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Abstract: In this paper, a theory of polynomial and rational
matrix interpolation is hintrodued and applied to problems in

systems and control. The polynomial matrix interpolation
theory is first outlined and then applied to solving matrix
equations; it is also used in pole assignment and other control
problems. Rational matrix interpolation is also discussed and
it is used to solve rational matrix equations including the model
matching problem.

I. INTRODUCTION

A theory of polynomial and rational matrix interpolation
is briefly outlined in this paper and its application to certain
systems and control problems is discussed; full details can be
found in [21].

Many system and control problems can be formulated in
terms of matrix equations where polynomial or rational
solutions with specific properties are of interest It is known

that equations involving just polynomials can be solved by
either equating coefficients of equal power of the indeterminate
s or equivalently by using the values obtained when appoprate
values for s are substituted in the given polynomials; in the

latter case one uses results from the theory of polynomial
interpolation. Similarly one may solve polynomial matrix
equations using the theory of polynomial matrix interpolation
presented here (also in [1-7], [21]); this approach has
significant advantages and these are discussed below. Rational,
mostly scalar interpolation has been of interest to systems and
control researchers recenly. Note that the rational
interpolation results presented here are distinct from other
literature results as they refer to matrix case and concentrate on

fundanental representation questions. Other results in the
literature attempt to characterize rational functions that satisfy
crtin interpolation constraints and are optimal in some sense

and so they rather complement our results than compete with
them.

In this paper polynomial matrix interpolation of the type
Q(sj) aj = bj, where Q(s) is a matrix and aj, bj vectors, is
introduced as a generalization of the scalar polynomial
interpolation of the form q(sj) = bj. This generalization
appears to be well suited to study and solve a variety of
multivariable system and control problems. The original
motivation for the development of the matrix interpolation
theory was to be able to solve polynomial matrix equations,
which appear in the theory of Systems and Control and in
particular the Diophantine equation; the results presented here
and in [21] however go well beyond solving that equation.

The use of interpolation type constraints in system and
control theory is first discussed and a number of examples are

presented.
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Interpolation type constraints In Systems and
Control theory
Many control system constraints and properties that ae

expressed in terms of conditions on a polynomial or rational

matrix R(s), can be written in an easier to handle form in terms
of R(sj), where R(sj) is R(s) evaluated at certain (complex)
values s = sj j=l, 1. We shall call such conditions m tems of

R(s,), interpolation (type) conditions on R(s). Next, a number
of examples from Systems and Control theory where
polynomial and polynomial matrix interpolation constraints
are used, are outlined. This list is not complete, by far.
Eigenvalue / eigenvector controllability tests: It is known that
all the uncontrollable eigenvalues of i = Ax + Bu are given by
the roots of the determinant of a greatest left divisor of the

polynomial matrices sI - A and B. An alternative, and perhaps
easier to handle, form of this result is that sj is an

uncontrollable eigenvalue if and only if rank[sjI-A, B] < n

where A is nxn (PBH controllability test [11]). This is a more

restrictive version of the previous result which involves left
divisors, since it is not clear how to handle multiple
eigenvalues when it is desirable to determine all uncontrollable
eigenvalues. The results presented here can readily provide the
solution to this problem.
More recently, stability constraints in the HW formulation of
the optimal control problem have been expressed in terms of
interpolation type constraints[18-201. It is rather interesting
that [18, 19] discuss a "directional" approach which is in the
same spirit of the approach taken here (and in [1-7]).
The output and state feedback pole assignment problems have a

rather natural formulation in terms of interpolation type
constraints [6,7,14].

The above are just a few of the many examples of the
strong presence of interpolation tpe conditions in the systems
and control literature. A closer look reveals that the
relationships between conditions on R(sj) and properties of
R(s) need to be better understood. Our research on matrix
interpolation and its applications addresses this need.

The main ideas of the polynomial matrix interpolation
results can be found in earlier publications [1-5], with state and
static output feedback applications appearing in [6, 7]; some of

the material on rational matrix interpolation has appeared
before in [5]. A rather complete theory of polynomial and
rational matrix interpolation with applications is presented in
[21]. Note that all the algorithms in this paper have been
successfully implemented in Matlab.

