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Abstract

An auto powertrain transfers the torque produced by
the engine through the clutch to the load, thus acceler-
ating the vehicle to the desired speed. Good models are
essential in predicting the clutch heat generation so to
avoid overheating and lockup of the clutch plates. In this
paper, neural networks are used to first model and then
control the highly nonlinear MIMO cluich- load subsys-
tem. The two inputs were the applied force on the clutch
plate and the output torque of the torque converter; the
two outputs are the angular velocities of the torque con-
verter and of the load, beyond the gear box.

1 Introduction

The function of a powertrain system is to transfer the
torque produced by the engine through the torque con-
verter, the clutch package and the gear box to the load,
accelerating the vehicle to the desired speed, see Fig. 1.
The research presented in this paper concentrates on mod-
eling and controlling a powertrain subsystem , the clutch
package. The design goal is to control the system so that
the maximum heat power generated in the clutch plates or
the total energy dissipated during the clutch engagement
period do not exceed certain values.

Due to the heavy demands on the powertrain system,
the powertrain system of certain heavy duty vechicles can
fail in the practical situations. The most vulnerable part
is the clutch plate package. Currently, most of the en-
counted clutch failures are caused by overheating and
lockup of the clutch plates [6]. Either the extreme high
heat peak power or too much heat energy dissipated dur-
ing the clutch engagement period can result in the clutch
failure problems. So the problem arises: how to control
the clampping force, so that there will be no peak heat
power exceeding the allowable value, and minimize the
heat energy dissipated in the clutch package within cer-
tain amount of engagement time (less than 1.5 second ).
This paper concentrates on the modeling and control of
the highly nonlinear multiinput and multioutput (MIMO)
clutch - load subsystem. The two inputs considered are
the applied force on the clutch plate and the output torque
of the torque converter; the two outputs are the angular
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velocities of the torque converter and of the load, beyond
the gear box.

Many results have been published in powertrain sys-
tem meodeling and control. In Wouters’s paper [19], a
method to calculate energy dissipation and temperature
distribution of a multidisc clutch in powershift transmis-
sions is provided. Dundore [4] gives a methed to establish
a failure criterion for a wet clutch. Jania [8] analyzes the
performance of friction clutches with focus on the prob-
lem of vibration. Johnson [9] develops and experimentally
verifies a transient heat transfer model which could pre-
dict the temperature as a function of time. Using bond
graphs, Hrovat [7] develops a linearized model of a typi-
cal powertrain system with manual transmission. Moskwa
f10] [12] discusses nonlinear methods that would provide a
more pleasing shift with a sliding mode controller. Cho [3]
also describes a sliding mode control method to deal with
uncertainties. The models and the analysis methods men-
tioned above are valid only to a certain extent. Due to
uncertainties in powertrain systems, analysis techniques
are restricted. Although some general models or partial
models are available, many assumptions are made, which
limit the use of these models. Due to the lack of accurate
models and effective analysis methods, many problems re-
main unsolved. Since neural networks have the ability to
deal with nonlinear dynamic system, it may be possible
for neural networks to enhance the traditional modeling
and control methods in powertrain nonlinear dynamic sys-
tems, and this is examined in the paper.

Section 2 deals with methods to model the power-
train subsystem. Both a mechanical model (first princi-
pal model) and a neural network model will be discussed.
A neural network controller designed for the powertrain
clutch - load subsystem is introduced at Section 3. Simu-
lation results are presented.

2 Modeling the Powertrain
Clutch - Load Subsystem

2.1 Mechanical Model

A typical powertrain system consists of an engine, a
torque converter, a clutch package, a gear box and a load.
A simple block diagram of the whole powertrain system
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Figure 1: Block diagram of entire powertrain system

is shown in the Fig. 1.
In Fig. 1, the following quantities occur:

I. - Moment of inertia of the engine output.

T.(t) - Output torque of the engine.

we(t) - Output angular speed of the engine.

