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PART 1

Introduction and Equivalence of Representations

Motivating Example

Assume that the following mathematical representation of a system
is given (derived by applying physical laws such as Newton's, Kirchhoff's

etec.).

9,08 + 3, (1) + v (6) = By(6) + u (®)
+ IC (1
7,8 + §,(0) + 2y,(t) = 4,(c).

By changing variables one can obtain an equivalent set of DEs of Ist
= = - = + - . Th }
order. Let X, T Y s % 3, Uy Xy =Y, ¥, T u, en (1)

can be written as :

- u"
x2 = 1 0 0 x2 + 0 1
Yy

}.{3 lO 2 -2 x3 0 _2

A B +IC

{ ( 1
y] 0 1 0 xl 0 0 u]
= +

Y2 J 0 =1 1 x2 0 1 u2

C x3 J E

(2

i.e. a set of lst order DEs. x; are the state-variables; (2) 1s an
example of the State-Space Representation {A,B,C,E } of a system.

One could also write (1) as : (D g:gt
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2
P(D) Q(D)
P A —
{ p2e 1) fz]’ v , D u,
l D , D42 lz2, a 0 , D u,
+ IC (3)
[ 3
{ ( (
y} 1 0 zl 0 0 u]
= +
y2 0 i z2 c o u2
L W \ w
R(D) W(D)

i.e. a set of higher order DEs z;, are the "partial' state variables;

(3) is an example of the Polynomial Matrix Representation
{P(D),Q(D),R(D),W(D)} of a system. Note that : Dx = Ax+Bu,

y = Cx+Eu written as (D-A)x = Bu; y = Cx+Eu is clearly a special case
of the polynomial matrix representation. In view of the above example
it is clear that the polynomial matrices (matrices with entries
polynomials) are introduced in the mathematical representation of
systems in a natural way.

Assume now that we are interested in a <mput/output description
of the system (an external description, (2) and (3) are internal
deseriptions) . Since we are dealing with a linear time—-invariant
finite dimensional system(linear DEs of finite order with constant
coefficients), assume zero IC and take Laplace transform of both sides
in (2) and (3).

Then
§(s) = T(s)a(s) = [C(s-A) "B+ETa(s) = P - (s)Q(s)a(s)
where T(s) is the Transfer Matrix of the system.

Observe the relation between the polynomial matrix representation
(3) and the transfer matrix (T(s) = P-l(s)Q(s)) and note that it is
a generalization of the classical control case (single input-output

system) where t(s) = %%%%— with q¢ and p from the DE p(D)y(t) = q(D)u(t).
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One of the advantages of the polynomial matrix representation (other
than compactness) is its close and easy to work with relation with the
transfer matrix (compare with the relation between the state-space

1B+E)). These

representation and the transfer matrix (T(s) = C(s-A)_
advantages outweight the disadvantages in many cases and the polynomial
matrix representation is used to study certain control problems in

spite of the fact that ome has to work with polynomial matrices and not with
real matrices as it is the case with the state-space representation.

In general, the representation of a system in polynomial matrix

form 1is :

qxq qxm
P(D)z(t) = Q(D)u(t)
y(t) = R(D)z(t) + W(D)ult) (4)
d Pxq pxm
where D A —— (continuous time systems) or D A T the delay operator

dt
(discrete time systems). W(D) is taken to be zero in most cases.

(4) is derived directly from the original DEs(e.g. (1)), from a state-

space representation, or from the transfer matrix T(s)

T(s)= R(s) P(s) 1Q(s)+W(s) (5)

pxm

When the system is completely controllable, (4) can always be reduced

to
mxm
P Dz (t) = u(t)
pxm (6)
y(t) =R _(D)z (t)
with T(s) = Rc(s)Pc(s) 1.

When the system is completely observable, (4) can always be reduced
to

PXp

DX
B (D)z (£) = Q (D)u(t) 7

]

y(t) zo(t)
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&4
. -1
with T(s) = Po(s) Qo(s) {e.g. (3))
Equivalence
Equivalent representations describe the same system (same model of
physical system). They are alternative representations of the same
set of DEs.
1) {P],Q],R],WI} é{Pz,QZ,RZ,WZ} are equivalent iff there exist
polynomials matrices MI’MZ’XZ’YI such that :
qzqu q]Xq] q]m q2xq2 qzm qzxq] qu
M2 0 P] Q P2 Q2 Ml -—Y]
X2 Ip —R1 W -Rz WZ 0 Im
PXq, PXq, pxm pxq,  pxm
(8)
.t . x T
and (M2,P2) are left prime , (P]’Ml) are right prime [3]
P Q)
Note: . is the system matriz [1]
- W
Example Representations (2) ¢ (3) are equivalent. Appropriate matrices
which satisfy (8) are :
3
P =D-4A,0Q =B, R =C W =E} M =C M = 1 Do
0 0 D
P, =P, Q=Q Ry =1, W, =0} ¥ =E, X, =0
2) Let n, = deg |Pi| » k> n, n,. An alternative definition

of equivalence is: {PI,QI,RI,WI} 4 {P2,Q2,R2,W2} are equivalent

iff there exist polynomials matrices ﬁl’ ﬁz, %2, ?1 such that :

kxk [T 0 0 1 F I 0 7 kxk kxm
~ : k=q, k-q, i, o, -%
M 0 1
2 q.%Xq, g, ¥m - q,X%q q,xm

A 1 °1 1 = 272 2 0 1
X2 Ip 0 P1 QI 0 P2 Q2 ™
pxk - 0 -R W

L 0 R, W i 2 2]
Pxq pxm PXq pxm L, ., .. (9)
A n - 4 2
where M],M2 are unimodular matrices’ [1]
..[..

These terms will be defined later.
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3) An alternative (indirect) way of defining equivalence
between two polynomial matrix representationsis :
Let {Pi’Qi’Ri’Wi} i=1,2 be, equivalent to {Ai’Bi’Ci’Ei} .
Then the two polynomial matrix representations are equivalent iff
the corresponding state-space representations are equivalent
(equivalence in state-space is well defined). Note that
Ei might be Ei(D) i.e. the standard state-space representation
must be enlarged to allow differentations (delays) of the input
in the output equation. The equivalence between a state-space
and a polynomial matrix representation can be studied using canonical

forms [2] . If {Ac’Bc’Cc’E} is completely controllable and in

controllable companion form [2] then an equivalent polynomial matrix

representation can be derived by inspection. In particular note
0 1 ) :
A =LA .1 (d.xd)A,, = d. for i = j
c ij 13 1] i-1
nxn L X X «oon X
4 O W
= for i # j
\xX....xJ (10)
m
where d, : the controllability indices and | d; =n
i=1

Bc =[Bi] (dixm) Bi

nxm

O (rank Bc = m)
0... Olx...x
*

ith column,

Define Aﬁf Bﬁlto be the (mxn),(mxm) matrices consisting of the m(nontrivial)

k
Okth rows of AC and Bc respectively. (0k A izl di)
Then x =A x +Bu;y=C x + Euis equivalent to P 2 = u; y =R 2
c ¢ ¢ c c ¢ 4 c c cc

(see(6)) where » (D) = Bm'ltdiag(n h-a 5.()1, R_(D) = C_S_(D) + EP_(D)
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d.
with Sc(D) B diag(ei), e, = f1,n,...,D L IJT. If (8) is used, note that
ifP)=D4,0Q =B,R =C,W =EandP =P,Q =1I,R =R,
= = = =B b4 = = :
W] 0 then M] Sc(D), Y] 0, M2 Bc’ 9 E. (xc(t) SC(D)zc(t)).
If {Ao, B> C E} is completely observable and in observable
companion form dual results can be written by inspection
Ex see(2), (3) and (7). (zo(t) = Co xo(t) + Eu(t))
Polynomial Matrices
Rank
Tuples Vi seeesV, are linearly independent iff {a|v, toeta v o= 0
== a, = 0, i =1,...,k}. ai are elements of the smallest field which contains

the elements of vi .
If v, are vectors with elements polynomials, a, belong to the
field of rational functions. Care should be taken to make this distinction

since :
f 543 ) s+1 s+3 [ g4
Ez v =l 0 J V2Tl o ) Ao [T l o | =0

=> a; = 0 if a, reals, but a; # 0 if rational functions since

s+1]

3] T 43 2 3 < =1 <clearly satisfies the above i.e. Vs Vv, are linearly

independent. Notethe relation between rational functiors and polynomials

y \ \
LI e 5 ) m0 e een| B+ [ -eemya| St =0
s+3° | 0 J 0 0 0

Any polynomial is an element of the field of yatienal functionsif it is
considered divided by 1.
q1¥d2
The rank of a polynomial matrix P(s} is the max. number of linearly

independent columns or rows (independemre defined as above).

It is also equal to the order of the largest order nonzero minor of P(s).
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Note that the rank of P(s) (sometimes also called normal rank) is

generally different from the rank of P(Si)’ where s; is a complex number.

