if there exists a nonzero column vector vj such that [(sjI - A), CT vj = 0 (PBH
observability test). These tests can be rather confusing when there are multiple eigenvalues
in A; as it is not really clear which one of the multiple eigenvalues is the one that is
uncontrollable or unobservable. So instead, many times the uncontrollable eigenvalues are
defined by the roots of the determinant of a greatest left divisor of the polynomial matrices
sI - A and B; this definition is applicable to polynomial matrix descriptions as well [9-11].
The exact relation between these two different approaches can now be derived. In
particular, in view of the results in Section IV, ( 5j» vj) that satisfy {(sjl - A), C}' vj=0
define a square and nonsingular polynomial matrix that is a right divisor of the columns in
[(sI - A)', CT' (see Theorem 4.9); one may have to use the results in the Appendix when
the multiplicities of the eigenvalues in question cannot be handled by the results in Section
IV. Based on this one can handle now cases of multiple eigenvalues using
eigenvalue/eigenvector tests (characteristicvalue/vector tests) [(s;1 - A)', C7 vj =0 without
confusion or difficulty.

Choosing an appropriate closed loop transfer function matrix

One of the challenging problems in practical control design is to choose an
appropriate closed loop transfer function matrix that satisfies all the control specifications
such as disturbance rejection, command following, etc. which can be obtained from the
given plant by applying an internally stable feedback loop. For example, in the SISO
system control design, if the plant has a RHP zero, then the desired close loop transfer
function must have the same RHP zero, otherwise, the closed loop system will be
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internally unstable. Selecting appropriate ciosed loop transfer matrices is even more
difficult for MIMO systems; note that in this case it is possible to have both a pole and a
zero at the same location without cancelling each other. To prevent cancelling of the RHP
zeros and to guarantee the internal stability of feedback control systems, both locations and
directions of the RHP zeros must be considered. This can be best explained in the context
of the Stable Model Matching Problem[15]:

Given proper rational matrices H(s) (pxm) and T(s) (pxq), find a proper and stable
rational matrix M(s) such that the equation

H(s)M(s) = T(s) (5.13)

holds. It is known that a stable solution for (5.13) exists if and only if T(s) has as it zeros

all the RHP zeros of H(s) together with their directions. Let the coprime fraction

representations of H(s) and T(s) be H(s) = N(s)D-1(s) and T(s) = NT(s)D'.l!(s). The

direction associated with a zero of H(s), zj, is given by the vector aj which satisfies

ajN(sj = 0. (5.14)
Furthermore, T(s) will have the same zero, zj, together with its direction if T(s) satisfies
ajNT(sj) = 0. (5.15)

Thus, (5.15) must be taken into consideration when T(s) is selected.

Example 5.10
Consider a diagonal T(s); that is the control specificaitons demand diagonal decoupling of
the system. Let

s-10

Ho =57 [ ]
with a zero at s=1. Then aH(1)=0 gives a=[1 0] and T(s) must satisfy aT(1)=[1 0]T(1)=0.
Since T(s) must be diagonal, t11(1) = 0; that is the RHP zero of the plant should appear in
the (1,1) entry of T(s) only. Certainly T(s) can be chosen to have 1 as a zero in both
diagonal entries. However, the RHP zeros are undesirable in control and the minimum
possible number should be included in T. O
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VI. RATIONAL MATRIX INTERPOLATION - THEORY AND
APPLICATIONS

In this section the results on polynomial matrix interpolation derived in previous
sections are used to study rational matrix interpolation. In the first part, on theory, it is
shown that rational matrix interpolation can be seen as a special case of polynomial matrix
interpolation. This result is shown in Theorem 6.1, where the conditions under which a
rational matrix H(s) is uniquely represented by interpolation triplets are derived. Theorem
6.1 is the rational interpolation theorem that corresponds to the main interpolation Theorem
2.1. Constraints are incorporated in (6.5) and an alternative form of the theorem is
presented in Corollary 6.2. Theorem 6.3 shows the conditions under which the
denominator of H(s) can be specified arbitrarily. These results are applied to rational
matrix equations and results analogous to the results on polynomial matrix equations
derived in the previous sections are obtained.

Theory

Similarly to the polynomial matrix case, the problem here is to represent a (pxm)
rational matrix H(s) by interpolation triplets or points (s;, aj, bj) j = 1, 2 which satisfy

H(spaj=b; j=1,24 (6.1)

\;rhere sj are complex scalars and a; # 0, bj complex (mx1), (px1) vectors respectively.
It is now shown that interpolation of rational matrices can be studied via the
polynomial matrix interpolation resuits developed above. In fact it is shown below that the
rational matrix interpolation problem reduces to a special case of polynomial matrix

interpolation.

Write H(s) = D-1(s)N(s) where D(s) and N(s) are (pxp) and (pxm) polynomial
matrices respectively. Then (6.1) can be written as N(s;)aj = D(s;)bj or as

(Nesp, -Disin [ ] = Qusiej =0 5= 1.2 62)
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MMMWL(SMMPL@M There is also

the additional constraint that D-1(s) exists. It should be pointed out here that this is a
problem similar to the pole assignment problem studied in Section V, where the

characteristic values and vectors of Q(s) defined in Section IV were used; the difference
here is that Q(s) is not square and nonsingular, however results appropriate for such Q(s)
have also been developed above, in Section IV. We shall now apply polynomial
interpolation results to (6.2).

Let the column degrees of Q(s) = [N(s), -D(s)] be dj i = 1, p+m. By Corollary 2.2
A2 = ¥d; interpolation points (sj» [aj, bjT, 0) j = 1, & together with a given px(p+m)
leading coefficient matrix C; uniquely specify Q(s). It is assumed here, (see Corollary 2.2)
that the matrix S1 ¢ has full rank. Since C; is chosen, the columns which corresponds to
D(s) can of course be arbitrarily selected; for exampie, they could be taken to be any pxp
nonsingular matrix or simply the identity I, thus guaranteeing that D-1(s) exists.

Alternatively, as it was done in (2.11) (Bg = 0 case) the additional constraints to be
satisfied can be expressed as

{N, -D] {S», C] = [0, D] (6.3)
where [N(s), -D(s)] = [N, -D] S(s) with S(s) = blk diag([1, s, ..., s4i]'} i = 1, p+m

Sa:=[S(s1)ct, ... S(sp)C]. (6.4)

Here ¢; = [aj, bj']' and (sj, cj) are so that Sy (Zd; + (p+m))xR has full rank £ (see
Theorem 2.1). Equations [N, -D)JC = D express the k additional constraints on the
coefficients; k is the number of columns of C or D and it is taken to be k = (2d; + (p+m)) -
2. Furthermore C is selected so that rank [Sy, C] = £; in this way a unique solution exists
for any D. Since D(s) is a pxp matrix, it is possible to guarantee that the leading coefficient
matrix of D(s) is, say, Ip by using p equations (p columns of C). So the number 2 of
interpolation points can be £ = >.d; + m. These 2 interpolation points, together with the p
constraints to guarantee that D-1(s) exists uniquely define [N(s), -D(s)] and therefore H(s),
assuming that (S, C] has full rank; note that full rank can always be attained if Sy has full
column rank. The following theorem has been shown.
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Theorem 6.1: Assume that interpolation triplets (sj, aj, bj) j = 1, £ and nonnegative
integers dj i = 1, p+m with £ = ¥d; + m are given such that Sy (Zd; + (p+m))x2 in (6.4)
has full column rank. There exists a unique (pxm) rational matrix H(s) of the form
H(s) = D-1(s)N(s) where the column degrees of the polynomial matrix [N(s), -D(s)] are d;
i = 1, p+m, with the leading coefficient matrix of D(s) being Ip (nonsingular), which
satisfies (6.1). a

When the number of interpolation constraints £ on H(s) is less than Yd; + m,
additional constraints can be used to impose other properties on H(s). For example,
additional linear equations of the form D(sj)arj = 0 can be added in (6.3) so that H(s) has
poles in certain locations. Similarly for zeros of H(s) (see Example 6.2 below). In view of
Corollary 2.6 an alternative form for (6.3) is

QISax . Cal = [0, Dql (6.5)

where d is the degree of [N(s), -D(s)]; see Corollary 2.6 and related discussion for details.
Here Sgp is a ((p+m)(d+1)x2 ) matrix. Similarly to the above, it is possible with p
equations (p columns in Cq4 or Dg) to guarantee that D-1(s) exists. Therefore one could have
2 = (p+m)d + m interpolation constraints together with the p additional equations to
uniquely determine Q in (6.5) and therefore H(s). So, the following Corollary has been
shown:

Corollary 6.2 Assume that interpolation triplets (sj, aj, b)) j = 1, £ and nonnegative
integers d with £ = (p+m)d + m are given such that Sqp ((p+m)(d+1)x2) in (6.5) has full
column rank. There exists a unique (pxm) rational matrix H(s) of the form
H(s) = D-1(s)N(s) where the degree of the polynomial matrix [N(s), -D(s)] is d, with the
leading coefficient matrix of D(s) being I (nonsingular), which satisfies (6.1). 0O

Example 6.1: Consider a scalar rational H(s) (p=m=1) with first degree numerator and
denominator (d=1). Here we can have up to £ = (p+m)d + m = 2d + 1 = 3 interpolation
constraints and still guarantee that the denominator exists and it is of degree 1. Let

((sj» aj, bj) j = 1, 2,3} = (€0,L.by), (1,1,b2),(-1,1,b3)}
Also let H(s) = D-1(s)N(s) = (a5 + ag)-1(B1s + Bg). Here
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v -0 0

|

OO =

[N(s), -D(s)] = [N, -D] S(s) = [Bo, B1, -0, -01] l

c1= [bll] 2= [blz]’ 3= [33]

and
11 1

[N, -D] S = [Bo. B1, -0, 'al][gl by be ] =[000]
0 bz -b3

A fourth equation representing additional constraints can be added (see (6.5)) to guarantee,
say, o1 = 1. This is equivalent to solving