II. POLYNOMIAL MATRIX INTERPOLATION

The basic theorem of polynomial interpolation can be
stated as follows:
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Given A distinct complex scalars sj j = 1, A and A
corresponding complex values bj, there exists a unique
polynomial q(s) of degree n =A - for which

q(s)=bj j=1,A (2.1)
That is, an nth degree polynomial q(s) can be uniquely
represented by the A = n+l interpolation (points or doublets or)
pairs (sj, bj) j = 1, ). To see this, write the n-th degree
polynomial q(s) as q(s) = q [1, s., s] where q is the
(lx(n+l)) row vector of the coefficients and [I' denotes the
transpose. The A = n+l equations in (2.1) can then be written
as

S1

qV =q . . =[bl1e, bf Bj

A-1 1-i-1 As

Note that the matrix V (Ax ) is the well known Vandermonde
matix which is nonsingular ifandonly ifthe l scalars sj j =1,
A are distinct. Here sj are distinct and therefore V is
nonsingular. This implies that the above equation has a umique
solution q, that is there exists a unique polynomial q(s) of
degree n which satisfies (2.1). There are several approaches to
generalize this result to the polynomial matrix case. They are
special cases of the basic polynomial matrix interpolation
theorem that fo3lows [21]:

Let S(s) := blk diag([ 1, s, ..., sdi]') where di- i = 1, m are
non-negative integers; let aj . 0 and bj denote (mxl) and (pxl)
complex vectors respectively and sj complex scalars.
Theorem 2.1: Given interpolation (points) triplets (sj, aj, bj) j
= 1, A and nonnegative integers di with = S di + m such that
the(4di + m)xA matix

[S(sj)alj,.. S(st)aI] (2.2)
has full rank, there exists a unique (pxm) polynomial matrix
Q(s), with ith column degree equal to di, i = 1, m for which

Q(sj) aj = bj j= 1,A (2.3)
Proof: Since the column degrees of Q(s) are di, Q(s) can be
writen as

Q(s)= QS(s) (2.4)
where Q (px(X,dj + in)) contains the coefficients of the
polynomial entries. Substituting in (2.3), Q must satisfy

QS)=B) (2.5)
where Bt := [bl, ..., b]. Since S is nonsingular, Q and
therefore Q(s) are uniquely determined. 0
It should be noted that when p = m = 1 and dl = A - 1 = n this
theorem reduces to the polynomial interpolation theorem. To
see this, note that in this case the nonzero scalars aj i = 1, A,
can be taken to be equal to 1, in which case S = V the well
known Vandermonde matrix.
xAMklJe2.1: Let Q(s) be a 1x2 (=pxm) polynomial matrix and

let A = 3 interpolation points ((sj, aj, bj) j = 1, 2, 3) be
spcifi'ed: ( (-1j,[ 0]', O), (0,[-1, I]', 0), 1 1]', 1)).
In view of Theorem 2.1, Q(s) is uniquely specified when dl and
d2 are chosen so thatt(=3) = Zdi + m = (dl + d2) + 2 or dl + d2
- 1 assuming that S3 has full rank. Clearly there are more han
one choices for di and d2; the resulting Q(s) depends on the
particular choice for the column degrees di:

(i) Let di = 1, and d2 = 0. Then S(s) = blk diag([l,s]'l) and
(2.5) becomes:

I -1 0
Q S3 = Q[S(sl)al,S(s2)a2,S(s3)a3 = Q -1 0 0

=(0,O, 1]=B3
from which Q = [1, 1, 11 and Q(s) QS(s) = [s+1, 1].
(ii) Let dl = 0, d2 = 1. Then S(s)=blk diag(1, [1, s]') and (2.5)
gives Q = [0, 0, 1] from which Q(s) = [0, s], clearly different
fiom (i) above. Q

m. RATIONAL MATRIX INTERPOLATION

Similarly to the polynomial matrix case, the problem here
is to represent a (pxn) rational matrix H(s) by interpolation
triplets or points (sj, aj, bj)i = 1, A which satisfy

H(sj)aj = bj j=1,A (3.1)
where sj are complex scalars and aj . 0, bj complex (mxl),
(pxl) vectors respectively.