Unimodular Matrices

A wnimodular matrix U is a square polynomial matrix with determinant
a nonzero constant. A unimodular matrix is a matrix representation of
a finite number of successive elementany row (colum) operations per-
formed on a polynomial matrix. Row operations correspond to premulti -
plication by a unimodular matrix UL’ while column operations correspond

to postmultiplication by U The elementary operations are :

R’
(1) Interchange of rows (columns) i and j
U = {1 for! k=i, £=j ;U = {1 for [ k=j, £=i
L{k,£) ? * "R(k,&) !
k=j, £=i k=i, £=j
and k=£ # 1iorj and k=£ # iorj
0 elsewhere 0 elsewhere
L LY
Example (i=1,j=3) uP = {0 0 1 {1 0
0 1 0 s+l I 0
1 0 0 0 s+2 1
= 0 s+2 1)
s+l 1 0
1 0 s

(ii) Multiplication of row (column) i by a nonzero real o.

L(k,£) o o
1 for k=f#i
0 elsewhere 0 elsewhere

(iii) Replacement of row (column) i by itself plus any other row

(column) j multiplied by any polynomial P.
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U =0 =L ; U = {1 =L
Lk, ) for k=L R (k, D) for k
p for k=i, £=j P for k=j £=1i
0 elsewhere | 0 elsewhere
Example (i=2,j=3),p=s) P = [ 1 0 s 11 o0 o0
s+1 1 0 0 i 0
0 s+2 1) 10 s 1

L 0 25"‘2 1

A unimodular matrix U can also be defined as any square matrix which can
be obtained .from I by a finite number of row and column elementary oper-
ations on I.

Elementary operations on sets of DESresult to an equivalent set
of DEs (same solutions). Premultiplication (row operations) of both
sides of P(D)y(t) = Q(D)ult) by UL(D) corresponds to manipulation of the
DES (without change of variables) from which a simpler set of DEsmight
result (UL(D)P(D)y(t) = UL(D)Q(D)u(t)). Postmultiplication (column
operations) of P(D) by UR(D) corresponds to a change of variables

_1 ~
(PD)U (D) (T, " (D)y(t)) = P(D)U, D)y (t) = Q(D)u(t)).
4%,
Given a polynomial matrix M, unimodular wmatrices U, UR can
always be found so that ULMUR is upper or lower triangular or diagonal;
U, can also be chosen to reduce the degrees of the polynomial entries

L R

of M if they are unnecessarily high as the next section shows.
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Proper Matrices

0

Example Consider the D E s Dzy + (DJO + J)y2 =0

"]

Dyz = 0

What is the numter of IC needed to determine Y, and ¥y uniquely?

(i.e. what is the order of this system of DE#) Clearly it is not

the sum of 100 + I = sum of orders of 1St and 2nd DEs. This implies

that the order of at least one DE is unnecssarily high. Write it

as DZ, DIOO ] y and use row elementary operations.

1 -0
i _D99 D2 DIOO + ( y]] [ w2 3
0 1 0 D J [ yz}

i.e. the system' D2y1 + Yy = 0 is equivalent to the above.

Il
——r
o [
o —
(—
—
- b
[\ —
| —
il
o

Dy2 =0

Clearly the order is 2+1 = 3 = sum of orders of the ISt and 2nd DE which
implies that we need 3 ICson Yy Yy D2 1} is an example of a row

0 D
proper matrix.

The degree of a polynomial matrix is the degree of its highest degree

polynomial entry. d_ [P(s)] (dc [P(s)]1) denotes the degree of
i i

the ith row (ith column) of P(s).

Cr[P(s)](CC[P(s)]) is the real matrix with entries the corfficients

of the highest degree s terms in each row (column) of P(s). [2]

1]
"

Example P(s) =| s+l 352+2 dr [ P(s)] 2, dr [P(s)] 1, dr [P(s)]= 3

s 1 1 2 3

s2+3 345 d, [ P(s)]
1

]
W

2, dcz[P(s)]

=]

Cr[P(s)] = 10 3 Cr[P(s)] =
1 0

\
|
0 1 11J

0
0

o
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P(s) is row (column) proper iff CrEP(s)](CC[P(s)]) has full rank.
P(s) of the example is row proper but not column proper.
2
Note that js+1 35 +2 0 3
= (-3)53 - 5+] = l [ s(dr +dr )+ lower
1 2
s 1 1 0

degree terms. i.e. Take any nonzero highest order minor of Cr[P(s)]

(CCEP(S)]). The corresponding minor of P(s) will be a polynomial of degree
the sum of the degrees of the rows (columns) taken , with leading coefficient
the minor of Cr[P(s)] (Cc[P(s))]) o4

If P(s) is square |P(s)| = |Cr[P(s)][s i + lower degree terms
Clearly, d|P(s)| = Edr. iff P(s) is row proper. Some for CCEP(s)].

i

In view of the above it is clear that if P(s) is not of full rank it ecan
neither be column nor row proper matrix.

Given P(s) (q]xqz) of full rank, there exists a unimodular matrix
UL(s) such that UL(s)P(s) is row proper.

This is shown using a constructive proof [2]. The idea is to
reduce the degree of a row (highest degree row) by at least one at

each step using row elementary operations. Since the matrix is of full ramk

the algorithm will stop after a finite number of steps.

N dy;[P(s)] fp] )
{(a) Obtain P (s) A | diag s . Cr[P(s)] = .
ér
1
(b) Determine monomials Pi(S)such that

r —
[P],...,pql]P (8) =0

Take FK = 1. This is done by dividing all monomials by the lowest degree mo -

1 O 0

nomial, (c) Premultiply by Ul(s) = | Jkth row
P, B,-- 1 p
12 a4y
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(4) Repeat above with the new matrix UJ(S)P(S). Stop
when UL(S)P(S) YOW proper (UL = U£ e Ul)'
Example
{ s+ s s oY1 1 s s
2
I 2
P(s) = $ 57+2 ,Pr(s) | s 1 _ s s
s 8+2 0 sf|1 1 s s
1 0 0 [ s+1 s
- P(s) = - 2
U](s) - s 1 0 Ul(s) (s) s
0 0 1 s s+2
UL(S) = Ul(s) since CrEU]P] =[ 1 1| of full rank.
-1 0
1
1 0o -1)
Note that E](s) =10 1 0 is another choice for UL(s) since
0 )
1 -2 ) 1 -2
~ ~ 1 | . .
Ul(s)P(s) = S2 SZ+2 . Cr[U]P] = | 1 which is
s s+2J

f full rank.
of fu n a,xq,
Given P(s) of full rank, there exists a unimodular matrix UR(s)
such that P(s)UR(s) is row proper. Such a UR(S) is given by the

algorithm which reduces the matrix to a lower left triangular matrix.

Other algorithms can also be derived.

1 0\[1t -s {1 -s 1
Example P(s) = P(s) = )
-1 1 0 1 -t s+l -2 s +28+2
-2 3s+2

which is row proper.
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Similar results for reducing a matrix to a colwm proper
one can be easily derived (e.g take the transpose and use the above

algorithms). Finally note that if P(s) has full rank, there exist

unimodular matrices U and Up such that ULPUR is row and columm proper

(e.g. U'LPUR in Smith form)

Triangular and Smith Form Matrices

Using elementary row and column operations, a polynomial matrix
P(s) can be reduced to a triangular oradiagonal matrix.

Triangular Form

Given P(s) (qlxqz), there exists a unimodular matrix UL(S) such

that UL(S)P(S) is an upper txiangular matrix of the form:

= f
(q,<q,) U P X

L % )(

(q,>q,,) U P = X

? -2 "L X
X
O«

———————

0

where the column degrees of the first min(ql,qz) columrs are those of

the entries on the diagonal [2]+.

o
-
%

This is shown using a constructive proof ‘based on the divi-
sion identity of polynomials, namely :

Py; = Pii(s)qji(s) + rji(s)

where d(pii) f_d(pji), d(rji)< d(pii)' qji is the quotient, o the
remainder. Apply the following steps for i = 152,..., min(ql,qz)-l
(a) Find the least degree element among the non zero (j,i)
j>i elements and use row interchange to bring it to (i,1i)
position call it pii(s), Pji(s) the (j,i) entry.
(b) Replace jth row (j>i) by itself plus ith row multiplied

by -qji(s). The new (j,i) entry is rji(s).

+That is, if P(s) is of full rank ULP is column proper.
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In a completely analogous fashion, one can determine a unimod-

ular matrix UR(s) such that P(S)UR(S) is in lower triangular form.

Smith Form
Given P(s) q,%q, there exist unimodular matrices UL(S), UR(S) such

that UL(S)P(S)UR(S) = E(s) where E(s) is the Smith form of P(s). E(s)is defined
as follows:

a) (q,<q,) E(s) = Ediag(ei(s)) , 01
b) (q1=q2) E(s) [diag(Ei(S))]
c) (q1>q2) E(s) = diag(si(s))
0
where €; divides €141 i=1,2,...,r-1 Er;ﬁ"'samin(ql,qz) =

r A rank P(s); €, are the (monic) tnvariant polynomials of P(s).
Note that the Smith form plays a central role in [1]. The constructive
proof of the above can be found in a number of references.