1 11
[Bo, B1, 'GO][O 1 - 1] = [0 by -bs] from which
by b2 b3
[Bo. B1. -00] = 7~ _-;2 =57 [b1(b3 - b2), 2b2b3-b1(b2+b3), b-b3] O

Exampiec 6.2: Consider only the first two interpolation constraints of the previous example
and require that &1(-3) + og = 0 or that H(s) has a pole at -3 and o) = 1. Then

1100

[Bo, B1, -0, -aﬂ[]?l b12 ? 8] =[0001)]

0 by -3 -1

E 3

from which
[Bo. B1, -ao} = {3by, -3b1+4b3, -3]
That is

H(s) = (-3b1+4b2)s + 3by

s + 3
satisfies all constraints. Namely, H(0) = by, H(1) = b2 and the denominator of H(s) has a
zero at -3 (pole of H(s)) with leading coefficient equal to 1. O

Example 6.3: Consider a 2x2 rational matrix H(s) = D-1(s)N(s). Let Q(s) = [N(s), -D(s)]
and degcQ(s) = {101 1). For a solution Q(s) to exists, one needs £ < Ydi+p+m =3 +4
= 7 interpolation triplets (sj, aj, bj) j = 1, 2. Suppose that two interpolation triplets of the
form in (6.2) are given as: {(1, [0 1 1 0]', [0 O]), (2,[1 1 4/3 -1/12], [0 O])]. In
addition, it is required that H(s) has a zero at s=0 and poles at s=-1 and s=-2 with the their
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directions specified as N(0)[1 0]' = [0 0]', D(-1)[1 -1]' = [0 0] and D(-2)[0 1]' = [0 0].
These constraints can be equivalently expressed as interpolation triplets: {(0, [1 0 0 0, [0
015, ¢-1, (001 -17, [0 O1), (-2, [0 O O 17, [0 0]'}. Now the problem becomes a
standard polynomial interpolation problem, i.e. to determine Q(s) s.t. Q(sj)cj = bj = [0, 0]’
forj=1,35. Let 8J = {sy, ..., s2}, Cp = [c1, ..., €2}, Bg = [b1, ..., bs). Then QS5 = Bjs
(2.5) is to be solved where

00 0010 1
000 0001 1
S1=(2-101234}, Bs=[g g ¢ 9 0- C5=[o 101 4/3]

1-100-1/12
The orthonormal basis of the left null space of S5 is found to be

Ne, = [0-0000 0.3173 0.2522 0.0650 -0.3173 0.7646 0.3823
S2=10.0000 -0.2726 -0.7151 0.4425 0.2726 0.3396 0.1698 1

Note that in general Ngy is a ((Zdj+m)-rank{Ss}) x (Zdj+m) matrix and all solutions of
(2.5) with Bp = 0 can be characterized as Q = M Ns4 where M is any px((Zdj+m)-
rank{Ss}) real matrix. In this example M can be simply chosen as identity matrix, that is
Q = N5, since ((dj+m)-rank(Ss}) =7 - 5§ =2 = p. Therefore,

0.3173s 0.2522 -0.31735+0.0650 0.38235+0.76467 .« . =
Q(s) =QS() = | 927265 -0.7151 0.27265+0.4425 0.16985+0.3396)] = [N(s), -D(s)]

Lt can be easily verified that the resulting transfer matrix H(s) = D-1(s)N(s) has a zero at
s=0 and poles at s=-1, -2.

To uniquely determine Q(s) in this example, two additional constraints in the form
of (6.3): {(3,[0100], [21]), 4,[0 11 17, [-3 -6])) are imposed which lead to

000002 -
si=(-2-101234), B1=[0 00007 2] c7=[

by solving (2.5),

i 1], and Q(s) = QS(s) = f) 21-(8-21) -(s22)]



3 2
s+1 0 J-irs 2 s+1 S+1
HiE) =] s+2] [0 1]= - s-1 [

(s+1)(s+2) (s+1)(s+2)

If it is desired that the denominator of H(s) be completely determined in advance,
then this can be expressed in terms of equations (6.3) or (6.5). It is also possible to
directly show this result based on Theorem 2.1. In particular

Theorem 6.3: Assume that interpolation triplets (sj, cj, bj) j = 1, 2 ¢j#0and m
nonnegative integers dj i = 1, m with £ = ¥d; + m are given together with an (mxm)
polynomial matrix D(s), | D(sj) | # 0, such that the Sp matrix in (2.2) with aj := D(sj-)]'l Cj
has full rank. Then there exists a unique (pxm) rational matrix H(s) of the form H(s) =
N(s)D(s)"1, where the polynomial matrix N(s) has column degrees deggi[N(s)] =dj, i =1,
m for which

H(sj)cj = bj j=1,2 (6.6)

Proof: Let N(s) = NS(s) as in Theorem 2.1. The proof is similar also. Notice that (6.6)
implies NSy = B4 with aj = [ D(sj)]"1 ¢jin Sy of (2.2). a

The mxm denominator matrix D(s) is arbitrarily chosen subject only to ID(s;l = 0.
This offers great flexibility in rational interpolation. It should be pointed out that the matrix
denominator D(s) is much more general than the commonly used scalar one d(s), since D(s)
= d(s)I is clearly a special case of matrices D(s) with desired zeros of determinant; note that
in this case ID(s)l = d(sY™ that is, the zeros of iD(s)! are all the zeros of d(s) each repeated m
times.

As it was shown above, rational matrix interpolation results are directly derived
from corresponding polynomial matrix interpolation results and all results of Section II
(Sections IIT - V) can therefore be extended to the rational matrix case. One could of course
use the results of Corollaries 2.5 to 2.7 and 2.8 to obtain alternative approaches to rational
matrix interpolation.

Example 6.4: Consider the scalar rational example discussed above. Here £ = 2d; + m =
1+1=2andS(s) =[1 s]. Consider interpolation points (0,1,b1) and (1,1,b2) as above
and let the desired denominator be D(s) =s + 3. Thency =D 1(Q)ay = 1/3, c2 =D l(Dag =
1/4 and
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NSz = [Bo. Bl (S, S(Le2] = [Bo. B1I[ g 174] = (b1, b2) = Bz

from which {Bg, Bi] = [3by, -3b; + 4by]. Thatis

+4b2)s + 3bg

Hs) = CRLER2

satisfies all the constraints. Note that it is the same H(s) as in Example 6.2 even though the
constraints were imposed via different approaches. a

Applications - Rational Matrix Equations

Now let's consider the rational matrix equation:
M(s)L(s) = Q(s) 6.7)

where L(s) (txm) and Q(s) (kxm) are given rational matrices. The polynomial matrix
interpolation theory developed above wiil now be used to solve this equation and determine
the rational matrix solutions M(s) (kxt). Let M(s) = D-1(s)N(s), a polynomial fraction form
of M(s) to be determined. Then equation (6.7) can be written as:

L(S)]

[NGs) -D(s)] [ =0 (6.8)

(s)

I:I ote that instead of solving (6.8) one could equivalently solve

_ o [Lp@s)
[N(s) -D(S)][ ]=0 (6.9)
Qp(s)

where [Lp(s)' Qp(s)T = fL(s)' Q(s)1'¢(s) a polynomial matrix with ¢(s) the least common
denominator of all entries of L(s) and Q(s); in general, ¢(s) could be any denominator in a
right fractional representation of [L(s)', Q(s)']". The problem to be solved is now (3.1), a
polynomial matrix equation, where L(s) = [Lyp(s)' Qp(s)']' and Q(s) = 0. Therefore,
Theorem 3.1 does apply and all solutions [N(s) -D(s)] of degree r can be determined by
solving (3.9) or (3.13). Let s =s;j and postmultiply (6.9) by a; j=1, & with aj and 2
chosen properly (see below). Define



Lp(s)
¢j :=[ ]aj j=1,2 (6.10)
Qp(s)

The problem now is to find a polynomial matrix [N(s) -D(s)] which satisfies

[Nesp) -Desplc;=0 j=1,2 (6.11)

as in (6.2). In fact (6.11) is of the form of (3.11) with bj = 0.

Note that restrictions on the solutions can be easily imposed to guarantee that D- l(s)
exists and/or that M(s) = D-1(s)N(s) is proper; see also above in this section, also Sections
IV and V. The existence of solutions of (6.7) and their causality depends on the given
rational matrices L(s) and Q(s) (see for example [12, 15] and references therein). Qur
approach here will find a proper rational matrix of order r when such solution exists.
Additional interpolation type constraints can be added so the solution satisfies additional

specifications.

Example 6.5: This is an example of solving the Model Matching Problem [15] using matrix
interpolation techniques. Here L(s) and Q(s) are given as:

1 1
e i § s+ 1
s+1 s — —
+3 +3
L= 0 -2 Qo= | ° s 3Ss+7
S Ts+3 T s+3
s+1

The monic least common denominator of all entries is ¢(s) = s(s+1)(s+3) and therefore

- s(s+3)  (s+1)(s+3) T
0 -25(s+1)(s+3)

[ (s)]_ -82(s+3) -s(s+1)(s+3)
Qp(s)1 ~

s2(s+1)  s(s+1)2

-52(s+1) -(3s+7)(s+1)s

{dl dchlQ(s)} {Oa 0’ 11 1’ 0]1
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2 =Ydi+t+k =2 +5=7,
{sjj=1,5}=1{4,-2,1,2,3},
{aj, j = 1, 5) = {[0,1]', [1,01', [1,1]', [O,-17 [-1,00')
{bj=[00},j=1,5}

from which ¢j j=1, 5 are obtained

3-212-15-18

24 0-16 60 0

[c1y .ncsl=| 12 -4 -12 30 54
-36-4 6 -18-36

60 4 -22 78 36

Assume two additional constraints are introduced in the form of: {sg, s7) = {4, 5}, {cs,
c7}=([01000],[00010]} and (bs, b7} = ([1 O], [-1, -8]'}. Now, solving the
polynomial matrix interpolation problem: [N(sj) -D(sj)lcj =bj j = 1, 7, we obtained
N - 01 0 -1 -1
ING) -DE&I=]0 0.(s+1)-(s+3) 0
which gives

MO = [s110] [0 o ooy "

62



VII. CONCLUDING REMARKS

Some of the concepts and ideas presented here have appeared elsewhere. It is the
first time however that the theory of polynomial and rational matrix interpolation in its
complete form has appeared in the literature. The algorithms have been implemented in
Matlab and are available upon request.