T.5(t) - Damping torque at the engine output side.

O - External input variables of the engine torque (throt-
tle position, angle of ignition, etc.)

I:c - Moment of inertia of the torque converter at out-
put side.

Tio(1) - Output torque of the torque converter.

weo(t) - Output angular speed of the torque converter.

Tir(2) - Damping torque at the torque converter output
side.

I. - Moment of inertia of the cluich package output.

T.(t) - Output torque of the clutch package.

T,;(t)' - Output torque of the gear box.

welt) - Output speed of the clutch package output.

wr () - Output speed of the load.

Trs(t) - Damping torque in the clutch package - load
side.

I - Moment of inertia of the load.

TL(t) - External load torque.

F(t) - Clamping force of the clutch.

rg - Transmission gear ratio.

Note that the inertia of the gear box is considered as
part of the clutch package inertia. The gear ratio can be
assumed to be one without loss of generality which implies
that w¢(t) should be equal to wz(t). {In the case of a ratio
different from one, the load can be transformed using +3.)

The engine is the power source of the whole system.
The output variables are speed and torque of the load.
These two variables depend on several factors. The only
free variable is the engine torque. It depends on the throt-
tle position, the engine speed, the angle of ignition, the
engine temperature, the engine lubrication and other less
essential quantities. For simplicity, the engine can be con-
sidered as a torque generator with a certain moment of
inertia as shown in Fig. 2.

The torque converter acts as a buffer between the en-
gine and the clutch package. Ideally, the torque converter
transforms the input variables, input speed and input
torque to the output variables, output speed and output
torque, in a lossless fashion, i.e.

'I':g'(t)w“'(t) = Tgo(iO)W¢o(i). (])
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Figure 2: Simplified engine model.
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Figure 3: Important variables for the description of
the torque converter

In reality, there is some energy loss in the torque con-
verter, i.e.

Tu(t)ori(t) = Teolto)wrolt) + Plwn(t)/weolt)),  (2)

where P(wi{t)/weo(t)) is the dissipated power in the

torque converter. The block diagram of the torque con-
verter is shown in Fig. 3

The clutch package includes the clutch plates and the
gear box. During the engagement of the clutch, the input
torque from the torque converter ocutput can be trans-
ferred to the load shaft through the clutch package.

Since the maximum available torque at the engine out-
put strongly depends on the engine speed, and the engine
speed is limited within the range : wmin < we(t) € Wmax,
a transmission system is used which provides a wide speed
range for the load by choosing different transmission ra-
tios.

The load comsists of a moment of inertia due to the
body of the vehicle and an optional constant external
torque, which represents an external force acting on the
vehicle,

The whole powertrain system can be treated as three
cascaded subsystems. i.e. engine - torque converter,
torque converter - clutch package, clutch package - load.
These three subsystems are coupled by the torque con-
verter and the clutch package. The coupling through the
clutch package is created by friction, creating the trans-
mitted clutch torque T.(t). For now, the friction coeffi-
cient g is assumed to be constant. The coupling created
by the torque converter is of a more difficult nature. The
input and output of the torque converter are loosely con-
nected through fluid coupling.

Next, the equation model is set up using the laws of
circular motion.

The engine - torque converter subsystem is described
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Figure 4: The clutch plate geometry

by

dw.(t
12240 _ 72 (1) - () - T ). (3)
where T};(2) is the input torque of the torque converter.
The relationship for the torque converter - clutch sub-

system is given by
duweo(t
r22eld oo - -, @
The clutch - load subsystem is characterized by
dwi (1)
dt

There is a relationship beiween the damping torque
and the angular speed. A first order approximation of
the damping torques can be expressed as follows:

1. =Te(t) = Tos (1) — T1(t). (5)

Tgf(t) = Kewe(t): (6)
Tip(t) = Kepwio(t), (7)
Trs(t) = Krwe(?), (8)

where,

K. : Damping torque coeflicient of engine - torque con-
verter subsystem.

K:; : Damping torque coefficient of torque converter -
clutch package subsysiem.