The invariant polynomials € of P(s) are defined as follows :
The determingital divisor Dk(s) is the (monic) greatestof common divisor
of all kth order minors 1 < k < r of P(s); the invariant polynomial

€; is then given by

Di(s)
e.{s) = i = 1,2,...,r, D (S)Al
1 D (S) o] =
i~1
Example P(s) = r s(s+2) 0 1y = rank P(s) = 2
0 (s+1)2
D0 =1, D1 =1, D2 = (s+])(s+2)
(s+1)(s+2) s+l
D
0 s(s+1) ] 5_21 =1, g, = 53 = (s+1) (s+2)
1 D 1
0
i.e. the Smith form of P(s) is E(s) = [ 0 1

1

0 (s+1)(s+2)
0 0

0 0
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The invyariant factors of a matrix are not affected by row

and column elementary operations; the following is therefore intuitively
clear. Given P](s), Pz(s) there exist unimodular matrices U](s), Uz(s)
such that U](s)Pl(s)Uz(s) = PZ(S) iff Pl(s),Pz(s) have the same

Smith form.

Common Divisors and Prime Matrices

Primeness of polynomials matrices is one of the most impdrtant concepts
in the polynomial matrix representation of systems, because it is directly
related to controllability and observability.

A polynomial g(s) is a common divisor {cd) of polynomials
pl(s), pz(s) iff there exist polynomials ;](s),gz(s)such that
pl(s) = ;l(s)g(s) and pz(s) = Sz(s)g(s). The highest degree cd,g*(s),
of Pys P, is a greatest common divisor (gcd) of P> Py (unique within
multiplication by a non zero comstant)., Alternatively g*(s) is a
gcd of P|sPy iff any cd g(s) of Py-Py is a divisor of g*(s) as well.
The polynomials pl(s), pz(s) are relatively prime (rp) iff a ged
is a (nonzero) constant.

The above can be extended to include the matrix case; right
divisors and left divisors must be defined here since two polynomial
matrices do not commute in general. Note that one can talk about
right (left) divisors of polynomial matrices only when the matrices
have the same number of columns (rows).

A square polynomial matrix GR(S) (mxn) (GL(s) {pxp)) is
a common right divisor (crd) (common left divisor (cld)) of polynomial
matrices P, (s) (q,xm), P,(s) (q,xm)( 51(5) (pxqi), EZ(S) (pxq,)) iff

there exist polynomial matrices PIR(S)’ PZR(S)(P]L(S), PZL(S)) such that
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n
1]

P (s) = B, ()G, (s) (Eﬁw ¢, ()P, () )

R,(s) = B, ()G, () P,(s) = G ()P, (s)

* » ~
*
The crd GR(s) (cld GL(s)) of P](s), PZ(S) (P](s), Pz(s))
with the highest degree determinant is a greater common right divisor
(gerd) (greatest common left divisor (gcld)) of the matrices. It is

unique within a pre(post) multiplication by 2 unimodular matrix.

Alternatively, Gﬁ(s) (GE(S)) is a gerd (geld) of P](s), Pz(s)
(P ](s), PZ(S)) iff any crd GR(s) (cld GL(S)) is a rd(1d) of

G4 (s) (G:(s)) as well . i.e.
Gx(s) = M(s)G,(s) (6F(s) = G (s)N(s))
where M,N are polynomial matrices.
P, (s}, P,(s) (Pl(s), P,(s)) are relatively right prime (rrp)

(relatively left prime (rlp)) iff a gerd (geld) is a unimodular matrix.

Example

4 s(s+2) 0 (s+1) (s+2) (s+1)
PI(S) = 2 ’ PZ(S) =

| 0 (s+1) 0 s(s+l1)

1 0 (s+2 0
G, ,(8) = R G .(8) = are crds
RI | 0 s+ R2 [0

[ P, s(s+2) o ) P s 0 ,

since P = -2 S.J | GRl and P = O_____(s£1) GR2

2 (s+1)(s42) 1 2 s+l s5+]

0 s 0 s(s+1)

T Note that GE(S) is nonsingular iff rank P](s) = m (q]+q22m). Then any
P, (s)
*
gerd of P],P2 can be expressed as U(s)GR(s) where Gﬁ(s) is a gecrd and U(s)

is a unimodular matrix [4].
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(942 0 {s42 0 ] 1 o
1 * = = =

A gerd is Gg [ 0 s+l l o 1) ®m l 0 s+ Cro

-1 s a -1 s+1 1

% = * = * = * =
Note that P1GR P]R and PZGR P2R [ o ]
0 s+l

are rrp (this in spite of the fact that]| P?Rl = |P§R|)

Remark Two sguare polynomial matrices, the determinants of which are
prime polynomials, are right prime (also left prime). The
opposite is not true i.e. two right prime polynomial matrices do

not necessarily have prime determinants (see above example).
1 0
0 s+l

A gcld of P, P

1

9 is Gf(s) = [ ] # Gﬁ(s). Actually

left and right primeness of two polynomial matrices (provided that matrices
are compatible) are quite distinct properties. Two matrices can be rlp

but not rrp and vice versa.

(s(s+2) 0 (s+1)(s42) 1
Exemple Pl - Pz = are rpl, but they
0 s+l 0 s
{
are not rrp. Actually a gerd is Gﬁ = l 552 ?) )

Finally, note that the above can be applied to more than two matrices;

P.,...P. instead of

to do this, just substitute in all definitioms, Pl’ 9 %

1’ P2'

How to find a Greatest Common Right Divisor(gcrd)

Let P](S) (qlxm) Pz(s) (qzxm) » 4 * 4, Zm Assume that U(s) is a uni-
modular matrix with the property

(p_(s) ) G (s)

o (i)
PZ(S) 0
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f *
i.e. U(s) reduces{ P](S) to upper triangular form. Then, G (s) is a
P, (s)
gcrd of P], Pz. X . X N
1 2 ~ -
To show this, let U(s) =| . ~ and note that P, (qxq. ) P_(gxq.)
b, . P, 2 17715
2

A

X X - irsl X P
and 1(qu1)x'2(qu2)m‘ rlp pairs{q A (q1+q2)—m) and X], P2 and X, P

are rrp pairs (if they were not,|U(s)| # o a nonzero constant).

- (P — -
Let U 1(s) = P1 YZ and note that similar prime pairs exist (Pl(qlxm),
) P2 Y
B, (g, m), Y,(q,xq), ¥,(q,,9).
Clearl P =PG - 5.¢" is ¢ i P

early 1= By , P2 = PG, that is,G  is a crd of P] and 9
- A .

Now X] P] + X2 P2 G* i1mplies that any crd G of Pl’ P2

must be a rd of G* as well. Therefore G* is a gerd by definition.

Example ( 3
(s+1) (s42) s+l o - l 5(s42) 0 J
Given P, = > 1 2
2 0 s(s+1) 0 (s+1)
X X
1 2
fP1 [ -(s+2) -1 ! s+l 01 (r, ([ s42 0 ) lg+2 0 )
U [ = s+] L =S 0 = , G* =
B e S E i 0___sxi 0 s+l
P2 (5+1) s : s{s+1) 0 P2 o 3
~(s+1) 0o s -1 0 0
=P P
2 1
is a gerd,
{ : 1
P] diag(e. (s))
Finally note that if UL UR = E(Smith Form) = L .
P 0
2

then {diag(ei(s))]U;1 is a gerd .
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Tests for Primeness

There are several ways the primeness of two polynomial matrices

P](q]xm),P (qu)cantn tested. Assume that rank [?1]= m {(note that

P
y "2
if rank §1 J < m, Pl and P2 are not rrp). The following statements
2
are equivalent.
1) Pl’ P2 are rrp
2) A gred G*  of Pl’ P2 is unimodular
. P} . I
3) The Smith form of ]J is
P 0
2
4) There exist X, , X, poelynomial matrices such that

i 2
+ P =
X,P X, P, =1

Notice that I 1is a crd of P], P This relation shows that

9

any erd is ard of I i.e. I 1is a gerd.

5 P](si)
rank P (s.) =m ¥ s; € C.
271
P, (s)
Note first that rank = rank G*(s). The only s, which
P, (s) '

Can reduce the rank are the zeros of the ged of all mth order minors.
So one can check if any of the zeros of one mth order minor reduce
the rank i.e. if {P],I,PZ,O} is a system, check the zeros of| Pll
(poles)

b
6) [ PIJ are m columns of a2 unimodular matrix.
P

2
1)

s 0 [ s+]
E = = i :
xample P1 0 s+ ’ P2 l 0 s J are rrp since
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[ —(s+2) -1 ! s+ 0 ) f1 0 r
P ! P 1 0
U Pl = _Ei'_.l._'.._.‘..._\l__%---—E.—.—.——-.g' [ 1 } = 9—9 > G* =l 0 1 ]
2 -(s#1)" =s | s(s+l) O P2 0
1
=(5+1) o s -] 0
P,
-(s+2) -1 [(s+1 0
Also X,P, + X.P, = P+ P, =1;
11 272 o+l 1 1 - 0 2
. . . P . . i 0
from invariant polynomials of 1 |, the Smith form is 3
P 0 1
2 Eeeaa
O
let s, = 0,-1, then rank( 0 0} =2, rank (-1 0)=2.
0 1 0 o0
1 ] 0 1
0 0 0 -1
If P], P2 are not rrp, test 2) above will provide a gerd. All the
other tests give partial information about G*. In particular 3) provides

the Smith form of G*, 5) gives some of the zeros of |G¥|.