Interpolation is a very general and flexible way to deal with problems involving
polynomial and rational matrices and the results presented here provide an appropriate
theoretical setting and algorithms to deal effectively with such problems. At the same time
it is also felt that the results presented here have only opened the way, as there are many
more results that can and need be developed to handle the wide range of problems possible
to study via polynomial and rational matrix interpolation theory.

Finally it should be noted that the rational interpolation results presented here
compliment results that have appeared in the literature. The exact relationship is under
investigation and new insight into the theory are certainly possible.
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APPENDIX A

In this Appendix, the general versions of the results in Section IV that are valid for
repeated values of sj, with multiplicities beyond those handled in Section IV, are stated.
Detailed proofs of these results can be found in our main reference for characteristic values
and vectors [1].

Let Q(s) be an (mxm) nonsingular matrix and let Q(k)(Sj) denote the kth derivative
of Q(s) evaluated at s = s;j. If s is a zero of IQ(s)l repeated nj times, define n; to be the
algebraic multiplicity of sj; define aiso the geometric multiplicity of s; as the quantity (m-
rank Q(sy)).

‘2.
Theorem A.l [1, Theorem 1]: There exist complex scalar s; and _flkij mx1 nonzero
1=

1 2 kii: _ . )
vectors Bjjo Ao ++es aijj i=1, 2, which satisfy

Qlsag =0
Q(Sj)a;‘; =- Q(l)(Sj)ailj

(A1)
Q(sj)a_l‘;ij =- [Q(l)(sj)a_lkjij'l ot W@irl)(spailjl

with a} 7 a;j, v a}t N linearly independent if and only if s; is a zero of 1Q(s)l with algebraic

1 .
multiplicity (=n;) 2 'ilkij and geometric multiplicity (=(m-rank Q(s;))) 2 &;. O
1=

It is of interest to note that there are 2 chains of (generalized) characteristic vectors
corresponding to s;., each of length kj; Notice that Theorem 4.2 is a special case of this
theorem,; it involves only the top equation in (A.1) and it does not involve derivatives of
Q(s). The proof of Theorem A.1 is based on the following lemma:



Lemma A2 [1, Lemma 2]: Theorem A.1 is satisfied for given Q(s), sj and alj i if and only
if it is satisfied for U(s)Q(s), sj and a:jj where U(s) is any unimodular matrix (that is

[U(s)l = ¢, a nonzero scalar). O

This lemma allows one to carry on the proof of Theorem A.l with a matrix Q(s)
which is column proper (reduced). The proof of Theorem A.1 is rather involved and it
involves the generalized eigenvectors of a real matrix associated with Q(s); it can of course
be found in [1].

Given Q(s), if sj and ai j satisfy the conditions of Theorem A.1, then this implies

certain structure for the Smith form of Q(s). First, let us define the (unique) Smith form of
a polynomial matrix.

Smith Form of M(s) [ 9,11]
Given a pxm polynomial matrix M(s) with rankM(s) = r, there exist unimodular
matrices Uy , Us such that Uj(s)M(s)Ua(s) = E(s) where

E(s)=[A§;“) g] A(s) = diaglE1(s), £2(5), -... £c(s)] (A2)

Each €ji = 1, ris a unique monic polynomial satisfying &; (s) | €j+1 (5) i = 1, r-1 where
P2 | p1 means that there exists polynomial p3 such that pj = p2 p3; that is €; divides €j4] .
E(s) is the Smith form of M(s) and € (s) are the invariant polynomials of M(s). It can be
shown that

§(s)=Di()/Dij1(s) i=1,r (A3)
where Dj (s) is the monic greatest common divisor of all the ith order minors of M(s); note
that Dy (s) = 0. Dj (s) are the determinantal divisors of M(s).

Corollary A.3 : [1, Corollary 3] Given Q(s), there exist a scalar sj and nonzero vectors ailj,
al2] a‘i‘jii i = 1, 4 which satisfy the conditions of Theorem A.1 if and only if the Smith

form of Q(s) contains the factors (s - 5;)%U i = 1, 2 in £; separate locations on the diagonal;
that is (s - s)* is a factor in 2; distinct invariant polynomials of Q(s). m]



Theorem A.1 and Corollary A.3 refer to the value s;j, a root of IQ(s)l which is

"E .
repeated at least _ilkij times. If ¢ distinct values s;j are given then the following result is
1=

derived. Note that the deglQ(s)! is assumed to be known.

Theorem A.4 (1, Theorem 4]: Let n = deghQ(s)l. There exist ¢ distinct complex scalars s;

1 .2 kij o &
and n nonzero vectors aij* aij’ ees aij” i=1, ,l‘.j, j= 1, o with -21 'z.lkij = n with each
J=l=

of the G sets (aj;, ay, ... af,ji] linearly independent for j = 1, & that satisfy (A.1) if and
only if the zeros of IQ(s)l have o distinct values s; j = 1, 6 each with algebraic multiplicity

2 o
(=nj) = 'ilkij and geometric muitiplicity (= m - rankQ(s;)) = 2;. O
1=

Note that to each distinct characteristic value s; there correspond { ai i ai2j,..., al:;j )

| a;jj, aijj, ey al;gj } characteristic vectors; there are £; (=m - rankQ(sj)=geometric

JE.
multiplicity) chains of length kjj, k2j, ..., kajj for a total of _ilkij characteristic vectors
1=

equal to the algebraic multiplicity n;.

Corotlary A.5: [1, Corollary 5]. Given Q(s) with n = degiQ(s)!, there exist ¢ distinct

complex scalars s;j and vectors aﬁ i=1,2 k=1kjj j=1, 0 which satisfy the

conditions of Theorem A.4 if and only the Smith form of Q(s) consists of factors (s - s;)¥ii
i=1, 2jin 2; separate locations on the diagonal (j = 1, ©). O

Note that in view of the divisibility property of the invariant factors of Q(s), if the
conditions of Corollary A.5 or similarly of Theorem A.4 are satisfied, the Smith form of
Q(s) is uniquely determined. In particular, for k1j < kpj <...< kyjj , the Smith form of Q(s)
in this case has the form

E(s) = diag (€1 (s),..., Em (5) )

€m () = (- ¥ () Eme1 () = (5 - PR (L )yevns Em-(aj-1) 8) = (5-5)F1I () (A9)



with €m-pj (8) =...= €1 (s) = 1. This is repeated for each distinct value of sj j =1, o until
the Smith form is completely determined.

Example A.1 To illustrate the above results consider

Q=% Y]

Qis) = [23 ?] Q(l)(s)=[ 2 g], Q®X(s) =0 for k>2.

For s; =0 (j = 1), relations (A.1) become:

Notice that

Leti=1. Q(())a}1 = 0 implies a}l = [g] (o # 0); Note that no other linearly independent

_
a,, exists, so 2j=1.

p

0] B=0

QO)a2, =- QWX(0)ay, implies aj, =[

Q)1 = - [QD(O)aZ, + ﬁQ@)(O)a}l] implies 23, = [:ﬂ (Y = 0).

It can be verified that a}. etc are zero. Sokjy =3. Note that m-rankQ(0) =2-1=1= &,

that is the geometric multiplicity of s) = 0 is 1 and so no other chain of characteristic
vectors associated with s1 = ( exists.

Assume that Q(s) is not known and it is given that s; = 0 and a'l‘l k=123

satisfy (A.1). Then according to Theorem A.1, the algebraic multiplicity of s; = 0 is at
least 3 (=k11) and the geometric multiplicity is at least 1 (=£1). Furthermore, in view of
Corollary A.3 the factor s3(= (s-s1)k1!) appears in 1 (=£1) location in the Smith form of
Q(s).

Assume now that n = deglQ(s)! = 3 is also given together with s) =0 and alfl k=1,

2, 3 which satisfy (A.1). Notice that here £] = 1, k11 = 3 (see above) so ki1 =3 =n
which implies that 6 = 1, or 53 = 0 is the only distinct root of IQ(s)l. Theorem A.4 can now
be applied to show that sy = 0 has algebraic muitiplicity exactly equal to k11 = 3 and
geometric muitiplicity exactly equal to £1 = 1. These can be easily verified from the given
Q(s). In view of Corollary A.5 and (A.4) the Smith form of Q(s) is

[0.6]



which can also be derived from Q(s) via pre and post multiplication by unimodular
matrices. a

The following lemma highlights the fact that the conditions of Theorem A.4 specify
Q(s) within a unimodular premultiplication; see also Lemma 4.6.

