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Abstract

Hybrid control systems consist of a discrete event
system (DES) supervising the behaviour of a contin-
uous state system (CSS) through the issuance of log-
ical control directives. This paper derives sufficient
conditions on the DES/CSS interface which guaran-
tee the existence of a supervisor which transitions the
plant through an arbitrary sequence of commanded
events. It is further demonstrated that this interface
can be learned using an inductive inference protocol
which converges after a finite number of updates.

1 Introduction

Hybrid systems consist of a continuous-state sys-
tem (CSS) interfaced to a discrete event system
(DES). The resulting system can be seen as con-
sisting of 3 distinct layers. The lowest layer is the
continuous-state system or plant. The highest layer
is a discrete event system or supervisor. The mid-
dle layer is an interface which facilitates communi-
cation between the supervisor and plant. The in-
terface therefore behaves as a 2-way communication
port which admits a natural decomposition into two
subsystems, one for each communication direction.
The subsystem handling control event transforma-
tions is called the actuator. The subsystem trans-
forming plant states into plant symbols is called the
generator.

This paper discusses a class of hybrid system in
which the interface generator and actuator consist of
memoryless mappings [Stiver 1992] [Antsaklis 1993].
The following sections establish sufficient conditions
on the interface which guarantee the existence of
a supervisor which drives the plant through a con-
nected sequence of events. These conditions provide
the basis for an inductive inference protocol which
‘can be used by the system to “learn” the appropri-
ate actuator.

The remainder of this paper is orgamzed as fol-
lows. Section 2 discusses the hybrid system under
study. Section 3 states the “supervisability” con-
ditions. Section 4 shows how these conditions lead
to an inductive inference protocol for automatically
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learning how to “supervise” the system. Section 5
illustrates the proposed framework for a simple ex-
ample. Section 6 summarizes the results.

2 Hybrid Systems

The system to be controlled, called the plant, is
modeled as a time-invariant continuous-time system.
This part of the hybrid control system contains the
entire continous-time portion of the system, possibly
including a continuous-time controller. Mathemati-
cally, the plant is represented by the equations

f(x,r) (1)
9(x) (2)

where x € R", r € R™, and z € RP are the state,
control, and observation vectors, respectively. f :
R x R™ — R™ and g : R™ — RP are functions.

For the purposes of this work we assume that
z = x and we assume that the plant is linear in the
controls so that

x =
z =

m

x=) rifi(x) &)

=1

The vector r = (ry,...,ryn) € R™ can be interpreted
as “coordinating” a set of control policies represented
by the set of m vector fields, f;(x).

The supervisor is a discrete event sys&m
which is modeled as a deterministic automatbn.
This automaton can be specified by a quintuple,
{8,Z,R,s, , ¢}, where S is the (possibly infinite) set
of states, Z is the set of ' plant symbols, R is the set of
controller symbols, § : $x Z — S is the state transi-
tion function, and ¢ : S — R is the output function.
The symbols in set R are called controller symbols
because they are generated by the controller. Like-
wise, the symbols in set Z are called plant symbols
and are generated by the occurrence of events in the
plant. The action of the controller can be described
by the equations

§[n]

f[n] =

6(8[n - 1], Z[n]) (4)
¢(3[n]) (5)
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where §[n) € S,%[n] € Z, and #[n] € R. The in-
dex n is analogous to a time index in that it speci-
fies the order of the symbols in a sequence. The in-
put and output signals associated with the controller
are asynchronous sequences of symbols, rather than
continuous-time signals. Notice that there is no delay
in the controller. The state transition, from 3[n — 1]
to 5[n], and the controller symbol, #[n], occur imme-
diately when the plant symbol Z[n] occurs.