Poles and Zeros

axd -~ PW . fpT -, B
. , _| 2@, QD) ’
Given the system matrix [1] K(D) =
-R(D) W(D) -C, E

pXq  pxm
is a special case ) nmote that rank P(D) = q and rank K(D) = q + rank
(RP_1Q + W) = q + rank T(s). To see this, observe that}rank of
(p~1
K(D)j= rank
R o1

) -
O 1.k®@) = rank (fq P L ]
0 W

RP_1Q+

3
P

P

The poles of the system, are the zeros of [P(D)|i.e. zeros of the
characteristic polynomial. Alternatively the poles are those values
P (multiplicity included) which reduce the normal rank of P(D). i.e.

rank P(pi) < rank P(D) = q
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The zeros (inpariant zeros) of the system, are those values z.
i
(multiplicity included) which reduce the normal rank of X(D). i.e.

rank K(zi) ¢ rank K(D) = q + rank T(s).

Remark If {P(D),I,R(D), O}, z; can be determined from rank R(zi)< rank R(D);
similarly if{P(D), Q(®), I,0} z from rank Q(zi) < rank Q(D).

(s+3)%
(s+1) (s+2)

. 2
Example {(D+1)(D+2)z = (D+3) u ; vy = 2(t(s) = The poles

are : p, = -1, P, = -2; the zeros are z, = z, = —-3.

1 2

Note that equivalent representations have exactly the same poles
Ps and zeros z; - If, given a system,its controllable and observable
part is isolated, then the poles of the new system are exactly the
controllable and observable poles of the original one, while the zeros
of the new system are some of the zeros of the original systems (some

of the invariant zeros). These zeros are the transmigsion zeros

of the given system,

Controllability, Obervability and Primeness

The system P(D) z(t) = Q(D)u(r) (4)

y(t) = R(D)z(t) + ¥(Mu(t) 1is:

a) Completely controllable iff P(D), Q(D) are rlp(iff any gecld GL(D)
of P(D), Q(D) is unimodular).

b) Completely observable iff P(D), R(D) are rrp(iff any gerd GR(D) of
P(D), R(D) is unimodular).
The uncontrollable (unobservable) modes of the system are the zeros
of ]GL| ({GR[)-
Any test for primeness of two polynomial matrices can be used to

test the controllability and observability of a given system.
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Note that the system (DI-A)x(t) = Bu(t); y(t) = Cx(t) + Eu(t)
is controllable (observable) iff DI-A, B (DI-A, C) are rlp (rrp);
clearly, this is an alternative test for checking the controllability
of {4,B,C,E}.

The equivalence of system representations gives additional
insight into the above. It is known that, given {A,B,C,E}, an
equivalent polynomial matrix representation {P(D), Q(D),R(D), W(D)}
can be derived using the conditioms for equivalence (9) [1] or the
methods described in [2]; if the state-space representation is in
controllable (or observable) companion form, this can be done by
inspection (see page 5). Same comments apply in finding {A,B,C,E}

from {P(D), Q(D), R(D), W(D)}. Using this :

. fo 1 0 . (0 .
Example Let A~ = 0 0 1 s B = 0 s C7 =12,3,1]
0 -6 -5 1

An equivalent representation is (see (6)) Pczc =u, ¥y =R %, i.e.

a controllable (Pc,I rlp) representation, where

P_(D) = D(D + 5D+6) = D(D+2) (043),R_(D) = (D%43D+2) = (D32) (D+1).

(AC,CC) is not observable. PC, RC are not prime; the gcrd is (D+2)
i.e. -2 is the unobservable mode. One can check (AC,CC) to verify

that -2 is the eigenvalue of the unobservable part of AS. Similarly
let PozO = Qou; y =z, (see (7)) where PO(D) = D2 + 5D+6 = (D+2) (D+3)
Q, (D) =D+l i.e. an observable (P, I rrp) representation. An equi-

©

valent (observable) state—space representation is

0 -6 . [ o
a%= 1, s 3=l ], =0 11 . nVote that
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Po’Qo are rlp i.e. {PO,QO,I} is also controllable; one can use rank

L BO,AOBOJ or the primeness of (DI-AO,Bp) to verify that{ AO,BO,CO}

is also controllable.

Minimal Realizations

Given a trasfer matrix T(s) (pxm), find a controllable and
observable {minimal) realization in polynomial matrix or state-space
form. 3

rij(S)
Let T(s) = |—— | [21].
pij(s)
(a) Let gj(s) be the (monic) least common denominator of

. th .
the j column denominators.

: _ o . e R Y &
Write T(s) = [rij(s)][dlag(gj)] = RC(S)PC (s) (rijé= ri,j Pij
FC(D)zc(t) = u(t) , y(t) = Ec(D)zc(t) is a controllable
realization.

(b) Let C* b dof P K. DefineP=2 ¢ L, R=Rag !
et Gf be a gerd of P ,R . Define P =P G, ~, R = S
Then

P(D)zco(t) = u(t), y(t) = R(D)zco(t)

is a minimal realization (controllable and observable).

An alternative way is to consider the rows of T(s). Then an

observable realization PO(D)zo(t) = QO(D)u(t), y(t) = zo(t) is obtained;

* ~
if GL is a gecld of Po’ Qo P(D)zco(t) = QD)ult), y(t) = zco(t)

*- i~ *- ~
where P = G 1 Po’ Q= GL ! Qo is a minimal realization.
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sz+ +1 s+1 2 3
Example T(s) = 2 . (a) g, =87, g, =87 3
k- 2 3 1 * =2 ?

s 8
T(s) = [ sz+s+l,s+1 ] 32 0 1. R (s) F-l(s)
o 3 c c
8

(b) dofR,P isg =(1 1 Th

a gerd o < Yo 1is GR = . en
0 32
- G ) R 2 o k-1 2 _
P = PcGR =1 s 1}, R= RcGR =L s + g+1, =11

0 ]
which define a minimal relaization.
Alternatively, let (a) él = 33 be the least common denominator

of the row. Then T(s) = (53)'1[5(32+s+1)’s+]] _ go-la;

(b) FO, ao are rlp, the realization is therefore minimal.

The structure theorem [2]1 can be employed to determine
state-space realizations In particular, change step (b) of the above
algorithm to :

(b1) Let djdé:d(gj(s)). Determine B, (=1) and A, from

anl[diag (s J') - A, Sc(s)] = diag (gj(s)) (see page )

Construct At’ Bc (from B Aps dj). Let 1imT(s) = E and

S50
find Cc from :

CcSc(s) = [rij(s)] -E dlag(gj(s)).
Thus a controllable realization {(in controllable companion
form) {A ,B ,C ,E} is determined
c’ e’ e
(b2) Isolate the observable part and determine a minimal
{Aco’Bco’Cco’E} realization.

Alternatively, one can obtain an observable realization

{Ab’Bo’Co’E} (in observable companion form) using the structure
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theorem (observable wversion).

Example The previous example now becomes (bl)d1 = d(sz) =2, d2 = d(s3) =3

e s 0 s2 0o 0 0 0 0 0 0 0
A11101=o.e,:”'05,3=oo'*Am=t00000J

03 '_-\’_'-'d. S p—

0 SZ diag(s 1) diag(gj(s))

Sc(s)

1 0
and Bm = 0 1

Cc SC(S) = [sz+s+l, s+11 -=[1, 03] diag(gj(s)) = [s+1, s+1] > cc =[1,1,1,1,0]

\_\’____/ s
[rij(S)] E
>
0 1! 0 0 0] 0 0]
A =lo_0 ,E___g___g__g , B,= |1 0|, ¢ =011110], E=(1,0]
0 01! O 1 0 0 0
0 O E 0 0 1 0 0
0 0, 0 o of 0 1]
is a controllable realization. Taking the observable part we obtain the

minimal realization :

jo 1 0 0 0
Ao lo 0 1 » BT J1 0] %0 T r1ol, E= L1, 0l
0 0 O 0 1

Using the observable version of the structure theorem, the observable

realization

& 0 0 0 1]
A = 1 0 0 , B =1{1 1 , C = [0 0 11, E=11, 0]
(o] 0 (o]

0 1 0 1 0

is obtained which is also controllable, therefore minimal.
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The McMillan Degree

Given T(s), the order of aminimal order realization (called the MoMillan
degree of T(s)) can be found as follows. [1], [2]

The characteristic polynomial of T(e), A(s), is the (momic)

least common denominator of all minors of T(s)+

The MeMillan degree of T(s) = d(A(s)).