Lemma A.6: Theorem A.4 is satisfied by a matrix Q(s) if and only if it is satisfied by
U(s)Q(s) where U(s) is any unimodular matrix. O

It is important at this point to briefly discuss and illustrate the results so far:
Assume that, for an (mxm) polynomial matrix Q(s) yet to be chosen, we have decided upon
the degree of |Q(s) | as well as its zero locations - that is about n, sj and the algebraic
multiplicities nj. Clearly there are many matrices that satisfy these requirements; consider
for example all the diagonal matrices that satisfy these requirements. If we specify the
geometric multiplicities £j as well, then this implies that the matrices Q(s) must satisfy
certain structural requirements so that m-rankQ(s;) = 2; is satisfied; in our example the
diagonal matrix, the factors (s-sj) must be appropriately distributed on the diagonal. If k;;
are also chosen, then the Smith form of Q(s) is completely defined, that is Q(s) is defined
within pre and post unimodular matrix multiplications. Note that this is equivalent to
imposing the restriction that Q(s) must satisfy n relations of type (A.1), as in Theorem A4,

without fixing the vectors a; (see Example A.1). If in addition al.fj are completely

specified then Q(s) is determined within a unimodular premultiplication; see Lemma A.6.

Given (mxm) Q(s), let n = deglQ(s)l and assume that Q(s) and s;, a]i§ satisfy the

conditions of Theorem A.4; that is they satisfy (A.1) for ¢ distinct sjj = 1, ©.

Theorem A.7 [1, Theorem 6): Q(s) is a right divisor (rd) of an (rxm) polynomial matrix
M(s) if and only if M(s) satisfies the conditions of Theorem A.4 with the same sj and afi ;

that is M(s) also satisfies the conditions (A.1) with the same s;, a:; for o distinct s;j = 1,6.

Proof; Necessity: f Qisard of M, M = D?IQ. then it can be shown directly that (A.1) are
also satisfied by M(s) with the same sj and ag . Sufficiency: Same as the sufficiency proof

of Theorem 4.9. O

In the proof of Theorem A.1 [1], the Jordan form of a real matrix A derived from
Q(s) was used. Later in the Appendix results concerning the Smith form of Q(s) were



described. It is of interest to outline here the exact relations between the Jordan form of A
and the Smith form of sI-A and of Q(s). This is done in the following:

Relations Between The Smith and Jordan Forms
Given an mxm nonsingular polynomial matrix Q(s) and a real nxn matrix A,
assume that there exist matrices B (nxm) and S(s) (nxm) so that
(sI-A) S(s) =B Q(s) (A.5)
where (sI-A), B are left and S(s), Q(s) right coprime. Then there is a direct relation
between the Smith forms of (sI-A) and Q(s) as it will be shown. First the relation between
the Jordan form of A and the Smith form of (sI-A) is described.

Let A (nxn) have G distinct eigenvalues s; each repeated nj times (Xn;j = n); nj is the
algebraic multiplicityof s; . The geometric multiplicity of sj , 2j, is defined as £ = n-
rank(s;jI-A), that is thereduction in rank in sI-A when s = sj . There exists a similarity
transformation matrix P such that PA = JP where J is the Jordan canonical form of A.

J = diag[J;], J; = diag{J;] (A.6)
where Jj (njxn;j) j = 1, o is the block diagonal matrix associated with sj; Jj has 2j (<nj)
matrices Jj (kijxkij) i = 1,4; on the diagonal each of the form

sj10...0
0s;j1...0
Jij= ) (A.7)
» 0 0 PP Sj

'!.
where ){l kij = n;j,

The structure of J is determined by the generalized eigenvectors vg of A; they are

used to construct P. To each distinct eigenvalue s; correspond 2; chains of generalized
eigenvectors eachof length kjji = 1, 2j for a total of nj linearly independent generaliezed
eigenvectors.

Note that the characteristic polynomial of A, a(s), is

a(s) = ﬁ (s-sph (= IsI-Al)
=1



o
while the minimal polynomiai of A, aim(s), is ] (s-s))fj where n:= max kij, that is the
i=1 1

dimension of the largest block in J associated with s;.

The Smith form of a polynomial matrix was defined above. It is not difficult to
show the following result about the Smith form of sI-A, Ea(s) [1]: Without loss of
generality, assume that kj<ks;<...<kpjj (=n), see also (A.4). If EA(s) = diagfe;(s), ea(s),
.-es E¢(8)], then
en(s) = (s - 5525 (. ), €n-1 (8) = (5 - 5)K8ny; (- Dyeess en-j-) ()= (s-spku (L) (A8)
with €p.4j (s) = ...= €1 (s) = 1. That is the n; factor (s-sj) are factors of the 2; invariant
polynomials €p.(4j -1) (8), ..., En(s); the exponents kij of (s-sj) are the dimensions of the
matrices Jjj i = 1,4; of the Jordan canonical form, or equivalently they are the lengths of the
chains of the generalized eigenvectors of A corresponding to sj . The relations in (A.8) are
of course repeated for each distinct value of s; j = 1, o until the Smith form EA(s) is
completely determined.

Example A2 Let

COoOOW
COWrm
oWoo

A=J=[1112]= [111121J12]={

thatis s;=-3,n1=3,2) =2 withkj; =2, k1 =1;s2=-1,np =422 =kj2 = 1. In view
of (A.8), the Smith form of sI-A is
€i(s) 1

- e2(s) - 1
Ea(s) = £3(s) s-3

£4(s) (s-3)2(s-1)
Here a(s) = IsI - Al = (s-3)3(s-1) and oy (s) = (s-3)3(s-1). a

0
0 ’
1

It is can be shown [9-11] that if sI-A and Q(s) satisfy relation (A.5), then the

matrices
- In-m 0 0
54 5] [ 0" Q(s) Im]
n 0 -S¢s) 0O
are unimodularly equivalent and they have the same Smith forms. That is, if Eq(s) is the
Smith form of Q(s), then

Ea® = 5" Egts)) (A9)



It is now easy to show that Q(s) has o distinct roots s;j of 1Q(s)! each repeated nj times (=
algebraic multiplicity as defined before Theorem A.1); the geometric multiplicity of s;
defined by m - rank Q(s;) equals .£; since 2j = m - rank Eq(s). If
EQ(s) = diag (€1(5), ..., Em(s)), then (see also (A.4)) for kjj < koj < ... < kyjj (=n)

Em(s) = (s - K5 (. ), Em-1 () = (3 - $%gnys (- Do Em-aj -1) (5) = (5 - 5)K1 (L) (A.10)
with €q_2j (s) =...= €1 (s) = 1. Compare with the Smith form EA(s) in (A.8). Itis clear
that Eq(s) and EA(s) or Q(s) and (sI-A) have the same nonunity invariant polynomials as it

is of course clear in view of (A.9). Note that the characteristic polynomial of Q(s) is in this

5
case &s) = IQ(s)l = _[Il(s - 3) (= a(s) = IsI-Al) while the minimal polynomial of Q(s) is
J=

o
Sm(s) = 1Q(s)I = _l'[l(s - 5B (= am(s)).
J=

01 1
Example A3 Let A =[g 8 :ﬂ and Q(s) =[fb2 '81]. Note that if S(s) =[3 %]and

0
B = [(1) (l) . Then, (sI-A)S(s) = BQ(s) as in (A.5) with (sI- A), B left coprime and S(s),

Q(s) right coprime. Notice that A is already in Jordan canonical form. In fact, A=J=1];
withs1 =0, 21 =1, k11 =3 and n1 = 3. The Smith form of sI-A is then (A.8)
1

Ea(s) = 1
E A{S) S - 3
- S 3
In view of (A.10), the Smith form of Q(s) is
1 0
Eo®) = [ 53]
Note that this Q(s) was also studied in Example A.1 a
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Introduction

In control problems like pole allocation and regulation with
stability the desired compensator is the solution of an equation
involving polynomial matrices. To solve these equations one can use
the coefficients of the polynomial entries of the matrices after
reducing them to some canonical form. Many times this is difficult
or even impossible. When one works withequations involving just
polynomials one can work either with the coefficients or with the
values obtained when certain values of the indeterminant s are
"plugged in'" ; the latter corresponds to polynomial representation
by a number of points (using interpolation the coefficients can be
determined). The motivation of this work is exactly this. To
establish the necessary theoretical background so that equations

involving polynomial matrices can be solved using "plug in" values.

Note that the zeros of the determinant of a polynomial matrix
P(8) alomne do not fully characterize P(s). Information about

the structure is also necessary. Characteristic vectors or latent

vectors or simply vectors az’j are introduced to accommodate
this in Theorems 1 and 4. The relation between aE’J and the

Smith form of P(s) is established in Corollaries 3 and 5.

Theorem 6, Corollary 7 and Lemma & establish the relations between
two polynomial matrices when they both satify relations of certain
k,j

type involving a; Actually, when the two matrices satisfy

exactly the same relations, then they are related by a unimodular



premultiplication, which is the generalization of the case when

two polynomials of the same degree have the same roots; they

are equal within a constant multiplicatioen. 'Fiﬁally the relation
k,3

between ai' and the generalized eigenvectors of an equivalent

to {P,Q,R,W} system {A,B,C,E} 1is established.'“The Appendix
contains a detailed account of relations between several canonical

forms of A (and P(s)}) as well as a number of definitions.

It should be noted that the results presented here are of
interest not only because of their relation to control applicatioms
or their relation to the solution of equations involving polynomial
matrices. They are also of interest in their own right because
they rigorously establish the relation between P(s) and its
"characteristic" values and vectors and by doing so, they gemeralize
and combine results known from the eigenvalue-eigenvector theory of
real matrices (P(s) = sI-A) and the theory of polynomials

(P(s) =p(s)).



Main Results

Let P(s) be an (mxm) nonsingular matrix and let P(k)(si) denote

the kth derivative of P(s) evaluated at s=g

L If S5 is a
zero of |P(s)| repeated n, times, define n, to be the
algebraic multiplicity of Sy 3 define also the geometric multiplicity

of s; as the quantity m-rank P(si) (see Appendix).

i}
1,j 2,3 kied
Theorem 1 There exist (mx1l) nonzero vectors a,’”, a secns@ s
Leorem . i i i
3 =1.,2,..,£i which satisfy
1,
P(si)ai 0
2, _ (1) 1,3
P(si)ai’ - P (si)ai (1)
© i - k-1, 1wy ]
P(si)a:.L a = [P (si)ai + ... +j—-P (si)ai’ ]
. (ki—l)!
1 1,2 1.4

with ai’ R ai » eees 34 1 linearly independent if and only if

s; 1is a zero of |P(s)| with algebraic multiplicity

£,.
i.
n; 2 ) d  and geometric multiplicity m-rank P(s,) z-ﬂi .
j=1_ %
Lemma 2 Theorem 1 is satisfied for P(s) and ai’j if and only

if it is satified for U(s)P(s) and a:’J where U(s) is any

unimodular matrix.