Kp: Damping torque coeflicient of clutch package - load
subsystem.

The above three damping coefficients are considered
to be constants, which is only true for the neighborhood
around an operating point. Otherwise all three damping
coeflicients are functions of the corresponding speed.

The torque T.(2) transmitted by the clutch is a function
of the effective overall friction coefficient g, the clamping
force F(t) and the effective radins R.

Te(t) = pF(t)Re. (9)

Where the effective radius R, is given by the following
equation and is illustrated in Fig. 4:

_ 2R - R})

Note that the clutch-load subsystem acts as two dy-
namic systems with some internal dynamic relations be-
fore engagement; these two systems act as a new sys-
tem with a combined moment of inertia after engagement.

Then the model of the clutch - load subsystem is given
by:

dwia(t) . Teolt) _ Kig _ T¥)
el T weo(t) = s

dwy (8) () K Tt .

2 = T _ DLty (1) - B, if wea(t) >

dwp (8) _ _Te(r) KL( Tp(t) . _
dt = To+he fz,-HlowL(t)_ Te4les? if weo() =

(11)
This model consists of two sets of differential equations.
Due to the assumptions in the above derivation, if these
differential equations are locked at separately, they are
linear systems. But due to the change of the system struc-
ture, the parameters of the system (the moment of iner-
tia, Ito, I1 and It + Iio)are different before the slip speed
reaches zero and after that. This changing of the system
structure leads to the nonlinear characteristics of the sys-
tem. It can be seen that this is a simplified model since it
is built under the assumptions that the friction coefficient
is constant during the engagment, the drive shaft is a rigid
body and that a first order approximation of the damping
torques is used. For this paper, this simplified nonlinear
model will be used to generate the input/output data.

2.2 Modeling Using Neural Networks

Modeling the input - output behavior of nonlinear
plants using neural networks has gained ground in re-
cent years. This is mainly because neural networks can
also deal with cases where mathematical models are ei-
ther very poor or nonexistent and because neural networks
can easily be updated via learning procedures to reflect
changes in the physical plant. Feed forward multilayer
neural networks are the most common architectures with
hyperbolic tangent or sigmoidal functions being the most
common activation functions in the neural units. The suc-
cess of the modeling procedure is based on the fact that
such networks can approximate with arbitrary accuracy
any nonlinear static map under certain mild assumptions.
Note that neural networks in modeling and control of dy-
namical systems have been the topic of the Special Issues
in JEEE Control Systems Magazine Antsaklis[1]. A brief
review of this research can be found in Antsaklis{2].

Modeling, or neural identification, is seen as the pro-
cess of constructing a model of a dynamic system based on
available system information namely input/output data.
The model parameters are adjusted based on system out-
put error, at least over the input range of interest. The
system to be identified is seen as a black box with bounded
input/bounded output stability. As the identification pro-
cess begins, the plant output and the neural network
model output are compared and an error term is pro-
duced. Based on this error, the parameters (neural net-
work weights) of the neural network model are adjusted
according to the gradient methods and the back propaga-
tion algorithm,

The neural network is trained using a random signal
which is uniformly distributed over certain ranges. Since

wr(?).

wi(1).
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this method provides rich excitaiion to the plant, the neu-
ral network can capture most of the relevant properties of
the plant over the input range of interest. So random in-
put is used throughout system identification simulations
conducted here. After training is completed, a test sig-
nal, such as an irregular sinusoid wave, a step input etc.,
is used to test the trained neural network.

The equations of a neural network identifier can be de-
scribed as follows. The same equations can be used to
describe a neural network controller.

The equations are based on a two hidden layer neural
network structure.

The following notation will be used:

N - The number of neurons on the output layer.

n2 - The number of neurons on the second hidden layer.

n; - The number of neurons on the first hidden layer.