It is shown that the rational matrix interpolation problem
reduces to a special case of polynomial matrix interpolation.
To see this:

Write H(s) = Dfl(s)N(s) where D(s) and N(s) are (pxp) and
(pxm) polynomial matrices respectively. Then (3.1) can be

writtn as N(sj)aj = D(sj)bj or as

IN(s), -D(sj)][] =Q(sj)c 0 j 1A (3.2)
That is the rational matrix interpolation problem for a pxm
rational matrix H(s) can be seen as a polynomial interpolation

problem for a px(p+m) polynomial matrix Q(s) := [N(s), -D(s)]
with interpolation points (sj, cj, 0) = (sj, [aj', bjTl', 0)j = 1, .

There is also the additional constraint that D-1(s) exists; note
that this is similar to the constraints in the pole assignment
problem studied below.

IV. SOLUTION OF MATRIX EQUATIONS

In this section polynomial matrix equations of the form
M(s)L(s) = Q(s) are studied. The main result is Theorem 4.1
where it is shown that all solutions M(s) of degree r can be
derived by solving equation (4.9). In this way, all solutions of
degree r of the polynomial equation, if they exist, are
parameterized. The Diophantine equation is an important
special case and it is examined at length [211. It is also shown
that Theorem 4.1 can be applied to solve rational matrix
equations of the form M(s)L(s) = Q(s).

Consider the equation
M(s)L(s)=Q(s) (4.1)

where L(s) (txm) and Q(s) (kxm) are given polynomial matrices.
Dtermine the polynomial matrix solutions M(s) (kxt) when
they exist.

First consider the left hand side of equation (4.1). Let
M(s) :- MO +*.. + Mrj (4.2)

and di:= degi[L(s)] i = 1, m. If

4(s) := M(s)L(s) (4.3)
then degcoi[(s)] = di + r for i = 1, m. According to the basic

polynomial matrix interpolation Theorem 2.1, the matrix (s)
can be uniquely specified using S:(di+r))+m = S:di+m)(r+l)
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interpolation points. Therefore consider A interpolation
points (sj, aj, bj) j = 1,) where

A = Zdi + m(r+l) (4.4)
Let Sr(s) := blk diag([1, s.. sdi+r]) end assume that the

(Xdi + m(r+l))xA matrix
SrJ := [Sr(sl) al,..., Sr(st)aAJ (4.5)

has full rank; that is the assumptions in Theorem 2.1 are
satisfied. Note that for distinct sj, Srt will have full column
rank for almost any set of nonzero aj [21]. Now in view of

Theorem 2.1 the matrix (i(s) which satisfies

&sj)aj = bj j = 1,A (4.6)
is uniquely specified given these A interpolation points (sj, aj,
bj). To solve (4.1), these interpolation points must be

apropriately chosen so that the equaion 4(s) (= M(s)Ls)) =
Q(s) is satisfied
Write (4.1) as

MLq(s) = Q(s) (4.7)
where

M := [MO, ..;, Mr] (kxt(r+l))
Lr(s) :=[L(s)r,,sL(5) ] (t(r+1)xn).

Let s = sj and postnultiply (4.7) by aj j = 1, A; note that sj and
aj j = 1, A must be so dat Sr above has full rank. Define

bj:=Q(sj)aj j=l,) (4.8)
and combine the equations to obtain

MICA=B)B (4.9)
where

La :=[Lr(sl) al,..., I(sl)at] (t(r+l)x) and

BA :=[bl, ..., bA] (A).
Threm 4.1: Given L(s), Q(s) in (4.1), let di := degci[L(s)] i =
1, m and select r to satisfy

degci[Q(s)]<di+r i=1,m (4.10)
Then a solution M(s) of degree r exists if and only if a solution
M of (4.9) does exit; M(s) = M [I, sI, ..rsIn 0

It is not difficult to show -that solving (4.9) is equivalent to
solving

where
M(sj)cj = bj j= 1, (4.11)

cj:=L(sj)aj, b := Q(sj)aj j =1,A (4.12)
M(s) that satisfy (4.11) are obtained by solving

MSr=B, (4.13)
where SrA := [Sr(sij)ci...., Sr(s1)qc] (t(r+I)xA), with Sr(s) := [IL
sI, ..., srIl' (t(r+l)xt) and B) := [bl, b) ] (hA). Solving
(4.13) is an altenative to solving (4.9).