Proof First note that P and UP have exactly the same zeros

of determinant with the same algebraic and geometrié multiplicities.



Agsume that P and a:’j satisfy (1). Then U(si)P(siJai’j =

Li (1) 1.5 1) (L 1,3
UP(si)ai 0, =~ {UP) -(si)ai -{U (si)P(si)-fU(si)P (si)lai
= - U(Si)P(l)(si)a]j'_"'l = U(si)P(si)ai’j = UP(si)ai’j ete.
That is UP and a?'l also satisfy (1). The sufficiency proof is

similar since U‘l(s) is also a unimodular matrix QED.

It is known [3] that given P(s) there exists‘a unimodular
matrix U(s) such that UP is column proper i.e. CCEUP(S)] ,
the matrix with entries the coefficients of the highest power of
s 1in each column of UP is of full rank. It is therefore clear,
in view of Lemma 2, that without lass of generality we can assume

in the proof of Theorem 1 that P(s) is a column proper matrix.

Proof of Theorem 1 Let dl’dz""dm denote the column degrees
of (the comumn proper matrix) P(s) . Write
- d
P(s) = Bml (diag (s i - AmS(s)]

ds=1
where S(s) 4 diag ({1l,s,..,s i ]T) and Am,Bmf

appropriate
real matrices and observe that

BCP(s) = (s~4)8(s) (2)
where Ac and Bc are given by (A6); the column degrees di are
the controllability indices of (Ac,Bc) while the above defined
A and Bm make up the 'montrivial" rows of AC,BC. Repeated

differentiations of (2) give

32 = -85 +ks* Vo) kb2, @)

—

+ B;l = CCEP(s)] ; without loss of genmerality it is assumed that

CCEP(s)] is in upper triangular form with ls

on the diagomal.



Assume that vectors a?’j which satisfy (1) have been found.
Premultiply the relatioms in (1) by Bc and use (2) and (3)

to substitute P(s) and its derivatives.

Then
_ 1,3
(si Ac)vi o
- 2’-1 2 - l‘lj
(si A.c)v:L vy (8)
' kjsj kj-l!j
(s, = A))v YL v i
i c’ 1 i
1,j _ 1,]
where A S(si)ai
2,3 2,] (1) 1,
\f [S(si)ai + S (Si)ai 1 (5)
K, K3\ 1 -
- ]
(ki 1)!
o, -1 1,3
(4) implies that (si - Ac) vy = 0 and (si - Ac) v,
. . £
a vi’J = S(s:i)ai"1 # 0 ; furthermore v%’l, ceey Vi' i are
linearly independent since 31’1’1"" ai’ i are linearly independent.
WJos
In view of (A2) v}_’j, aee vii’J j=1,2,..,£.i are ﬂi chains

of generalized eigenvectors of Ac corresponding to an eigenvalue

s, , each chain of length k?.L j=1,2,..,ﬂi . Therefore Is-Acl

i
(E;' |P(s)| in view of (2) and the Appendix)has at least

Z ki.'_ zefos at s; , which implies that the algebraic multiplicity
j=1 ny z '=le k-::. ; furthermore the geometric multiplicity of ch is
at leatst::l «‘3]._ which implies that F"i < n—rank(si-Aé) or, in view

of the Appendix that ﬂi < m-rank P(si) .



Conversely, assume that s; 1s a zero of |P(s)| with
algebraic and geometric multiplicities n, and m-~rank P(si)
respectively. The matrix Ac defined in (2) has an eigenvalue
$; with the same algebraic and geometric multiplicities. Out
of the m-rank P(si) chains of generalized eigenvectors of Ac
which correspond to sy » one can always choose Ei ( € m-rank P(si))

distinet chains each of some length ki (less than or equal to the
J .

: k ]

actual lengths) with .E ¥ < n, ; call them vl’j,...,v.i’
a1 i i i i

j=1,2,..,£ Note that these eigenvectors satisfy (4); furthermore,

i
because of the special structure of A, and (2) it is straight forward

R
k3,3
to show that they are actually given by (53) where ai’j at’

seeesdy
satisfy (1). Q.E.D.
1,3 i},
Corollary 3 There exist (mx1l) nonzero vectors ai ,...,ai
£
3=1,2,..,&, which satisfy (1) with ai’l,a]i"z,...,ai’ i linearly

independent if and only if the Smith form of P(s), EP(s), contains
i
i

the factors (s-si) j-l,?.,..,ﬂi in £ separate locations on the

i
diagonal.

Proof In view of the proof of Theorem 1,(1l) are satisfied iff

Ac has a Jordan form of certain structure, or in view.of the Appendix,
k3

iff Ep(s) has the factors (s-s,) 1 3=1,2,..,¢; on the diagomal

(see (AS5),(A9) and (All)). Q.E.D.

Theorem 1 implies that given P(s) the maximum number of
nonzero vectors a?’J which satisfy (1) is n.o the algebraic

multiplicity of s If this maximum number of aE’j has been found,

i -



then it is clear from the proof of Theorem 1 that Zi will be
equal to the geometric multiplicity m-rank P(si) of s, if it
were less,then Ac would have its generaiized eigenvectors

corresponding to s, distributed among less than wm-rank P(si)

i
chains which is impossible. In this particular case, the numbers

ki j=1,2,..,£i are the lengths of the chains of the eigenvectors
and appear as the expomnents of the (s-si) factors in lzcations\

AY
-~

in the Smith form of P(s) (Corollary 3). N /’;7‘3"

-
‘J

-:n : )

_ // - -5
Theorem 4 Let n be the degree of |P(s)| . There exist
o
n(mx 1) nonzero vectors ai’j,ai’j,...,aii’J j=l,2,..,£i
2
i=1,2,...,0 ( Z Z kiun')which satisfy (1) with ai’l,ai’z,..,ai’ i

121 =1
linearly independent if and only if theALeros of |[P(s)| have o

distinzf values s i=1,2,..,0 each with algebraic multiplicity

i
n, = ) kj and -geometric multiplicity m-rank P(s,) = K
; jop 1

—_—

Proof If (1) is satisfied for an s , gz?ording to the necessity

proof of Theorem 1, there exist at least Z kj linearly independent
j=1
generalized eigenvectors of A corresponding to s, in at least

ﬂi distinct £fa1ns. Since (1) is satisfied for i=1,2,..,0 , there
exist ’El zl ki = n linearly independent [1] geﬁﬁfalized
eigenve:tors{ This implies that A  has exactly El kJ eigenvectors
corresponding to s, distributed in exactly Zi cﬂains (if A, had

more generalized ei%?nvectors corresponding to S, » then, since
i
the total is n , Z kJ for some other i must have been larger
j=1

than the corresponding n, which is impossible by Theorem 1);



therefore the algebraic and geometric multiplicities of s, are
L.i .

exactly Z ki and ﬂi respectively. Sufficiency can be easily
j=1

shown in manner analoguous to the sufficiency proof of Theorem 1.

Q.E.D.

Corollary 5 Let n be the degree of |P(s)| . There exist

k3]
n{mx1l) nonzero vectors ai’j,...,aii’ j=1,2,..,?_i i=1,2,..,0
v t i 1,1 l,zi
( ¥ 7 & =n) vhich satisfy (1) with a;’",...,a; linearly

i=1 j=i
independent if and only if th? Smith form of P(s), En(s) ,

consists of factors (s=-s,) i 3=1,2,.., in 2, locations

on the diagomal (i=1,2,..,0) .

Proof Clear in view of the proof of Theorem 4 and the Appendix

(see (A5), (A9) and (All)). Q.E.D.

Theorem 4 implies that given P(s) the maximum number of
nonzerc vectors a:’j which satisfy (1) for all possible s, is

n, the degree of |P(s)| . If this maximum number of aE’J

have
been found then the algebraic and geometric multiplicities are
determined as well as the distribution of the factors (s-si) in
Ep(s) . In particular, in view of the divisibility property of the
invariant factors in the Smith form of P(s), Eo(s)

is completely determined in this case as the following example shows.

EX
2s 0

2
Let P(s) = P(l)(s) = 5 P(z)(s) =
0 1



23 (s) =0 . (1) implies (s, =0): P(O)ai’j =0, al- [a] (a#0)

1 0
P(O)ai’1 = - p) (O)a s ai’l = [g] (B#40) ;
P(O)ai’l = - pD (0)a2 1y 21. (2)(0) , ai’l - m

We stop here since a4’1 etc. are zero 1i.e. ki = 3 ., Note

1
that 1’-1 = ] = m~rank P(0) ; this was also seen in the solution

of P(O)ai’J = 0 where dim{Null space P(0){= 1 (=m-rank P(0))

which implies that there is only one vector ay 1.3 i.e. £ =1.

1
1.
Observe that ) kji =3=n, the algebraic multiplicity of s;=0
=1
and that the total number of ak’j is 3 = n the degree of

i
|P(s)|{ . The Smith form of P(s) is EP(s) = E; 23] since

(s-sl) = g appears in 31 = 1 locations with exponent ki =3 .

Finally note that the generalized eigenvectors of the corresponding

o 1 0
o o 1| 1,1 _ T 2,1 _ T
A, 6 0 0 (see (2)) are v] (a,0,01" , vy (3,a, 0]
and vi’l = EY,B,a]T (see (5))

In view of the above, given two polynomial matrices, (1} can be
used to find the relation between their Smith forms. Note that the
relations between polynomial matrices which satisfy (1) are examined

in detail in the following.