- The number of neurons on the input layer.

m - Indicates m** output layer, here the output layer.

y;* [k +1] - The 7" neuron output on the output layer
at time k + 1.

™1 . The i*" neuron output on the second hidden
layer.

R"~? _ The I'* neuron output on the first hidden layer.

U,[k] - The s** neuron output on the input layer at
time k.

w]] - The connection weights from the second hidden
layer to the output layer.

wi? ! - The connection weights from the first hidden
layer to the second hidden layer.
w2 - The connection weights from the input layer to

the first hidden layer.

The output of the neural network, that is of the output
layer is:

¥ -fo[Zwm m—l 1, (12)

where fo(z) =2, j = 1,2,---,N.
The output of the second hidden layer is:

P = R0y wi TR, (13)

t=1

where f =tanh(z),i=1,2,-..,n2
The output of the first hidden layer is:

In
R = A wiT?U), (14)

=1

where fi(z) = tanh(z), I =1,2,...,n;.

So, by combining these equations, the following expres-
sion is obtained for a general neural network identifier or
a neural network controller:

¥ Tk + 1] = fo Ew._, o[ ng. -lfl [Z wm—zus(k)]]]’
i=1 (]5)

where

folz) = z, fi(z) =
1,2,-.-,N.

In general, y;" represents the output vector of the neu-
ral network identifier or the output vector of the neural
network controller.

On the basis of the Delta Rule ( a steepest descent algo-
rithm with a constant step size), Rumelhart developed the
back propagation algorithm. The multilayer cost function
C is described as follows:

tanh(z), fz(z) = tanh(z), § =

np N(o)
C= Z Ce = Z Z[dm yp:] (16)
p=1  j=1

where N(o) is the number of output neurons, d;p is the
desired output of the 5** output neuron for the p** input
pattern and g, is the output of the 7* output neuron for
the p'"* input pattern. The output of the §** neuron for
the m*® layer is given by the equation:

N(m-=1)

wm=f( Y wiyp ) =f(mety))  (17)

=1

Where N(m — 1) is the number of neurons in the m h

layer and w]; is the weight from the output of the i*®
neuron in the (m —1)'® layer to the 7** neuron in the m!
layer. Note that when the (m — l)“‘ layer is the input
la.yer, then the y;~ =1 = up; where uy, is the i*” input of the
p'® pattern. The nonlinear hyperbolic tangent function is
given by

th

—22

f(z) = m (18)

The back propagation algorithm to update the weights
of the neural network is summarized as follows:

ac

wiik+1) =wl (k) - o =

+ adw] (k)

iy
=w(k) +1) _bpup "t +aduwl(k)  (19)

p=1
where
EN(m+l) 6m+1 m+1 _ (ym)Z)
P
if m'® layer is the hidden layer
5;; = <

(dp, — Yp (1 — (!‘;3)2)

L if m'® layer is the output layer

In the above equations, aAw}(k) is the momentum
term. The gradient tends to chauge along an average
decent direction. This can reduce oscillations observed
when the training step size is large. The coefficient of the
momentum term, o, is usually between 0 and 1.

Here a nonlinear plant is considered as a black box
and the only information which is generally available is
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the plant input/output data. Certainly, if additional in-
formation about the plant is known, this may make the
identification process easier. Obviously, the less informa-
tion needed to conduct the identification, the more general
the method is.

The mechanical nonlinear model derived in section 2.1
has two inputs Ti,(t), T:(2) and two outputs w:.(t) and
wL(1). The clutch torque is expressed as T, (1) = pR. F(2).
It is assumed that gz is constant, so the clutch torque
only changes by varying the clamping force F(t). The
effective radius of the clutch plates and load torque Ty are
also assumed constant. The nonlinearity of the system
has been discussed in section 2.1. To design a neural
network controller, a neural network model of the system
will be built first, based on the input/output data of the
mecharical model. The input torques T;,(2) and T..(t) will
accelerate the load to the desired speed after engagement
starts. The damping torques exist at the torque converter-
clutch side and at the clutch-load side. The load torque
is applied to the system and remains constant.