Constraints on Solutions
When there are more unknowns (t(r+l)) than equations (A=
Xdi + m(r+1)) in (4.9) or (4.13), this additional freedom can
be exploited so that M(s) satisfies additional constraints. In
particular, k:= t(r+l)-A additional linear constraints, expressed
in tenns of the coefficients of M(s) (in M), can be satisfied in
general. The equations describing the constraints can be used to
augment the equations in (4.9). In this case the equations to be
solved become

M[L4A, Cq = [Bt, D] (4.14)
where MC = D represents the k linear constraints imposed on
the coefficients M; C and D are matrices (real or complex) with
k columns each.

The Diophantine Equation
An mport case of (4.1) is the Diophanrin equation:

X(s)D(s) + Y(s)N(s) = Q(s) (4.15)
where th polynomial matrices D(s), N(s) and Q(s) are given and
X(s), Y(s) are to be foudx Note that if

F D(s)1
M(s) = X(s), Y(s)], L(s) = (4.16)

LN(sO
it is immediately clear that the Diophantine equation is a
polynomial equation of the form (4.1) and all the previous
results do apply. That is, Theorem 4.1 guarantees that all
solutions of (4.15) of degree r are found by solving (4.9) (or
(4.13)). In the theory of Systems and Control the Diophantine
equation used mnvolves a matrix L(s) = [D'(s), N(s)]' which has
rather specific properties. These are exploilted to solve the
Diophantine equation and to derive conditions for existence of
solutions to (4.15) of degree r.

Theorem 4.2: Let r satisfy
degcj[Q(s)J< di +r i = 1, mand r v -1.

Then the Diophantine equation (4.15) has solutions of degree r,
which can be found by solving (4.9) (or (4.13)).
Example 4.1: Let

D() s-2 O] ). s-1 ?],n s= ?]D(s) Ne](s) an Q(S-]z [ 1]
From which dl = d2 - 1; dekiQ(s) = 0, i=1, 2; and 1 = 2 +
2(r+1)
Forr= 1,sj=-2,-1,O, 1,2,3 and

aIsltois [ 1 1
a solution is

M(s) = [X(s), Y(s)]= [
-1
1/3

-s s+1 1

0 - 1/3s +-2/3J 0

Solving Rational Matrix Equations
Now let's consider the ratianal matrix equation:

M(s)L(s) = Q(s) (4.17)
where L(s) (txm) and Q(s) (kxm) are given rational matices.
The polynomial matrix interpolation theory developed- above
will can be used to solve this equation and determine the

rational matrix solutions M(s) (kxt). Let M(s) = D-1(s)N(s), a
polynomial fraction form of M(s) to be determined. Then
(4.17) can be written as:

L(s)7
[N(s) - s(s)] 0 (4.18)

-Q(s)-
Note that one could equivalently solve

_Lp(s)
[N(s) -D(s)] [ 0 (4.19)

where [Lp(s)' Qp(s)']' = [L(s)' Q(s)'@'O(s) a polynomial matrix
with O(s) the least common denominator of all entries of L(s)
and Q(s); in generaL 4(s) could be any denominator in a right
fractional representation of [Ls)', Q(s)']'. The problem to be
solved is now (4.1), a polynomial matrix equation, where L(s) =

[Lp(s)' Qp(s)f]' and Q(s) = 0. Therefore, all solutions [N(s) -

D(s)] of degree r can be deternined by solving (4.9) or (4.13).
Let s = sj and postmultiply (4.19) by aj j = 1, A with aj and )
chosen properly [21]. Defime
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(4.20)
[Lp(s)-

aj j = 1,A

The problem now is to find a polynomial matrix [N(s) -D(s)]
which satisfies

[N(sj) -D(sj)] cj = 0 j= 1,A (4.21)
Note tha restrictions on the solutions can be easily imposed to

guarantee that D-1(s) exists and/or that M(s) = f-1(s)Nf(s) is
proper. Additional constraints can be added so the solution
satisfies additional specifications; see (4.14).

V. POLE PLACEMENT AND OTHER APPLICATIONS

Output Feedback. All proper output controllers of degree r
(of order mr) that assign all the closed loop eigenvalues to
arbitary locadons are characterized in a convenient way using
interpolation results. This has not been done before.