Furthermore, if {P(D), Q(D), R(D), W(D)} is a minimal real-
ization of T(s), A(s) is the characteristic polynomial of P(s) taken
to be monic i.e. |P(s)| = A(s) . (if{DI-A,B,C,E} is a minimal
realization, |SI-A] = A(s) ).

The minimal polynomial of P(Sj.+ (monic) is equal to Am(s),
the minimal polynomial of T(s) defined as the least common denominator

of all entries (lst order minors) of T(s)

Example 1/s 2/ )
T(s) = A (s) =s A(s) = s, McMillan degree
0 =i/s n
0 0 1 2 1 0
is 2. A minimal realization is A = o ol * B = o -11]° Cc = 0 1 :
|s - A} = 52; the minimal polynomial of A is s.
..f..

In the minors of a ratiomal matrix, all possible cancellations
have taken place.

ﬁIt is equal to the Znvariant polynomial em(s) of P(s).
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PART II
Stabilization and Pole Assignment
Dynamic Qutput Feedback
v 3 LU I Y
Assume that S : Pczc= u, ¥y = RczC is the given system and let § :
50 ;o = 6o(v-y), u =72 be the compensator. The closed loop system
is described by :
PP +QR =Q
I:Po c Qo c }zc Qov
an
y= Rczc

with closed loop poles the zeros of |FOPc + 60RC] . The transfer matrices
are : T(s) = Rc(s)Pchl(s), E(s) = F;l(s)ao(s) and the transfer
matrix of the closed loop system is :
™~ ~ —1 s .
= P +

Tc/e-(S) RC[PO c QORC] QO (]2)
(Tp = (I+TT) "TT = TT(I+IT) = = T(I+IT) T = T(I+TT) T)

For the closed loop system to be stable, Eo and ao must be

found such that

PP +QR =P (13)

oc o c ko

where Pko is any stable matrix (i.e.l Pko‘ is any stable polynomial).

Note that if S 1is not detectable then P (which must have as a rd any

ko
erd of Pc’Rc) is impossible to be a stable matrix i.e. detectability

is a necessary condition for output stabilization

If S and § are represented by : S: P z = Qou,y =z

and § : P 2 = v-y ,u = R z then the closed loop system is :
cc cc
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[PP+QR 1z =Pv
c oc ¢ o
(14)
= —N it -+
y e
The closed loop matrix is :
~ o~ : -1
T p(8) = (=P ) (p P + QRI P +I (15)

For the closed loop system teo be stable, §C and ﬁcmuSt be
found such that

i~ ~

+ QR =P (16)

P
oc o c ke

where Pkc is any stable matrix. If S 1is not stabilizable, then
Pkc (which must have as a 1d any cld of Po’ Qo) is impossible to be
a stable matrix i.e.stabilizability is a necessary condition for
output stabilization.

As it will be shown in the following stabilizability and
detectability are not only necessary but also sufficient conditions
for output stabilization.

The following theorem is important in characterizing all
stabilizing compensators .,

Assume thatthe system S : PczC =u; y = chc is controllable

and observable((mxm)Pc and (pxm) R are rrp). Then there exists a

unimodular matrix

X X -
1 2 Pc I -1 Pc YZ
U= -q p such that U Rl = lol - Let U " = {. v
o o c c 1
Remark The submatrices satisfy a number of relations important to

the manipulation of prime polynomial matrices.
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LIRS P X, R =1 vig=1:2 % +%Y,Q =1
Pc T Rc " m e 1 2 % m
- = P X, ~-Y P =0
xl YZ * KZ Y1 Omxp c 2 2 o mxp
- = R X -Y =0
Qo Pc * Po Rc pxm c 1 1 Qo pxm
=T RX. +Y P =1
Qo YI * Po Y2 P c 2 o P
ceranen Qa7
Theorem The general solution of (13) is :
- - - _ P
[PO, QOJ Pko [X], X2] + Qko L Qo’ 0]
where Qko is any polynomial matrix.
Proof Clearly, it is a solution for any Qko because of (17). Note
that Po [X], Xz] is a particular solution. The difference
P
of any two solutions is in the left kernelf of RC and

[
consequently it can be written as Qk0[~Q0,P0] with Qko an

appropriate polynomial matrix, since [-Qo, POJ is a
prime basis [5] .

The general solution of (13) can be written as :

(?,q1= e ,q 3 ' 2 (18)

For Pko any stable (mxm) matrix and Qko any (mxp) polynomial
matrix , (18) gives a stabilizing compensator. The theorem guarantees

that all stabilizing compensators of system S are given by (18).

Furthermore,
N Pc “YZ
note th =
ote that [Pko’Qko] [PO.QOJ
R
¢’ Y1
If (16) is considered then
R P -
c = c 2 ch
0 | (9
c c Y1 -Pkc
+

See section on module theory
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where ch any polynomial matrix. This is an alternative representation

of the class of stabilizing compensators. Similarly,
not . R
ote that ch ) X, X, R
-p -Q P -p

ke o o c

If the given system S has a proper transfer matrix T(s)

(1im T(s) < w)itis desirable, the transfer matrix of the compensator 5,%(8),
S=ro0

to be a proper transfer matrix as well (in other words to be realizable
by some {A,B,C,E} where E is a real matrix). If L Rc in (13)
are polynomials, by equating the coefficients it is easy to see that

for any stable polynomial P, of "high enough" degree (r+n) ome can

ko
always find Fo’ 60 (d'f”0 = r) such that T is proper, (e.g. r = n—1).
The multivariable case is more diffcult te study since the Pko matrix
with] Pko[ a desirable stable polynomial is not unique. It can be
shown in this case that for IPko | of "high enough" degree (rm+n)

one can always find ;o’ ao (dlgol =mr) such that T is proper (e.g.

r = v-1, v the observability index) It is clear, that for a parti-
cular set of Pc’Rc one might find an appropriate matrix Pko so that

T is proper and of lower order than the above. This brings in another
important question in addition to propermess, the question of minimal
order ; T should be proper and of low order,

Assuming P_ column proper and using the 'kliminant" ([2] a
proper T can be derived of order m{v-1}. By reducing the system to
single input controllable first, a proper compensator of order v-1 can
be derived. (actually min{m(v-1) , p(u—1})and min (v-1, p-1) respectively
with MU the controllability index, since omne can consider (16) instead

of (13)). In [2], a P of a special structure is used, so one

ko
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(c) Repeat (a) and (b) until all (j,i) j>i entries are zero.
(d) If d(pji)_i d(pii) j<i repeat step (b) until
d(pji)< d(pii) j<i. This step does not affect columns k<i
Example
Ul UZ
P(s) = [s(s+2) 0 | T I"S(s+2) 0 —(s+2 s+1 )
(i=1) 0 s+ ® Lo (?|@®) o (s+1)?
(s+1)(s+2) (s+1) s+2 (s+1) s(s+2) 0
0 s(s+1) 1] s(s+1) 0 s(s+1)
U3
— > |5+2 s+1
(b) 0 (s+l)2
-5(s+1)
s(s+1)
Uy fs42 g1 Y Us (g2 gu Ue fs42 s+1¥7  (s+2 0)
— 2}— —_ —
+ + +
® | O D@ |0 ey [0 ey | 05
(i=2y | O s+ 0 (s+D) o 0
0 s+l 0 s+l 0 0
\ J
=UL(S)P(S)
1 -1 o} (1 o o0 o 1 0 0
where UL = U7 U6 . U1 = 0 ! 0110 ! 0 0 e ee 01 0
0 0 1 0jlo —(s+1)1 0 -1 0 1 0
0 o 1Jlo -1 o 1J 0 0 0 1

((—(s+2) =1  s+1 0}
5+1 1 -5 0

—(s+1)2 -s s(s+1) 0O

L —~(s+1) 0 s -1

Note that UL P is column proper.T

+To find Uy (UR) directly, apply the elementary row(column) operation to

(P(s), I j([ip(s{] ) instead.
I
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expects that if no assumptions on the structure of Pkoare made, com-
pensators of lower order can be derived.

In the general pole assignment problem [1] a proper T
must be found such that P o has a specific Smith form. i.e. restrictions

k:

in addition to a desired determinant, are imposed on P

ko®
A proper compensator of low order T can also be derived
using instead of (13) (or (156)) the equivalent relations (18) (or (19))

where an appropriate matrix Q  (or ) must be used. A systematic
prop ko c

way to choose such a matrix has not been found yet. To see that such

~ ~ ~

i i =-P Y_+Q = - X .
matrix exists note that Qko Po 2 QoYl (ch Xch 5 Pc)
Finally, it would be desirable tousea stable compensator g
to stabilize the system; this problem is still unsolved,

Constant Output Feedback

~

If the compensator S consists of only gains H, S:u-= H{v-y)

ie. P = I, Q =Hor P =1, Ec =H then (13)and (16) become
P +HR =P (13a)

Po * QoH Pkc (16a)

il

This compensator, T = H, is proper, stable and of minimal order.
Therefore, in view of the above discussion, we expect to have difficulties
in stabilizing the system. In general, given a system controllable,

observable (and cyclic *L

*cchie. P (D) (mxm) is cyclic iff there exists a real vector g such that
(PC(D),g)care rlp.(or iff rank P(Si) >m-l ¥ Si)' Note that given

= uj; = if P i i h = h P rl
Pczc u; y Rczc, if P is cyclic, then u = gv where ( c,g) P

(almost any g will do), the system is reduced to p(D) z = v; y = R(D)z
where p(D) = ch(D)l and R = Rc[_'adj PC"’g which <8 single input controllable
1f Pc is not cyclic then almost any constant output feedback control law

will make the closed loop system matrix cyclic i.e. cyclimss is not nece-

ssary (see example) for pole assignment. It has been used in certain proofs

but not in [6]
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one can "almost always" arbitrarily assign min(p+m~1,n) closed loop
poles. If n>p+m—1, the remaining poles might become unstable.