The parameters and the initial values of the variables
are assigned as follows:

ktf = (.02 wto(O) = 2300
p = 0.05 Tgo(O) = 2.433
Kp;=002 wr(07)=0
o =0.01 F(0T)=0

I =0.01 F(ty=179
Tr=1 R. =02

The values of the parameters are not obtained from the
actual system but are chosen based on expected transient
responses of the actual system. The friction coefficient
# is about 0.05 for wet clutches. The effective radius of
clutch is usually 0.2{t. The damping torque at the torque
converter-clutch side is small compared to the one at the
clutch-load side. The moment of inertia of the torque con-
verter and clutch package is small compared to that of the
load. The torque converter output torque should be large
enough to drive the load and the clamping force should
be large enough to make clutch engagement possible. The
angular velocity of the torque converter output w:o(?) and
the load speed wir(?) should be chosen to be within the
operating range which is typically between -2500 and 2500
rpm. The engagement period should be less than 1.5 sec-
onds which is the typical time needed for full engagement.
For identification of the real powertrain system the data
should be obtained from actual experiments.

With the initial values of the system, at time 1 = 0, a
clamping force is applied to the clutch and the engage-
ment process begins. The input/output data of the sys-
tem are generated from the mathematical model and are
used to train the neural network model.

Based on the input/output data, a neural network is
used to identify the dynamics of the system. The neural
network model is expressed as follow:

§(k+ 1) = fu(k), u(k - 1),

oulk - d), y(k), y(k = 1) - y(k —d))  (20)

where d is the estimated delay needed for the neural iden-
tification model. The input u(k) = [Tio(k), F ()] and the
output ¥ = [Weorky, wr(k)]. The delay d needed depends
on the simulation experiment. §(k 4+ 1) is the neural net-
work plant output at k41. The function f is a hyperbolic
tangent function as in the equation (18). In the neural
network simulation, if d = 1, the output of the neural
network does not converge to the system output within
a certain amount of iterations (100,000). If d = 2, good
resulis can be achieved. Experiments have shown that
if d > 2, the improvement in convergence time is small.
Therefore, in the following simulations, d = 2,

In order to model this MIMO system, a neural network
with two hidden layers (20, 10) is chosen. The backprop-
agation training algorithm is used. Two random training
signals of Tio(t) and F(i) are applied to the neural net-
work and the plant. Their values are taken to be uni-
formly distributed within the range [0, 3] and [0, 250] re-
spectively. (Note the relationship T.(t) = pReF(1).) We
can not overstress the importance of the choice of the
training signals. Note that the two inputs Ti.(k) and
F(t) cannot be random signals if the actual physical sys-
tem is used to generate the data, since the mechanical
constraints of the system do not allow severe fluctuation
of these two variables, especially Tio(t). Different training
signals must ther be applied, such as small step inputs,
ramp inputs or other signals sufficiently rich in frequency.
In general, when a neural network is trained by random
inputs, good results are obtained but training time is rel-
atively longer. If a neural network is trained by particular
signals, then it may only work well as a model for input
signals whose properties are close to that of the training
signal; the training time for convergence, however is rela-
tively short. Therefore, for a system which does not need
a large variety of input sighals, one can use specific signals
for training purposes. This applies to the powertrain sys-
tem under investigation. In fact one could originally train
the neural network model using random inputs (off line
by using an available model) and then continue training
using the physical system and only determine the inputs
(Off or on line to take into consideration information not
present in the model used in the simulations). In this
section, random signals are used. If the real mechanical
constraints are added to the system model, then a specific
set of practical training signals should be chosen to train
the system.

During training, the identification step size is 7 = 0.4,
which is the learning rate of the back propagation algo-
rithm. The coefficient of momentum term « = 0.2.