Assume that P(s} is a given (mxm) polynomial matrix and
let n be the degree of |P(s)!. ]P(s)| has ¢ distinct zeros s

with algebraic and geometric multiplicities n ( _z n, = and
i=1



f-i(am—rank P(si)) respectively. In view of Theorem 4, there exist

1.3 kd, ]
n (mx1) nonzero vectors a’ ""aii j=].,2,..,!’5i i=1,2,..,0
1,2

which satisfy (1) with ai‘i’]‘,..,ai i linearly independent

£

J =

( I k =np).

i=1

Theorem 6 P(s) is a right divisor (rd) of a (rxm) polynomial
matrix M(s) if and only if M(s) satisfies (1) with the same
k,J

»
si and ai .

Proof P(s) is a rd of M(s) iff P(s) is a greatest common
right divisor (gecrd) of P(s) and M(s) or iff there exists a

unimodular matrix U such that U[;] = [g] £3] .

Assume that such U exists i.e. P is a rd of M . Simce P

satisfies (1), U[i] also satisfies (1) which implies that [;]
satisfies (1) because a premultiplication by a unimodular macrix
does not affect these relations (see Lemma 2). Therefore M satisfies

(1) with the same s; and ali’j

Assume now that M satisfies (1). Let G be a gexd of M
and P 1i.e. G [;] = [g] with ﬁ a unimodular matrix. This
implies that G satisfies the same n relations as M ; the
degree of lGl is therefore at least n in view of Theorems 1 and 4.
Note however that since G is a rd of P, P = PG which implies

that P is a unimodular matrix. Therefore M=MG= (M ?-I)P and

P is ard of M. - Q.E.D.



If M(s) 1s a square matrix, the above proof can be used to

show the following.

Corollary 7 M(s) = U(s)P(s) with U(s) unimodular if and only
if the degree of [M(s)] 1s n and M(s) satisfies (1) with the

and ak’j .

sSame Si i

An extension of Corollary 7, which gives insight into the

k,J

relation between the vectors ai

and the structure of P(s),

is the follwing lemma.

Consider the matrix P(s) of Theorem 6 together with the

corresponding s; and a:’j which satisfy (1). Then

Lemma 8§ Given an (mxm) polynomial matrix E(s) , there exist
unimodular matrices Ul(s), Uz(s) such that

P(s) = Ul(s)f(s)Ug(s)
if and only if the degree of |P(s)] is n and there exist n (mx1)

nonzero vectors a k,3 which satisfy together with f(s) and s

i i
the same relations (1) satisfied by a:’j , P(s) and sy - Further-
more 1f such Ul’ U2 exist
a 19j = 1:.1
a; Uz(si)ai
% 2,3 (1) 1,]
a; Uz(si)ai + U2 (Si)ai (6)
‘3. 3. 1 . k-1
_k :J k ’J i l 1
i = i -— s ]
a; U2(si)ai + ... + U2 (si)ai

i _ 1y
(ky = 1)1



Proof Assume that there exist Ul’UZ such that P==U1P U2 with

P, =N and a?’J satisfying (1). Substitute P by fUé in the
relations since Ul cancels out (see Lemma 2). Straight calculations
show that vectors Eik’j given by (6) together with P and sy

satisfy the same relations (1).

- - k,J
Assume now that the degree of |[P| is n and P, a; and
N satisfy the same n relations (1), P, az’J and s

s satisfy.

i
In view of Corollary 5 and the remark following the corollary, P

and P have exactly the same Smith forms; therefore, there exist

unimodular matrices U,,0

1 (2] such that P=U;P T

Q.E.D.

2 2

Note that Lemma 8 applies to nonsgquare matrices as well if
n is taken to be the degree of the greatest common divisor of all
highest order mimors; e.g. given R,Q, RU,= [R,0] , QU4=‘f6,0] ;

then R = UI(‘QU2 (Lemma 8 applies here) and

-

- U2 0 U2 0
RU, = U1[Q,0] 0 1 = 0,Q9, |, I (U; unimedular).
k’J P -ksj
Remark If P, a;’, s, and P, a;’", s; satisfy the same n

relations (1) where, .in additicn, a:’j and 5?’3 satisfy (6) for
some unimodular matrix UZ(S)’ then P and P not only have the

same Smith form, as it was shown in the sufficiency proof of

Lemma 8, but they are related by: P=U1PU2 . This is shown as

follows: Assume that P=1U P U. where 52 # U2 . Lemma 8 implies

1 2
that a?’J, 5?’3 and ﬁz will also satisfy relations similar to (6).
Equating E?'j in the relations inveolving u, and ﬁz , we derive



o

n relations of type (1) satisfied by a:’l » $y and the polynomial

matrix UZ-ﬁz . According to Theorem 4, IU2 - ﬁzl must be of

at least degree n which is false., Therefore U2 = EZ . Note
that this result agrees with Corollary 7 since if 02 =1 i.e.
EE’J = a:’j ,P and P are related by P=UP .

Assume that,for an (mxm) polynomial matrix P(s) vyet to
be chosen, we have decided upon the degree of |P(s)| as well as

its zeros i.e. n,s, and the algebraic multiplicities n,

i
Clearly there are many matrices which satisfy these requirements
e.g. diagonal matrices. If we specify the geometric multiplicities
ﬂi » our matrix has more structure e.g. the factors (s-—si) are
appropriately distributed in our diagonmal matrix. If ki are

also chosen, then, the Smith form of P(s). is completely defined
(see Appendix) i.e. P(s) 1is defined within pre and post unimodular
multiplication. This is equivalent to imposing the restriction that

P(s) has to specify n relations of type (1) { P(s) of Theorem 6)

without though restricting az'j (other than being nonzero and

1,2 :
ai'l,...,ai’ L being linearly independent). If ai’J

specified then P(s) is determined within a unimodular premultiplication

are also

(Corollary 7) .

If an (rxm) polynomial matrix M(s) satisfies n relatioms
of type (1) ( M(s) of Theorem 6) then, there exists an (mxm)
polynomial matrix P(s) with specified structure which is a rd of
M(s) i.e. M=M P . This is because in view of the above, there

exists amatrix P(s) with degree of |P(s)| equal to n which



k,J

satisfies exactly the same n relations with the same a, and

s (this P(s) 1is specified within a unimodular premultiplication);

in view of Theorem 6 this P(s) is a rd of M(s) . If in the
n relations which are satisfied by M(s) , the vectors at’j are

i
not specified, then the Smith form of M(s) has factors (s-si) i

in Ei locations on the diagonal. In other words a rd P(s) 1is not

specified in this case, but it is only known that there exists a rd

of the form EPUZ where E is a completely specified Smith form

P
]
ki

(it consists of the (s = si) } and U, an arbitrary unimodular

2

matrix.

In view of the above, if it 1s known that an (mxm)
polynomial matrix P(s) satisfies n relations of type (1)
( P(s) of Theorem 6) 1i.e. n,si,ni,ki,ﬂi,a?’j are given, then
P(s) is specified within a unimodular premultiplication. In the
following, some methods are outlined which can be used to determine

.-
an appropriate P(s) matrix.

{(a) Let [ao,al,...,ar] I Im | = P(s) where a, are mxm
Is
m
I sr
L =

matrices to be determined. If the n given relations (1) are

written in terms of a;, a linear system of equations is obtained

+ These methods can be used to arbitrarily assign the poles of a
system via feedback compensation; a detailed account of these
techniques will be given in a future publication. Note that
special cases have already appeared in [5] and (6]



with ai as the unknowns. In order to have more unknowns than

equations m(r+l) 2 n 1.e. r 2 ﬁ-- 1 e.g. For s, all

i
1. a1,1

distinct solve [ao,...,ar] ;= 0 1=1,2,..,n .

(b) Let diag(s *) =~ AmS(s) = P(s) where S(s) = diag [(1,5,..,s )]

and Am an mxn matrix to be determined. d are the column

i
degrees of the (column proper) P(s) ( 2d1==n). The n relatiomns (1)
are written in terms of A.lll and a linear system of equations is
obtained with Am as unknown. Note however that di are not

completely free; they must. satisfy certain inequalities involving

3
ky (2.

(¢) One can also use the Smith form of P(s) (specified by
n,si,ni,ki and ﬂi) and the relations (6) of Lemma 8.

Assume that P(3) 1is associated with a polynomial matrix
description of a linear, time-invariant system; that is
P(D)z(t) = QDu(t) , y(t) = R(MD)z(t) + W(D)u(t) where
u,y and =z are the input,output and partial state respectively.
Clearly in this case the roots s, of [P(s)| are the poles of
the system; it will be shown that the nonzero vectors a?’j are

closely related to the eigenvectors of an equivalent teo {P,Q,R,W}

state-space description {A,B,C,E} of the given system.



Def ([43 {Py,Q;,R;,W;} and {PZ’QZ’R2’Wz} are equivalent iff

there exist M ,}IZ,Xz,Y

1 polynomial matrices such that

1

, - : 7

with (MZ,PZ) left prime and (Pl.Ml) right prime,

From (7), MzPl = P2M1 . If Pl =5 =4, P2=P

mmp—— e

then Hz(s) (s -A) = P(s)ul(s') (8a)

with (HZ’P) left prime and (s -A,Ml) right prime.

If py=P, Py=s -A, then

My ($)B(s) = (s =AM, (s) (8b)
with (1712, 8 =A) left prime and (P,ﬁl) right prime. Note that

a special case of (8b) is (2) where ﬁz = BC, s —=A= g -Ac,

ﬁ1= S(s) .