The method introduced in [6] keeps track of those poles. Necessary

and sufficient conditions for stabilization or full pole assignment

using constant output feedback are yet to be derived. The difficulty

seems to be the small number of parameters to be chosen (the pm

entries of H). When pm is close to n, the internal interactions of

the system S play the dominant role; because of the nonlinear

nature of the interactions, simple general results cannot be derived.
Note that here the two issues, stabilization and pole assi-

gnment are quite distinct (which is not the case when state feedback

is used) since one can find examples where the system can be stabilized

using H but the poles cannot be arbitrarily assigned

Example RC = g+], PC = sz+l P + HR = 52 + Hs + (H+]) asymptotically
stable for H>0 but -1 can never be a closed loop pole.

Note that the single-input, single—output case is the case

studied by the Root-locus plot

s¢1 o] 2 o] Y
Exaimple -1
T(s) = Rc(s)Pc (s} = 0 i 0 s
1 s 07™r [+ 07
=P "(s)Q (s) =
0 s 0 1
n=3, p=m= 2, poles P, =P, = p3 = 0, zero z, = -1 p=v=2
I 2 o , [i-s d]fser 0 t0
e " %H R = o 0o s o 1lle 1 o
In view of (18), the stabilizing compensators 5 -1 6 are glven by
i -~ 2
. 1 0 s+l 0 s
P =P - - . s + .
o ko 0o 0 Qko 0 1 Qko

where Pko any stable polynomial matrix and Qko any polynomial matrix.

Although we know that we can arbitrarily assign the poles here using

2 proper compensator of order min(u-1, v-1) = 1 it is difficult
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to choose appropriate Pko and Qko' If we use (13) then an appropriate

choice is "
- 2
a s+a 0 s 0 b _s+b 0 s+ 0
p * 17 "o 17 "o
Pfe * QR T * o a|lo 1
oc oc 0 ¢ 0 s
o
L
i a 53+(a +b )32 + (b ,+b )s+b 0
1 o 1 1 o o
= =P
- ko
] 0 cos+d0
i.e. ]Pk | is arbitrarily assignable (one of the poles though must be
0

el Kol

real) and P lQ is proper of order 1. Note that the corresponding
o "o

~

i = -p . Note however that
Qko can be derived from Qko POY2 + Qo Y1 ote howe

here min(p+m-1,n) = n = 3 and the poles can be arbitrarily assigned

using constant output feedback. In particular, it can be easily

shown that if hlI = a] = 80,

h22=az-al+a0 and h12 h21= -a t (al—ao) (a2-a1+ao)(H= [hijld)
3 2 . .

then |PC+-HRC| = g 4-a25 +-als+-ao » an arbitrarily

assignable polynomial. Finally note that Pc is not cyclic.

Remark Consider v + u

—>

S
3
If S : PC zc =qy; y= Rczc and S : Pozo = Qoy 3} W= 2 then the
closed loop system is :
[FP +QR 1z =v
oc oc ¢
= (11b)
y Rc %e
S.. . . = . L ~:~N= . =~~
imilarly, i1f § : Po z, Qou, v z, and S Pc zZ, =YW Rc zC
then - -
(P P +Q R72z =Qv
o ¢ o ¢~ "¢ o] (14b)
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Clearly, for stabilization and pole assignment it is irrelevant which
representations ({11) and (i4) or (11b) and (14b)) one will use.
State-Feedback Given the state—-space representation x = Ax + Bu,
y = Cx + Eu and the linear state feedback (lsf) control law
u=Fx+v (20)

the closed loop system is

% = (A + BF}x + Bv

y = (C + EF)x + Ev (21

and the closed loop eigenvalues are the zeros of the determinant of

PI - A - BF. Any gcld of (DI-A , B) will be a 1d of DI-A-BF for

any F. This implies that for complete eigenvalue assignment, DI-A and

B must be rlp i.e. A,B completely contrsllable; also that for stability,
(A,B) must be a stabilizable pair. Similarly one can see how F can
affect the observability of the closed loop system (gcrd of (DI-A-BF,
C+EF)) and the controllability (gcld of (DI-A-BF, BG), v = G¥ or gcld of
(DI-A, BG)).

A number of algorithms exist toassign the closed loop eigenvalues
using F (they also show that controllability is also a sufficient
condition for complete eigenvalue assignment). Here, these state-space
algorithms are assumed to be known.

Note that the closed loop transfer matrix is

T [ (C+EF)[s T-(A+BF) 1 1B+E]C (22)

F,c'S)

[C(sI—A)_1B+E][F(sI-(A+BF))_1B+I]G = T(s)Te(S)
In other words (for an outside observer) the feedback control law

u = Fx + G0 has the same effect on the system as a feed- forward
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compensation by the system {A+BF, BG, F, G}.

Clearly, the linear-state feedback control law is closely
related to the state-space representation (actually to the state of
the system). Given a polynomial matrix representation, one can define
anIEquivalenf' control law . In particular, assume that the controllable

system

u(t)

y(t) = R (D)zc(t)
is given where Pc 1s column proper. Define the linear "state" feedb ack

Pc(D)zc(t)

control law
u(t) = F(D)z(t) + v(t) {(23)

where dc F(D)< dc P(D) . Then the closed loop system is :
i i

]

[PC(D) - F(D)] zc(t) v(t)

(24)

y(t) RC(D)zc(t)

In order to see the relation between (20) and (23) consider
{Ac’Bc’cc’E} the (equivalent) state space representation,in controllable

companion form derived from {PC,I,RC,O} using the structure theorem; let

A= QACQ—I, B QBC,C = CCQ“1 where Q an equivalence transformation

matrix. Then

o

B P (D I DI-A B S() 0]
¢ - (25)

—RC(D) 0 -C E 0 I

]

E

where (B,DI-A) are rlp and PC,S are rrpr (see (8)). Also note that
(DI-A S(D) = BP (D)
N (26)

R (D) = C S(D) + EP_(D)

If x(t) and zc(t) are the state and the partial state of the two represent-

ations the first relation in (26) clearly implies that

.]..
3(D) =Q SC(D) where Sc(D) = diag(ei) (see page 6)
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x(t) = S(D)P;]' (D)u(t) = Sz (1).
where d S(D) < dc P(D). If now F(D) = FS(D} then
€1 i
u=Fg +v = FS(D)zC(t) + v = F(D)zc(t) + v which shows
that the control laws (20) and (23) areequivalent . The closed loop

systems are also equivalent as it can be easily seen from

B O PC(D) -FD) I D-A-BF B SC(D) 0
E I —Rc(D) 0 -(C+EF) E 0 T
Note that
RC(D) = (C+EF)S (D) + E[PC(D) - F(D)]

C S(D) + EPC(D)
which clearly shows that RC(D) is invariant under state feedback.

Also

PC(D)-F(D) Pc(D) - FS(%) =P (D) - (FQ)s (D)

R i

Bm f{diag D (Am+Bmfc)Sc(D)]

which shows that the controllability indices di are invariant under state
feddback. For a desired closed loop matrix Pd(D) F 1is given from

F(D) = FS(D) = FQS_(D) = B (D)-P,(D) = B i -A 18.(D)

m my
(26)
Pd(D) or Am can of course be chosen for desired closed loop poles.
d
Remark It is possible to choose F so that the closed loop system

matrix has a desired Smith form [1] iff the controllability
indices satisfy certain inequalities involving the degrees
of the diagonal elements of the Smith form (general pole

assignment problem).
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State Feedback and Observers

Given S: PC(D)zc(t) u(t); y(t) = RC(D)zc(t) assume that the linear

state feedback u(t) F(D)zc(t) + v(t) must be used but the state
is not available. F(D)zc(t) must be determined from u(t) and y{(t).