Training results with 100,000 iterations and 490,000 it-
erations are shown in Fig. 5 and Fig. 6 respectively. The
test signal Tio = 2.43 and F(t) = 179 were applied at
time ¢ = 0. From Fig. 5, it can be seen that the output of
the neural network tracks the output of the plants with
large errors. This means that the neural network model
has not captured the dynamics of the system completely.
So more training iterations are needed. After more itera-
tions, it can be seen from Fig. 6, the modeling error of the
two outputs of the neural network model has improved.
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Figure 5: The identification model of the clutch-load
subsystem. The speeds of the system and neural net-
work outputs are shown after 100,000 iterations with
random input training.

If the training goes on, it is expected that the error will
improve further.

The simulations conducted above (also in [6] and else
where) show the potential of neural network modeling
of nonlinear dynamical system such as the powertrain
cluich-load subsystem. It should be noted that when the
physical model is available in the practical industrial ap-
plications, the off and on line methods discussed above
should be used together.

3 Control of the Powertrain
Subsystem using Neural
Networks

The control structure used here is shown in Fig. 7.
Other control configurations are of course possible; see
[6] and [2] among others. In this structure, which is of-
ten called indirect control, the plant is first identified by
a neural model. After identification, the weights of the
neural plant are fixed. Given a reference signal r, the
output of the plant and the output of the reference model
are different at the beginning. The differences of the two
outputs, the output error e, is back propagated to the
neural controller though the neural plant. The purpose
of the neural plant is to provide a path for the output er-
ror to reach the neural controller. The neural controller’s
weights are adjusted based on the output error. The ba-
sic algorithm used is back propagation. After training,
the values for the weights of the neural controller have
converged. The output of the plant should now track the

Wia(t), WL(Y), yo (D)., yn2(0

2500 .
1500+ -
1000} & i
.‘:’" Solid line -- Wio(t), Cutput speod of the torque converter.,
"'~
ra Dash line — WL(1), Load spoed.

500/ & g

" rd Dot line - yn1(t}, Qutput speed of the neural network model.

r s Dot dash line — Yn2(1), Ioad speed of neural network model.

o i i 1 1 & " i 1

[} 02 04 0.6 0.8 1 1.2 14

Figure 6: Identification model of the clutch-load sub-
system. The speeds of the system and neural network
outputs are shown after 490,000 iterations with ran-
dom input training.

Reference Model Output Y

Model
Noural Network
Model
Reference
Inpu
’ NouralNotwock| 4 .
Controller mt

Figure 7: Indirect control configuration

output of the reference model well.

The structure and the size of neural networks, in terms
of the number of hidden layers and the number of neurons
on each hidden layers, are decided by experiments.

For this specific problem, to control the powertrain sub-
system certain control strategy has to be chosen. To meet
the design specifications we need to:

¢Confine the maximum heat peak power below certain
allowable level.

eMinimize the heat energy dissipated during the en-
gagement period.

#Complete the engagement within 1.5 second.

The control objective is to design a neural network
controller to control the clutch - load subsystem output
(weo(t) and wr(t), so that these two outputs can follow the
desired trajectories predesigned by engineers. The main
controller input is the the error signal (The differences be-
tween the desired trajectories and the actual trajectories
of the plant.) The controller output is the clamping force
F(1). To find the desired plant output trajectories under
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Figure 9: Configuration of the M type control via a
Neural network

the given technical conditions is a problem of choosing an
optimal set of parameters of the system inputs. (corre-
sponding to open loop conirol.) An approach that can
be used to solve this problem is described in Peek and
Antsaklis [11}; other approaches are also possible. Note
that the difficulties in determining the output trajectories
that satisfy the constraints stem from the system nonlin-
earitis but mostly are due to uncertainties; so a procedure
such as [11] may be more approprate here than optimal
control methods. When the desired output trajectories
are decided then neural network control system can be
trained as a model following system. So any desired out-
put trajectories fed as a reference inputs to the control
system will lead to the powertrain system output to follow
those trajectories. The configuration is shown in Fig. 8.
In Fig. 8, controller C safeguards stabtlity while M causes
the response of the system to be T (T"= PM).