Assume that P(s) satisfies (1) together with s, and ak’:| .

i i
Then MZP also satisfies (1) with the same g and ai’J This

can be shown as follows: P(si)ai’j=0 implies that ﬁzP(si)ai’j =0;
. Wa,5 | 2@ Li, L), yalsd

EMZP(si)] a;’" = M, (si)P(si)ai + M, (s, )P (si)ai =

My ()P (s pald = - Wy (s P el = P2 Ta00 e

Substitute now in all the relations (1) l-*i P by (s -A)M1

2
(see (8b)). Then

_ 1,3 _
(si A) vi 0
_ 2,3 _ _ JL.]
(s; - &) vy = TVYy .
G -8 Jedsd o 1 (9b)
i



where

vi’j = ﬁl(si)ai’j

3 et (s a2+ 1D s el (16b)
:1 L d 1 @y

v? L. [Ml(si)aii’ S S L (si)ai’J]

3
(ky = 1)2

which implies that v?’j are the generalized eigenvectors of A

corresponding to the eigenvalue s, (compare with (4) and (5)).

i

That is, the vectors ai’j which satisfy (1) with P(s) and

Sy determine the generalized eigenvectors vi’j of A of the

equivalent state-space description via (10b).

Assume that v?’j are the generalized eigenvectors of A
corresponding to the eigenvalue S i.e. they satisfy relations
(9b). Then relation (8a) implies that there exist aE’J such that

a?’j, Ss together with P(s) satisfy (1) where aE’J are given by

1, _ 1,]
3y My (sy) vy

a2 - s VB e P s v d (10a)
i, i t -1 .
i? ki’J i 1,J
ai = [Hl(si) vi + —-j]—' Hl (Si)vi ]
(ki-l).

This can be shown as follows:

- 1, 2 1,7 _ 4.
(si A) vy 0 implies that P(si)Mlgsi) vy 0 ; let

atd = M, (s,) vi’j_ Differentiate (8a) and postmultiply by Vi’J

1



Mél)(si)(si 8 Vi’j + 1y (s)) Vi’j = My (s,) vi,i = - My(s)s; = A) vi,j

= - P(s)¥, (s,) vzi’j - pM (s M, (s,) vid 4 P(si)}Lil) (s,) vi*

from which R(s,) OM (s v2rd + P (s vl dT = - e syt (v 1 s

ilet ai’j = Ml(si)v%’j + Mil)(si)vi’j etc.

That is, the generalized eigenvectors v?’j of A which

satisfy (9b) determine vectors a?’l via (10a) which satisfy (1)
with s and P(s) where P(s) 4is the corresponding to A matrix

(see (8a)) of an equivalent polynomial matrix descriptiom.

Remark The above analysis can be used in the feedback compensation
of systems described by polynomial matrices, not only to assign the

closed loop poles but alsc the closed loop eigenvectors.

Finally note that all the results in this paper reduce to
well known results when special cases are considered e.g. P(s) = p(s)

a polynomial {(m=1) and P(s) = sI - &4 (m=n)

Conclusion
In this report several basic theorems were given, which establish the

relations between a polynomial matrix P(s) and its "characteristic"

k . .
vectors ai’j and "characteristic" wvalues sy - This account is by

no means complete. Extensions together with applications to control

problems will be given in a future publication.
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APPENDIX

Canonical Forms (Jordan, Smith and Controllable companion forms).

Let (nxn)A have ¢ distinct eigenvalues s, each repeated n,
g
times ( Z ni=r0; ny is the algebraic multiplicity of s;
i=]
The geometric multiplicity of S» ﬂi , 1s defined as £i==n-rank(si-A)

i.e. the reduction in rank in s-A when s=s; -

There exists a similarity transformation matrix Q such that
AQ = QJ

where J is the Jordan cancnical form of A .

(AL)

where A, i=l,...0 1is an (n; xn,) matrix with eigenvalues s

i b

A, is a block diagonal matrix with ﬂi (n, 2 Ei) matrices

Aij j=l,..,£i on the diagonal, of the form

s; 1 0...0 L,
(] xk3) A= |0 s L0 I K=np)
. n".‘i j.-.l]_
0 0....s,;

1

The structure of the Jordan canonical form of A 1is determined

by the generalized eigenmvalues of A (they are used to comstruct Q).

To each eigenvalue s, correspond ﬂi chains of generalized .

i 3 -
. 1, 2,3 ki’J
eigenvectors each chain of length ki i.e. vi’J,vi’ yeeesVy

j=1,...,£i a total of n, linearly independent generalized



-.21...-

eigenvectors. The eigenvectors of a particular chain can be

determined from

1,3
(si - A)vi 0
(s; - Award = oy (A2)
Cd ]
s, - A)vki’l . ...vki 1,3
i i i
SR k-1 k)
where (s, =A) * vit = 0 and (s; - 4) vy # 0. [11.

1f I.li 4 max k‘;]_ (the dimension of the largest block associated
]

with Si) then

n.
Minimal Polynomial Am(s) = ¥ (S-Si) ' while the
i=1

g i
Characteristic Polynomial A(g) = T (S-Si) (= |s=a]l ) .
iml

Note that A is cyclic iff there exists a vector b such that

n-1

rank [b,Ab,...,A bl =1

> As) =4 (s) @ n, = Ei

is associated with each distinct eigenvalue

i=l,...,0 i.e. only one block -

(A3)
-_=> Ei =1 i=1,...,0 1i.e. only one chain of generalized
eigenvectors is associated with each distinct egenvalue.

> rank(si-A) = n-1 ,

There exist unimodular matrices Ul(s), Uz(s) such that

U1 (8) (s-A)U,(8) = E, ()



where el(s) 0

EA(S) = ezfs) (A4)
0 En(s)

is the Smith form of s=A ; ei(s) are the (monic) invariant polynomials

Di(s)
of s=-A defined by ei(s) = Di-1ley where the determinantal divisor

Di(S) is the (monic) greatest common divisor of all the ith order
minors of s-A. (D_(s) A 1). Note that ¢, (s) divides e, ,,(s}

k=1l,...,n=-1 [2] .

Clearly, there are n; factors (s-si) distributed among the

n invariant polymomials ei(s). Note that the rank reduction in
EA(si) equals the number of entries on the diagonal containing
(s=s;) and it is also equal to the rank reduction in s;=A , that
is Zi . Therefore, the n; factors (s—si) are

present only in ﬂi invariant polynomials on the diagonal of EA(S)

Assume, without loss of generality that

£
1 2 -
kiskis ski (sni)

Then it can be shown using the minors of J (or A) that
!
e (8) = (s-35,) ¢ .
L,-1

k 1
(s-s) t (. ) (a3)

—~

0

~—
[}

1
ki
€n—(Jlii‘l)(E‘) = (s=sy) )

i.e. the (ni) factors (s-si) are factors of the Ei invariant

polynomials En—(ﬁi-l)(s) can en(s); the exponents ki of (s-si)



are the dimensions of the matrices Ai j=1,..,L, of the

j i

Jordan camonical form or equivalently, they are the lengths of

the chains of the generalized eigenvectors corresponding to s;

In view of the divisibility property of € 1(8) it is

therefore clear that if s and the dimensions of the submatrices

i
of J are known, the Smith form of s-A 1is uniquely determined.
Furthermore note that the characteristic polynomial of s-4A ,is
A(8) = €,(s) e,(s) ... e (s), the minimal polynomial is

Am(s) = En(S) and A 1is cyelic if (s-si) ig a factor only of

sn(s)
Ex - -
' A H 3 10 :0
A | 11 i
Let  J = | -%i-- Ay = (030 ; 0
|| === 2 0o 0 3!0
18y e 220
* ' 0001
s, ==3 , n, =3, L =2 )
that 1is g 1 ;‘ 1 g
l kl=2 , k=1 and s, =-1, ny=t,=k;=1

Then the Smith form is

-el(s) 0 0 0 ]
|10 e,(8) O 0
EA(s) = 2
0 0 53(5) 0
0 0 0 g,(s)
L 4777
where el(s) = az(s) =1
ey(s) = (s=3) -

e () = (s=)%(s-1)

Clearly A(s) = (3-3)3(5-1) and Am(s) = (5-3)2(5-1).



Assume that (A,B), where (nxm)B has full rank m(<n) is
a controllable pair. There exists an equivalence transformation

matrix Q such that
AQ =04, , B =QB,

with (Ac’Bc) in controllable companion form,

u 1
O for  i#j
XK oos X
A =T[4
oL ijJ (cli:cdj)Aij L i
. . A
i and j=1,2,..,m ) ) (46)
0 Idi-l
. for i=j
0
L X X X 4

B, =[Bi] i=1,2,..,m (dixm)Bi

ith columm

di is1,2,..,m are the controllability indices of (4,B) . The

m nontrivial ( % dk)th j=1,2,..,m vrows of A and B  define
kel ¢ ¢
the matrices (m:cn)Am and (mxm)Bm respectively where Bm is in

upper triangular form with 1ls on the diagonal (3] .

The structure of A implies that rank(si-A) = rank(si-Ac) 2 n-m
for any Ss which in turn implies that the geometric multiplicity
£; of s, satisfies

Ei(g n—rank(si-A)) <m. i=1,2,..,0 . (A7)



There exist two polynomial matrices (nxm)S(s) and

(mxm)}P(s), closely related to the controllable pair (Ac’Bc)’

which satisfy the identity

BCP(s) = (s-Ac)S(s) (A8)

These matrices are defined by:

41 T 1 di
S(s) = diag(l(l,s,...S 1), B(s) o B "[diag(s )= A S(s)1[3]

It can be known that the system matrices

and

I 0 0 -
n-m are unimodularly equivalent [2]';
0] P(s) I
m
0 -5(s) o]

this implies that the Smith forms EA(s) EP(s) of s-Ac(or s = A)

and P(s) respectively satisfy the relation:

n-m
EA(S) = (A9)
0 Ep(s)

-

therefore the system representations x = Acx + Bcu, y =%

and Pz =u, y = Sz are equivalent.