Consider

where S .: fQ(D)z(t) = [X(MD),HMD)] [u(t)]
y(t)
2 w(t) = z(t)
Note that u = véw = v + Q [KP + HR ] z
C C (o4
If K, H and Q are chosen so that [2]

i) K(D)PC(D) + H(D)RC(D) = Q(D)F(D)

1i) Q(D) a stable matrix (27)
and iii) Q-IK and Q_lH proper
then wit) = F(D)zc(t) and

y(t) = R [P (D) - BT Q  (®)A®)v(x) = R (DIP (@) - FD)T v (t)

That is,if (27) are satisfied then So is an appropriate observer

b
of the desired linear functional of the state; furthemore the closed
loop system appears in the outside would as if the state were known and
linear state feedback using the actual state had been used. Note
that K, H and Q which satisfy (27) can always be found using the
"eliminant" matrixof R, and %}2]. The order of the compensator

Sob is m(v-1) where Vv 1is the observability index and m the number

of inputs. Clearly, if the system is first reduced to a single input

controllable system, the order of the compensator for arbitrary pole
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assignment is v-1. (Actually min(p-1, v-1) where p is the controll-
ability index).

Note that if PC(D) - F(D) = Pd(D) then i) of (27) can be
written as
[K(D)"Q(D)]PC(D)+H(D)RC(D)= -Q(D)Pd(D) (28)
which is similar to (13) for EO = —(K(D) - Q(D)) ,60 = -H(D)
and Pko(D) = -Q(D)Pd(D) a desired stable matrix.
-1 2 5-1
Example T(s) =R (s)Pc (s) = [s&+1 0} Is 0 (see example page 32)
C
0 1 0 s
2
D +2D+2 0 /2
Let Pd = i.e. poles at -1 * j 5 , —1 .
0 D+1
[=2(D+1) 0
Inview of (26} F(D) =P (D)-P_ (D) =
c d
0 |
-2 -2 o} {1 o
= lo o -1] |p of T FB.D-

Assume that we must use an observer. Let Q(D) =

(D+3) (D+5) 0 [ (m(v-1)=2)
0 1
Appropriate matrices K and H which satisfy (27) are :
-2(D+3) (D+5) 0
K(D) = ¢, H(D) = . This clearly
0 1

shows that in this case one can use a constant output feedback law

u =-Hy where -H = Q-l(D)H(D) = [?2 é] . To verify this note
0 1
that Pc+HRc = D2+28+2 o[ . It should be pointed out that this

0 1

is a special case (Pd was appropriately chosen); in general one needs
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to employ a dynamic system as an observer to realize a desired state

feedback compensation.

Static Decoupling

In certainapplications (e.g. process control systems)it is desirable
a step change in the (static) steady-state level of the ith input to
be reflected by a corresponding change in the steady-state level of
the itP output and only that output. [2]

Assume that the polerof T(s) are in the stable halfs-plane

=

and u. (s) =X Then 1lim y{(t) = lim sT(s)u(s) = limT(s)- ]
t s e -0 s}

. . . th .
must be a constant vector with its 1 element depending only on ki

Definition T(s) is statically decoupled iff it is asymototically

stable and lim T(s) =N\ a diagonal constant matrix (nonsingular).
s+0

i.e. T(s) = [tij(s)] of a statically decoupled system has the
property : each tij(s) is divided by s for 1 # j but not
for 1 = j.
Given (pxm) T(s) = Rc(s)Pc-l(s} assume that rank T(s) = p
and the poles are asymptotically stable.
Let u = Gv where G 1is an mxp gain matrix. For static decoupling

lim T(s)G = RC(O)P;1 (0)G = N a diagonal nonsingular matrix.
s-0

Note that lim T(s) = T(0)
s=+0

stable (actually because s = 0 is not a pole; compare with

RC(O)PEI(O) since Pc is asymptotically

lim r(s) _ r(0)
80 p(s) p(0)

is a necessary condition for static decoupling. It is also sufficient

when p(0) # 0). This implies that rank RC(O) =p

(together with stabilizability ) since if rank Rc(o) = p, for any
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diagonal nonsingular A a G exists which satisfies RC(O)PC(O)G = A
(for p=m G= PC(D)Rzl(O)A.). Remembering that a linear state
feedback matrix F can be found which stabilizes the system the
following theorem is obvious (F does not affect R (s)).
mxm pxii

Theorem The system PC (D) zc(t) = u(t); y(t) = Rc(D)Zc(t) can be
statically decoupled using the 1sf wu(t) = F(D)zc(t) + Gv(t) iff

rank RC(O) = P

The condition means that the system does not have a zero at

the origin. Note that it was not necessary for the system to be
controllable but just stabilizable. In view of the above it is

nxn nxm PXn

clear that the system X = Ax + Bu; y = Cx + Eu can be stati cally

decoupled via u = Fx + Gv iff its stabilizable and

A B
rank = n+p,
C E
i.e. stabilizable and no zero at the origin.

1 D+3 b+1 0
Example : [2] RC(D) =1, D42 . Pc(D) =| op p-21!- Note that
rank RC(O) = rank [.l 3] = 2 which implies that it can be statically
1 2

decoupled via 1sf. Assume that the desired closed loop poles are -1, -2.

F(p = [6 0 ] is an appropriate feedback;
0_
D+1 0 -1
then P (D) =P (D) - F(D) = ? R (0)P_(0)c = A ,
F c -D D+2 c F
f1 3 (2 o) f1 o) (-2 3
3 G = ,» from which G =
12 0 1 0 1 | 2 -2
2 s(s+4)
TF G(s) =R (s)P;l(s)G - —1 which is
? ¢ (s+1)(s+2) (0 (s+1)(s+ 2) |

stati cally decoupled.
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Note that this particular system can be stabilized using
the constant output feedback u = -Hy + Gv. For closed loop poles

at -1, -2 an appropriate

0 0] D+l O i
His H = since P + HR = . For A =
4 =4 ¢ ¢ -D  D+2 0
Fz 3
G = .
2 -2
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PART III

Rings and Modules

The state-space representation of a system can be studied using either
Matriz Algebra (standard approach) or Abstract Algebra (geometric
approach). In the first approach, the matrices of the system
representation are looked upon as arrays of reals, while in the second
approach the matrices are representationsof linear operators mapping
vectors of one vector space to vectors of another vector spaces; the
key concept of the geometric approach in the concept of an F-Vector
Space V which is a vector space V over the field of reals F.

Similarly, the polynomial matrix representation of a system
is studied using Matrix Algebra, where now the matrices are arrays
of polynomials; this approach was used above to derive a number of
results. As in the case of the state-space representation, certain
control problems necessitate the use of more powerful mathematical
tools, namely Abstract Algebra. The key concept here is the F[s] -
Module M which denotes a Module M over the ring of polynomials
Fls 1.

The set of polynomials Fis] (= {p(s) = an;1+...+ as a € F(reals),
n < ®}) satisfy all axioms satisfied by the elements of a field
(called scalars) except one, the identity axiom. This is because
the inverse of a polynomial is not a polynomial. In view now of the
fact that a (commutative) ring(with identity of multiplication) is
defined as a set which satisfies all that axioms of a field except

the identity axiom, it is clear that the set of polynomials Fls] is
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a ringT. A Module M over a ring is defined using exactly the

same axioms as for a vector space V over a field. Actually a

module is a more natural object than a vector space since the ring oper-
ations are needed in the vector space axioms but the existence of

a multiplicative inverse is not. Clearly we have

Module M owver Fls]
. s+3
s
sz+i

Field Ring Vector Space V over
(reals) (FLsl) the reals
3
e.g. 5
1.3

Llet T : M—— N (from the module M over a ring R, R-
module M to R-Module N) be a linear map (linearity defined as in
vector spaces). T 1is epic if m T = N; T is monie if Ker T = 03
T is an Zsomorphism if it is epic and monic.

When M and N are both free modules, there is a matrix
representation for T; the entries of the matrix are elements of the
ring R. A free module is defined as follows :

R-module M is finite iff every element m € M can be repres-

n
ented as m Z r‘g ri € R, gi € M-
1

+An integral domain is a commutative ring with the additional postulate,
the cancellation law : If a,be ring then a -b = 0 implies a = 0

and/or b = 0. Therefore Flsl, in addition to being a (commutative)
ring (with identity of multiplication) is also an integral domain.

Note that the above establish the relation between polynomials and
integers so that algorithms developed for polynomial matrices can

be used to solve problem involving integers (e.g. integer programming)
and vice versa. 'Two important properties of the ring F[s] are:

i) If f,g ¢ Fls] thend a,b ¢ F[s] so that £ = ag + b where deg b < deg g
Ex 82 = (s-1)(s+1)+I

If f,g5 ¢ F[s], 3 a ged Y of £ and g; also, 3 a,b € Fis] so that

Y = af + bg.

Ex (s+2) = 0.(s+1)(s+2) + 1.(s+2).

and ii)
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If ri are wnique the module is called free and {g],gz,...,gn}
is a Dasis for M,n = dimM (in a free module, g;» are linearly in—
dependent iff Erigi =0~ ri=0 ).

Clearly FLs] — module M (with elements all polynomial n- tuples} is
a free module (gi = ei is a basis)

Therefore a polynomial matrix T(s) can be seen as a linear map from
a Fls] - module M to Fls]- module N++. T is an isomorphism if T(s)
is invertible in Fls] i.e. if T(s) is wnimodular

Remark: An important difference between F-vector space V and Fl[s] -
module M is the following :

If S cV and dim 8 = dim V »}S is identical to V'i
but if S ¢ M and dim § = dim M-—%+{S is identical to M} because

of the different bases onme can have (different degrees of polyn-

omials).