The neural controller system configuration is shown in
Fig. 9. Here C is a neural network controller, M is a
neural network auxiliary controller, T is a desired transfer
function, and P is an unknown nonlinear plant.

The plant model, which is used to generate input out-
put data, is the same as in equation (11).

The neural network controller is:

gk + 1) = f(u(k),u(k = 1),

<ou(k —d), k), 9(k = 1), .-, 5(k - d))  (21)
#(k + 1) is the neural network controller output and at
k+1. u(k) is the input to the neural network controller
at time k. (The M-model has the same structure as the
neural network controller.) Since there are two neural
networks in the control system, the training procedure
has to be carefully chosen. Firsi the neural plant has to
be trained with a random input signal. During the next
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Figure 10: The controlled plant output, and the refer-
ence model output are shown after 200,000 iterations
using random input training.

step the controller is being trained with the weights of the
neural plant model being fixed.

The neural neiworks for C and M are the same with
two hidden layers (20,10) and two delays. The sizes and
the delay are chosen based the experiments conducted
in the previous work [6]. During controller training, C
and M are trained simultaneously. The training step size
is 7 = 0.01 and @ = 0. The reference input training
signal is a random variable uniformly distributed within
[0, 3600](Scale factors were used in the training process.).
This reference input is used for the load speed of the pow-
ertrain system. Since the torque converter output speed
is closely related to the load speed while the clamping
force only indirectly affects the torque converter output
speed, for reference input only choose one of the quanti-
ties. Here, the torque converter output torque is set con-
stant at Ty, = 2.43. During the simulation, the output
error is back propagated through the neural plant to the
controller C and M. After 200,000 iterations, the training
process is stopped and the desired load speed curve is fed
to the reference input. The result is shown in the Fig. 10.
The reference input and the outputs of the control system
trajectories are very close. The control action, clamping
force F is shown in Fig. 11. The vibrations at the begin-
ning of the clamping force may indicate that more training
iterations should be conducted if this phenomena can not
be tolerated.

The shape of the clamping force curve is in between the
step input and the ramp type input which are commonly
used in industry, derived mostly by empirical considera-
tions. See Fig. 12. Several different curves have been
used as the reference inputs and the system tracks well.
See Fig. 13.

The controller configurations in this section have re-
laxed the constraint for the plants, (the delayed plant
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Figure 11: The clamping force curve
F
i T is the engagement period
Solid line is the modulated clamping force curve.
Dash line is the unmodulated clamping force curve.
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Figure 12: Currently used clamping force modulation
curves,

solid line - Ym, Reference Input of the control system

dash line - Yio, Torque converter output of the plant

dot line - YL, Load speed of the plant
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Figure 13: The controlled plant output, and the refer-
ence model output are shown after 200,000 iterations
using random input training. Different reference in-
put trajectory is used here from in Fig.10.

input terms and the delayed plant output terms must be
separable as described in [13]), which can be controlled by
this type of neural network coniroller. During training,
the training step size  plays an important role. The ex-
periments show that large values of » can make the whole
control system unstable, while smaller values of n can lead
to lengthy convergence times. The designer should watch
the training process carefully.

From the simulations in this section, it may be noted
that the training process is off line, thus, it is not possible
to realize adaptive control in the classical sense. To ac-
commodate parameter changes in an unknown plant, the
whole training process must be implemented on line. This
would require the plant identification and controller train-
ing to be performed simultaneously. This would greatly
broaden the application of neural networks and is left for
future research efforts.

4 Conclusion

Neural network models were used to model and con-
trol a nonlinear powertrain clutch-load subsystem. The
results show that neural networks can be effective in this
type of problems. Further simulations and testing on the
actual vehicle need to be carried out for the few validation
of the procedures.
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