It is now clear that |s-A]l = [P(s)| which implies that |[P(s)]
has ¢ distinct roots s each repeated n, times (ni is the
algebraic multiplicity of si)' Furthermore the geometric multi-
.f.
s . 2 . - -
plicity of s;» &4, 1is given by Zi m-rank P(Si) since

ti =n=-rank EA(Si) = n - [ (n-m) + rank EP (si)J = m-rank EP(S:L) .

if
El(s)
EP(s) = " (A10)
e (s
where N divides C1tl k=1,2,..,m=1 then
assuming that
1 2 21 -
k.i < kJT_ < . £ ki (=n,) we have
£
. ki :
eyls) = (s=-s)) ( )
£2.-1
- k., *
e _,(s) (s=s.)7i «C . (al1)
I:II."'.., 1
1
- ki
m-(Z,-1)

which are completely analoguous to (AS).

The characteristic polynomial of P(s) 1is

g . i
as) = |P(s)| = 1 (s-si) i while the minimal polynomial is
i=1 - .

3 Ei
am(s) = _H (s—si)
i=1




P(s) 1is cyclic (or simple) 1ff there exists a vector

so that P(s),g are relatively left prime

<~ A(s)-Am(s) (niaﬁ i=1,2,..,0)

i

A o i’.i = m-rank P(si) =1 i=1,2,..,0 .

g

(A12)






APPENDIX C

Computer Code - Matlab Routines






1. The basic program:

% The function name is pmi_basic.m. It solves the basic polynomial interpolation

% problem: given {sj,aj,bj} j = 1,L, find a Q(s) s.t. Q(sj)aj=bj for all j.

% To use this program, a data file called AL_BL_SJ_DI has to be created, where AL
contains aj as column vectors and BL is similarly defined as in Theorem 2.1 in the paper;
SJ is a vector containing the interpolation points sj.'

AL _BL_SJ_DI; %Input the matrices AL,BL,SJ and DI from the file AL_BL_SJ_DI.m
SL = SL_BUILD(AL,SJ.DI); %find SL
Q =BL/(SL), DI, %Calculate the solution of QSL = BL in equation (2.5)

%if Q = BL/inv(SL) is used instead of Q = BL/(SL), it can cause large
% error in some cases.

functon SL = SL._ BUILD(AL,SJ,DI)
% Find the matrix SL

{m,L} = size(AL);
DIM = sum(DI) + m;

org(l)=1;
for j = 2:m,org(j) = org(-1)+DI(-1)+1; end

forn=1.L
S = zeros(DIM,m);
forj=1:m
. fori = 0:DI()
S(org(j)+ij) = (SIm)Mi;
end
end

S =S8*AL(:,n);
ifn==1,SL=S;
else
SL = [SL,S];
end
end

% This is a data file for pmi_basic.m
% This is the data that gives the comrect Q(s)=D-1(s)N(s).
AL=[0010 1

00011
0101 473
1-100-1/127];
BL=[000O0 0
0000 0];



SI=[-2-101 2 17;
DI={101 1]; %contains the column degrees of Q(s).

2.50lving M(s)L(s) = O(s)

% filename: Solve_M.m

% This is a program to solve M(s)L(s)=Q(s).

% To use this program, a data file called L_Q_ALPHA_SJ_DILm has to be

% created,where L=[L0,...,.Ldl] Q=[QO....,Qdq] completely specify L(s) and Q(s)
% as L(s) = LO+sL1+..., Q(s) = Q0+sQ1+... . SJis a vector containing the

% interpolation points sj. Also contained in this are L_DIM and Q_DIM which are
% dimensions of L(s) and Q(s) repectively. DI contains the column degrees of M.

L_Q_ALPHA_SJ_DI; %Input the matrices L, Q, ALPHA, SJ and DI from the file
AL = find_XL(L,L_DIM,ALPHA,SJ); %find AL=[L(s1)alphal, ..., L(sL)alphal]
BL = find_XL(Q,Q_DIM,ALPHA,SJ); %find BL=[Q(s1)alphal, ..., Q(sL)alphaL]

% now the problem becomes a standard PMI problem: find M(s) such that
% M(si)AL() =BLG) fori=1, .. L.

[M,SL] = solve_pmi_standard(AL,BL,SJ,DI);

% M(s) = M*S(s), where S(s)=blk diag[1, s, ...sdi]'
% Since M(s) is obtained using the standard PMI approach, M # MO+sM1+...
% Again, one has to use M(s) = M*S(s) to find M(s) by hand.

M, DI, %display M, Di on screen.

function XL = find_XIL. (X,X_DIM,ALPHA,SJ);

% Given a polynomial matrix X(s), SJ=[s1,s2,...,sL],

% and ALPHA=[alphal,...,alphaL)], find the matrix XL as
% XL = [X(s1)alphal,...,.X(sL)alphaL];

[m,L] = size(ALPHA);

p=X_DIM(1); q = X_DIM(2);
{u,v]=size(X);

d = v/q - 1; % d is the highest degree of X(s).

forn=1.L
Xsj = X(:,1:q);
fori=1d
bg = g*i+1; en = g*(i+1);
Xcslj = Xsj + X(,bg:en)*SI(n)M; % build X(sj)
en
if n == 1, XL = Xsj*ALPHA(,1);
else
XL = [XL,Xsj*ALPHA(:,n)};
end
end

function [Q,SL] = solve_pmi_standard(AL,BL.,SJ,DI)



% This function solves basic polynomial matrix interpolation problems: Given (sj,aj,bj}
and column degrees di, find the unique Q(s) of degree d such that Q(sj)aj=bj for all j.

SL = SL_BUILD(AL,SJ.DI); %find SDL
SL_cond = cond(SL),
Q =BL/(SL); %Calculate the solution of QSL = BL in equation (2.5)

3. Solving Diophantine Equati

% filename: Solve_Diophantine.m

% This is a program to solve X(s)D(s)+Y(s)N(s)=M(s)L(s)=Q(s). where

%  M@©=[X(),Y(s)], L(s)=[D(s),N(s)T-
%Everything is the same as in M(s)L(s)=(Q(s) problem except we want
%10 have X(s) nonsigular and inv(X(s))Y(s) proper.

% To use this program, a data file called DATA.m has to

%be created,where L=[L0....,.Ldl] Q=[QO0,...,Qdq] completely specify L(s)
%and Q(s) as L{s) = LO+sL1+..., Q(s) = Q0+sQl1+... . SJis a vector
%containing the interpolation points sj. Also contained in this are

%L_DIM and Q_DIM which are dimensions of L(s) and Q(s) repectively.
%DI contains the column degrees of M.

Data; %data file

AL = find_XL(L,L_DIM,ALPHA,SJ); %find AL=[L(s1)alphal, ..., L{sL)alphaL]
BL = find_X1.(Q,Q_DIM,ALPHA SJ); %find BL=[Q(s1)alphal, ..., Q(sL)alphalL}

% Here the diference from M(s)L(s)=Q(s) comes in.

% Let X(s)=X0+...+s*rXr. By setting Xr=Identity will ensure X(s) nonsigular
% inv(X(s))Y(s) proper. This can be achieved by formulating the the

% problem as follows: let AL=[al,...,al.] BL=[bl,...,bL], X(s)=X1(s)+s*rXr
% find [X1(s),Y(s)] s.t. [X1(sj), Y(sj)]aj=bj-[sj*rXr,0laj=cj, j=1,L

% where Xr is chosen as a identity matrix.

X_DIM=Q_DIM(1); %# of rows in X(s) is the same as in Q(s)
Y_DIM=[X_DIM,(L_DIM(1)-X_DIM)]; % dimension of Y(s)
Xr = eye(X_DIM(1));

% Now we need to construct CL=[c],...,cL]

CL = find_CL(AL,BL,Xr,Y_DIM,SJ,1);

% now the problem becomes a standard PMI problem: find M(s) such that
% M1(si)AL(i) = CL@) fori=1, ... L.

d=r;

% The SDL is m(d+1)xL. For solution to exist, L must be s.t. L<m(d+1).
% Therefore we force:

{M,SDL,ERROR] = solve_pmi(AL,CL,SJ ,d);



% MI1(s) = MO+sM1+...s7r- I1Mr-1. M(s) = M1(s)+[s*rXr,0]
M, ERROR%display M and error on screen.

function CL = find_CL (AL,BL.Xr,Y_DIM,SJ.r)
Z = 0*ones(Y_DIM(1),Y_DIM(2)); %A zero matrix of the same size of Y(s)

L =size(S)); L =L(2);
%cj = bj-[sj*rXr,0]aj

forj=1:L
CL(:,}iEBL(:,j)—[SJ Q¥ Xr, ZJ*AL(:,));
end:

end

function [M,SDL,ERROR] = solve_pmi(AL,BL,SJ.d)

% This is a function to solve the problem defined in Corollary 2.6:

% Given (sj,aj,bj,d}, j=1,L, find Qd such that Q(s)=QdSd(sj)aj = bj.

% The relation of this formulation and the standard one is that Sd(s) = KS(s).
% see eqation (2.11).

SDL = SDL_BUILD(AL,SJ.d); %find SDL
%Calculate the solution of MSDL = BL.M=[MO0,M],...] and M(s)=MO+sM1+...
M =BL/(SDL);

ERROR=norm((M*SDL-BL),'fro");

function SDL = SDL_BUILD(AL,SJ.d)
% Find the matrix SDL defined in Corrollary 2.6

[m,L] = size(AL);
I =eye(m);
forn=1:L
SD =T,
fori=1:d
q SD =[SD;I*SJ(n)*i]; % build Sd(sj)
en
if n==1, SDL = SD*AL(,1);
else
SDL = [SDL,SD*AL(:,n)];
end

end