The study of bases is important in solving equationsinvolving
polynomial matrices and vectors. Consider

T(s)m(s) = n(s)
where m ¢ M, n ¢ N (m,n polynomial vectors). Solution exists iff

ne ImT; it is unique iff Ker T = 0. So bases for Im and Ker of

a polynomial matrix are important. (Note dim(ImT) + dim (KerT) = dimM)

Bases of F{s]!- Module M

A basis of a q dimensional module is any set of q linearly
independent polynomial vectors. In the following we will concentrate,

without loss of generality, on bases of the kernel of a polynomial matrix.
TXm  rXp A]
Let M(s) =[B , A 1 ; the matrix |_ (m+p)xq with linearly

!

tt

See definition of Rank and compare with definmition of linear
independence in Fis] - module M.



P. J. Antsaklis, "Notes on Polynomial Matrix Representation of Linear Control Systems,” Publication
No. 80/17, Dept. of Electrical Engineering, Imperial College, June 1980.

45
independent columns is a basis of Ker M(s) iff
[BsA} A] =0
-B
1 Al
and q = (p+m)-rank M(s). If, in addition, the p+m rows of
are rrp then it is a prime basis of Ker M(s)
Example r=p=m=]
M(s) = [B,A] = [s+1,s]; rank M(s) = 1 and q = 1+1-1 = 1.
Note [s+1,s] [ s.£(s) A, s
=0 and = -f(s) 1is a
-(s+1)£(s) —B] -(s+1)
basis of Ker M(s) for any polynomial f(s) $ 0. s is a prime

-(s+1)

basis of Ker M(s) since s, s+l are prime.

Remark  Given the transfer matrix (pxm) T(s) = Rc(s)Pc-l(s) = P;I(S)RO(S)

P
Rc’P rrp and P , Q rlp, -RC is a prime basis of the right Kernel
c o’ "o o .
of £Qo, Po] ([Qo, Po] is a prime basis of the left Kernel of| °© ).
_RCJ
A1 A1
Any vector x ¢ Ker[B,Al is given by v where is
-B -B

1 1
a prime basis and v an appropriate polynomial vector. Similarly,
if the columns of a polynomials matrix N are in Ker [B,A] , there

exists a polynomial matrix W so that

N = W, £8]

Furthermore, any two prime bases of Ker[B,A] say N,» N, are colum

equivalent i.e.

with U a unimodular matrix.

A minimal baeis of Ker M(s) is any colwm proper prime basis [7].
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Ay s A, [
Example 1. = is a minimal basis since Cc[ 1=
-Bi -{(s+1) -B]
which has full rank 1.
3 2
2. [8,4A] A] = [[s(s+i),(s+1)] , 871 [ s -17 =0
-8, O__.___s
-(s+1},0
r Al AI 1 0
is a prime basis. Cc[ 1= 0 1 is of full
B e 0o 0o
Al
rank, that is is column proper. Therefore it is a minimal
_BI
basis. If we take -1 52 we have a degree ordered
] 0
0 -(s+1)
minimal basis.
Remark Given a proper transfer matrix T(s) = P;l Qo = RCP;1 where
P
Rc, Pc rrp and Pc column proper then _Rc is a minimal basis of
c

[QO,PO] . If the column degrees of PC are ordered (in ascending
order), the basis is a degree ordered as well. Note that T(s) proper
implies that dci Rc f_dciPc

A systematic way of finding prime bases for Ker and Im of a
k x £ matrix M(s) is :
Let k < 1 and find U(s), a unimodular matrix so that MU is in lower
triangular form.  Write

M(s) E . (s) 0

U(s) i1

Iy Ejp(8)  Epy(s)

where E]](s) is kxk (k = rank M(s) ),Elz(s) is £xk and EZZ(S)
is £ x (£-k). Then E]l(s) is a prime basis of Im M(s) and

EZZ(S) is a prime basis of Ker M(s).
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Model Matching and Inverse Problems

Given a (pxm) transfer matrix Tl(s) and a (pxq) transfer matrix
Tz(s)(both proper) find a proper (mxq) transfer matrix T(s) such that
T](s)T(s) = TZ(S)

This is the Model Matehing Problem. Note that if T(s) exists then
TIT can be realized using a low order feedforward compensator and linear-
state feedback compensation with an observer {2 ¢h. 7]. It is clear
that if this problem has a solution, then the plant T1 can be compensated
to behave exactly a sa given model TZ' If, in addition, T(s) is of
minimal order, we have the Minimal Design Problem (MDP).

A special case of the model matching problem is the Imverse
Problem where T2 = I. (right inverse problem). Consider the problem
of finding a proper T(s) such that TT1 = I (left inverse problem);
if y = T u then Ty = u, that is the original input can be determined.

1

Assume now that rank T1 = p (<m) and note that if

p > m the model matching problem has no solution, or a unique solution

. E -1 _ 1
which can be easily found. Let T] = P1 Ql’ T2 P2 Q2 where P],Q1 and P2,Q2

are rlp. We are looking for a (proper) T = RP—1 such that
1 -1

_1 - _ -— -_ - B
P, QRP " = P,7Q, or [?,Q,,7P,Q,] [R 0 where
P _ _ _ P
1 P 1 P, =P P 1 with P, P rip. Let K(s) = Km(s) be
1 2 21 1 2
K (8)
q
a (m+q)x(m+q-p) degree ordered minimal basis for Ker [p Ql’ -ﬁlQZJ
2

Km

= Ker [Tl,—sz . Let also Cc[ K(s) 1= Kq

The Model Matehing Problem has a solution iff the rank of the
q x (mtq-p) matrix K 1is q. A solution is given by any q colums of

P(s)

K(s), [R(S) for which the corresponding q colums of Kq are linearly
independent. (T(s) = R(s) Phl(sj) . The minimal Design Problem has a
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solution under exactly the same conditions. The (minimal)order

of a solution is equal to the sum of the column degrees of the first
q columns of K(s) for which the corresponding colums of K are
linearly independent. These q columns of K(s), [?E:;J s

represent a solution to the MDP L[71.

In the case of the Inverse Problem, T2 =1, p=q, and

K(s) = Pc(s) is a minimal basis of Ker [Tl,—I] = Ker[Q], _Pl]
R (s)
¢ -1
where Tl(s) = Rc(S)Pc (s) Rc s Pc rrp and P_ column proper; for
a degree ordered basis interchange the columns of Pc
R
¢

= [s+l, s+1].

2
Example Right inverse. Tl(s) =1 S+é s (S+1)§S D ]

5
& a7t - RPN (=021 Cs(etn), (s+1) (sZen)] = r To,)
0 5
Ker[T], I ¥ Ker le, —P]] = 52 -1 = Pc(s)
o s Rc (s)
s+l s+l
P is a minimal basis since R » P rrp and [P column
c ¢’ e c
R
c c
proper. K(s) = -1 S2 1s a degree ordered minimal
s 0
s+ S+1
basis. C, [(K(s)]= |0 I = |k, . Since rank Kp = rank [!, 0]=1=p
1 K
______ P
1
a solution exists {a proper right inverse exists). Take the first

column of K(s) (p=1, rank [1] = 1) for a minimal inverse.
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R({s) -1 -1 1
= and T(s) = Pl (the minimal order
P(s) - s s
s+i
right inverse is of order 1). -
P (s)
For other, momnminimal right inverses consider a minimal basi Rc(s) . U(s)
c
P (s)
where U(s) is a unimodular matrix such that ¢ .U(s) remains
R (s)
¢ 2
1 0 8 —s~a, -1
column proper. e.g, U(s) = s+a | in which case s(s+a) , s
) | (s+1)(s+a+1), s+
52—5—a

1
s(s+d) (s+1) (s+a+1)

is a minimal basis for any a. An inverse is

Note that -1, which is the zero of Tlﬁs), appears as a pole
in the inverse. This is a general result. Namely, the zeros
of T{s) always appear as poles on any inverse of Tl(s). It should
be pointed out however that even a minimal inverse might have other
poles, in addition to the zeros of Ti(s). Finding an inverse which
is of minimal order and stable isa prohlem still unsolved. It is
%quivalen€'t0 stabilizing a system using constant output feedback
and to finding a minimal order asymptotic observer.

Finally, note that a proper right inverse exists iff %ig T(s)=E
with rank E =P . (this test is equivalent to the above involving
bases). There are many practical systems (e.g. all strictly proper
systems) for which a proper inverse does not exist. This has led

to a new formulation of the inverse problem especially useful to dis-—

crete system. Namely, find a proper T(s) so that Tl(s)T(s) = lE-I
$

where L (number of delays) is an appropriate integer.



)]

2)

3)

4)
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Appendix

-1
T](I + T2T])
T (I + T)_1
I - (I + T)_IT

T + T,T,|

]

-1
(I + Tsz) T,
(I + T)—lT

(T + T)-1 (T square)

T + T,T, 1.

50
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