We are interested in solutions [X(s), Y(s)] (mx(p+m)) of
the Diophantine equation where only the roots of IQ(s)l are
specified; furthermore X-1(s)Y(s) should exist and be proper.
Here the equation to be solved is

(X(sj) D(sj) + Y(sj)N(sj))aj = 0 j = 1, A (5.1)
i ML,: =0 () = X + nu) ; that is the Sdi + mr roots of CK(s)
D(s) + Y(s)N(s are to take on the values sj j= 1,1. Note the
difference between the problem studied in Section IV, where
Q(s) is known, and the problem studied here where only the
roots of kXs) (or kQ(s) within multiplication by some nonzero
ral scalar) re given. It is clear that there are many (in fact an
infiite nwnber) of Q(s) with the desired roots in IQ(s) l. So if
one selects in advance a Q(s) with desired roots in IQ(s) that
does not satisfy any otr design criteria as it is typically done,
then one really solves a more restrictive problem than the
eigenvalue assignment ptoblem. In the scalar polynomial case
ifQ(s) is selected so theroots of IQ(s) I are the desired ones
then one really arbitrarily selects in addition only the leading
coefficient of Q(s), which is not really restrictive. This perhaps
explains the tendency to do something analogous in the
multivariable case; dtis however clearly changes and restricts
the original problem. It is shown here that one does not have
to select Q(s) in advance. The vectors aj can then be seen as
design parameters and they can be selected almost arbitrarily to
satisfy requirements in addition to pole assignment; see [6,7,
21]. Note that this design apFoach is rather well known in the
state feedback case as it is discussed later in this section.
TLeorem 5.1 Let r v-1. Then (X(s), Y(s)) exists such that all
the n+mr zeros of IX(s) D(s) + Y(s)N(s)l are arbitrarily assigned
and XV1(s)Y(s) is proper. 0

[s-2 0 1 s-1 01
Example 5.1: Let D(s)- [o s+1] N(S)= 1 1
withn= degID(s)l = 2. Here there are degIK(s)D(s) + Y(s)N(s)l =
n +mr= 2 + 2r closed-loop poles to be assigned. Note that r 2 v
- 1= 1- 1 =0.
i) For r = 0 and ((sj. aj), j = 1,2) = {((1, [1 0]), (-2, [O 11),
a solution ofMLj =0 is

M= 2° 2°] For this case,M = M(s)=[X(s) Y(s)].

ii) For r = 1, and ((sj, aj), j = 1,4) = ((-1, [1 Q]T), (-2, [O ]T),
(-3, [1l j]), (-4, [O -1] )

a soluti ofMLr =Ois [X(s) Y(s)]= [s7 -1 12 s l

Note that X(s)-lY(s) exists and it is proper. C3

State Feedback Let A, B, F be nxn, nxm, mxn real matices
respectively. Note hatdIsI - (A+BF)l = IsI -AlIn - (sI-A)-BFl =
IsI -AlIm - F(sI-A)-1BI. If now the desired closed-loop
eigenvalues sj are diffeent from the eigenvalues of A, then F
will assign all n desired closed loop eigenvalues sj if and only if

F[(sjl-A)-1Baj] = aj j= 1,n (5.2)
The mxl vectors aj are selected so that (sj-A)-Baj= 1,n are
linealy independent vectors. Alternatively one cod approach
the problem as follows: let M(s) (nxm) D(s) (mxm) be nrght
coprime polynomial matrices such hat (sI-A)-1B = M(s)D-I(s).
An intemal representation equivalent to x = Ax + Bu in
polynomial matixfon is Dz = u with x = Mz The eigenvalue
assignment problem is then to assign all the roots of ID(s) -
FM(s)l; or to determine F so that