The controller and plant cannot communicate di-
rectly in a hybrid control system because each uti-
lizes a different type of signal. Thus an interface is
required which can convert continuous- time signals
to sequences of symbols and vice versa. The inter-
face consists of two memoryless maps, a and g. The
first map, called the actuating function or actuator,
a: R — R™, converts a sequence of controller sym-
bols to a piecewise constant plant input as follows

(a1 am(® ) (6)

The plant input, r € ™, can only take on certain
constant values, where each value is associated with
a particular controller symbol. Thus the plant input
is a piecewise constant signal which may change only
when a controller symbol occurs. The second map,
the plant symbol generating function or generator,
g : R™ — Z, is a function which maps the state space
of the plant to the set of plant symbols as follows

Z=g(x) (7

The plant symbol generating function, g, is de-
signed based on an open covering of the state space
of the plant. Consider a collection of p open subsets
in R” which form an open cover for the plant state
space. Let this collection be represented as

C={ 31 Cp } (8)

The collection consists of open subsets, each subset
is called a covering event. Let the ith covering event,
¢;, be associated with a unique covering symbol, &;.
The “alphabet” of covering symbols can therefore be
represented as

r=a(f) =

C={& ... &} 9)

These covering symbols are used to define the plant
symbols as follows

(10)

As shown in Equation 10, a plant symbol is a collec-
tion of covering symbols which defines a region in the
state space. It is convenient to treat this collection
as a symbol. A plant symbol is generated only when
a new event first occurs. The overall effect is that the
state space of the plant is partitioned into a number
of regions and each is associated with a unique plant
symbol which is generated whenever the state enters
that region.

Z=g(x) = {¢i: x € ¢}
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The use of open covers to describe the state space
is motivated by several things. The generator, g,
must take subsets of states onto a “unique” plant
symbol. The representation should be “well posed”
in the sense that small changes of state or system
structure do not result in discontinuous variations
in the state’s, symbolic representation. The well-
posedness constraints suggests that events should be
open subsets of the state space. The representation
must also be complete, meaning every state must
be contained within a plant event. These conditions
suggest that g should realize an open covering of the
state space.

In this paper, the covering events are assumed to
have a special form. This form is motivated by the
modest computational complexity associated with
the evaluation of linear forms. The specific cover-
ing events assumed are denoted as

C={ca c c - ¢ ¢ ¢} (1)

where each event is defined by the following open
sets in R".

6 = {xER":slx>a;} (12)
c;." = {x ER™: s:-x > o+ ﬂl' + 6} (13)
¢; = {xeR":six>ai+Bi-6} (14)

where 8; € R" and «;, 5;,6 > 0. Associated with the
events ¢;, c}t are the covering symbols, é;, Ef‘
3 Supervisability
In many applications, it is required to drive the
plant through a well defined sequence of events. A
plant for which this can be done will be said to be

“supervisable”. This section derives sufficient condi-
tions for a system to be supervisa.ble

Definition 1 Let C be the plants event covering
with associated alphabet C. Let the jth command
event be any set, u;, formed by the intersection of q
covering events as shown below u; = (\i_, cj; where
Ji is an integer belween 1 and p and ¢;, € C.

The preceding definition implies that the jth com-
mand event is associated with a set of integers
J1,-..,Jq indexing the covering events comprising u;.
This set of integers will be called the index set, I;,
of the command event u;.

Definition 2 Let C be the covering events with as-
sociated alphabet C. Two command evenis, u; and
up are said to be connected if and only if their in-
dezx sels, Iy and Iy, satisfy the relation, I1 C I or
I, CIL.

Theorem 1 Consider a hybrid system with event
coverzng C and covering alphabet C. Consider the
covering events
¢t = {xeR":s'x—a—-F-6} (15)
o = {xeR”:s'x-a-4+6} (16)
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If the functional, V(x) = (s'x — a — )2, is a Lya-
punov functional for the system

{Z;,;laJ(C+)f.(X) ifxeect
Y= (E)fi(x) ifxecT

then if x € (ct Uc™) att = 0, there ezists a time
T > 0 such that forallt > T, x ¢ (ct Uc™).

(17)

Proof: By assumption, V(x), is a Lyapunov func-
tional so that by theorem 8 of [Utkin 1977] it can be
inferred that the complement of ¢t Uc™ is an attract-
ing invariant set. o

The significance of the preceding theorem is that it
suggests a form for the actuator and supervisor which
?blocks” the system state out of the event ¢t Uc™.
The following theorem indicates how the ”blocking”
conditions allow for the system to supervise transi-
tions between two connected events. -

Theorem 2 Consider a hybrid system with event
covering C and alphabet C. Let u; and ug be 2 con-
nected command events with indez seis I, and I,
respectively. Let the functionals, Vi(x) = (six—a; —
B:)?, be Lyapunov functionals for the system

. [ Yiia; ENfix) ifxect
x= { 2;7‘-1 ai(c Mi(x) ifx€cf

for alli € I; U I,. There ezists a supervisor which
transitions the plant state from uy to us.