FM(sj)aj =D(sj)aj j= 1,n (5.3)
Relation (53) was originally used in [6] to determine F. Note
that this formulation does not require dt sj be different from
the eigenvahles of A as in (5.2). The mxl vectors aj are selected
so at M(sj)aj j = l,n re independentL Note thatM(sj) has the
sane column rank as S(sj) = block diag([l,s,..,sdi4rl]J where di
are the controllability indices of (A,B) [10,11]. Therefore, it is
possible to select aj so dt M(sj)aj j = l,n are independent even
when sj are repeated. In general, there is great flexibility in
selecting the nonzero vectors aj . Note for example that when
sj are distinct, a very common case, aj can almost be arbitrarily
selected[21]. For all the aopriate choices of aj (M(sj)a; j =
1,n linearly independent), the n eigenvalues of the closedloop
system will be at the desired locations sj j = 1,n. Different aj
correspond to different F (via(5.3)) that produce, in general,
different closed loop behavior. The exact relation of the
eigenvectors to the aj can be found as follows: [sjI-
(A+BF)]M(sj)aj = (sj -A)M(sj)aj-BFM(sj)aj=BD(sj)aj - BD(sj)aj
= 0. Therefore M(sj)aj = vj are the closed-loop eigenvectors
corresponding to sj.

One may select aj in (5.3) to impose constraints on the
gain fii in F. For example one may select aj so that a cohumn of
F is zero (take the corresponding row of all ai to be nonzero), or
an elements of F, f; -0

Note that a similar approach for eigenvalue assignment via
state feedback is [14]; this approach was developed in parallel
but independently to the interpolation method described above
(and in [6,7], (21]). The main difference between the two
approaches in [6] and [14] is that in [6] a polynomial basis for
the kernel of [sI-A, B] is found first and then it is evaluated at
s=sj, while in [14] a basis for the kernel of [sjI-A, B] is
determined without involving polynomial bases and right
factorizations.

Assignment of Characteristic Values and Vectors
In view of the discussion above on state feedback, the

characteristic vectors aj of (D)(s) - FM(s)) or the eigenvectors vj
= M(sj)aj of sI - (A+BF) can be assigned so that additional
design goals are attained beyond the pole assignment at sj j =
1, n. Two examples of such assigment follow:
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Optimal Control: It is possible to select (sj, aj) so that the
closed-loop system satisfies some optimality crnteria. In fact it
is straightforward to select (sj, aj) so ta the resulting F
calculated using the above interpolation method, is the unique
solution of a Linear Quadratic Regulator (LQR) problem; see for
example [11]1
Unobservalble eigenvalues: It is possible under certain
conditions to select (sj, aj) so ta sj become an unobservable
eigenvalue in the closed loop system [21].

Choosing a Closed Loop Transfer Function Matrix
One of the challenging problems in control design is to

choose an arpriate closed loop transfer function matrix that
satisfies all the control specifications which can be obtained
from the given plant by applying an internaLy stable feedback
loop. To guarantee the internal stability of feedback control
systems, both locations and directions of the RHP zeros of the
plant must be considered-; these zeros must appear as zeros of
the closed loop tranfer function matrix. Consider this in the
context of [15]:

Given proper rational matrices H(s) (pxm) and T(s) (pxq),
fimd a-proper and stable rational matrix M(s) such that the
equation

H(s)M(s) = T(s) (5.4)
holds. It is known that a stable solution for (5.4) exists if and
only if T(s) has as it zers all the RHP zeros of H(s) together
with their directions.. Let the coprime fraction representations

of H(s) and T(s) be H(s) = N(s)D- I(s) and T(s) = NT(s)D 1(s).
The direction associated with a zero of H(s), zj, is given by the
vector aj which satisfies ajN(zi) = 0. Furthermore, T(s) will
have the same zero, zi, together with its direction if T(s)
satisfies ajNT(zi) = 0 and this must be taken into consideration
when T(s) is selected.
Exaple 5.2: Consider a diagonal T(s); that is the control
specificatons demand diagonal decoupling of the system. Let

H(s)=s+ [1 1]
with a zero at s=1. Then aH(1)=0 gives a=[1 0] and T(s) must
satisfy aT(1)=[l 0]T(1)=0. Since T(s) must be diagonal, tll(l)
= 0; that iS the RHP zero of dte plant should appear in the (1,1)
entry of T(s) only. Certainly T(s) can be chosen to have I s a
zero in both diagonal enties. However, the RHP zeros are
umdesirable in control and the minimum possible number should
be included in T. 0

VI. CONCLUDING REMARKS
Interpolation is a very general and flexible way to deal

with systems and control problems. Note that only a fraction
of existing results [21] were presented here due to space
limitations. At the same time note that the results presented in
[21] have only opened the way, as there are many more results
that can and need be developed to handle the wide range of
problems possible to study via polynomial and rational matrix
interpolation theory.
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