(18)

Proof: Since u; and uz are connected, then either
I1 C I, or I C I;. In the first case, x is already an
element of u; so that only the second case need be
considered.

In the second case, the inclusion of I in Is implies
that u» C u;. Let Z be the plant symbol issued by
the generator (i.e., Z = g(x)) when x € u;. Define
the supervisor so that it maps # onto the covering
symbol, E,-*, within the collection Z which has the
largest index 1.

If the control symbol issued by the supervisor is 6*
then by theorem 1, the plant state will eventually be
taken out of the set ¢ Uc;. After leaving this set,
the subsequent plant symbol issued by the generator
will not contain either &f or c . The supervisor then
issues a new control symbol c , which forces the re-

moval of & - and ¢; from the pla.nt. symbol # issued
by the generator i“urthermore, the ith positive and
negative covering symbols cannot be put back into Z
since this would automatically result in the issuance
of a control symbol which takes these symbols out of
Z. Consequently, the proposed supervisor will suc-
ceﬂslvely drive the plant state out of all covering sets

% which have indices in I;. This then means that
tile plant state must eventually lie in uy. o

Note that the event covering will also define a finite
partition of the state space. Let V denote a collection
of such ”partitioning” events, v € V. The following
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theorem provides conditions for the existence of a
supervisor which transitions the plant between any
2 partition events.

Theorem 3 Let vo and vy be any two parititon
events of V. If the assumptions of theorem 2 hold
fori=1,...,p, then there exists a supervisor which
transitions the plant state from vg to vj.

Proof: vy and vy can be contained within a closed
connected set, M, which has a finite open cover con-
tained within C. Event vg and v; can also be defined
by subcollections, Z, and Z;, of covering symbols is-
sued by the generator. Let Fy and I; be the corre-
sponding index sets.

If Iy N I; is not empty, then it is trivial to con-
struct a sequence of commmand events. This is ac-
complished by enlarging the collection, Zp, with ele-
ments from Z; and then removing those symbols of
Zp which are not in Z;. If Ip N I} is empty, then the
fact that M has a connected open subcover implies
that an event can be found which does connect these
two events. In this case, the preceding procedure is
followed again to construct a sequence of connected
command events containing vo and vy.

Once the sequence of command events is con-
structed, then theorem 2 implies the existence of a
supervisor which transitions the plant state between
any 2 connected events in the sequence thereby yield-
ing the supervisability between vy and v; asserted in
the theorem. o

4 Learning to Coordinate by Example

The preceding section showed that the plant can
be sequenced through a collection of connected
events provided control vectors r; (i = 1,...,p) can
be specified which stabilize the system with regard

to the Lypunov functionals, V;(x) = (s'x—a; — £;)%.
This condition implies that for all x,
(six—a; — B)(six) < 0 (19)

Without loss of generality assume that s{x—~a;—8; >
0. In light of the supervisor constructed in the proof
of theorem 2, this implies that the control symbol to
be issued will be &}. Using this fact in equation 19
as well as the assumed plant model yields

1
( sth(x) sifm(x) )| -+ | <0 (20)
Tm
where r; = aj(¢}) for j=1,...,mand a; : R — R

are the components of the actuator mapping.
Equation 20 forms a set of linear inequalities
The problem is to define the a.ctua.tor mappings, a,
which map control symbols, c € C' onto control
vectors,r € R™ so that the lnequahties of equation
20 are satlsﬁed for all #. The solution to this prob-
lem is a search procedure for a feasible point for the
inequality system. Numerical algorithms for doing
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such searches are well known. One particularly ap-
pealing approach is the central-cut ellipsoid method
[Shor 1977]. The advantage of this approach is that
it has well understood convergence properties.

The search for the feasible point of inequality sys-
tem 20 can be easily framed in terms of an inductive
inference procedure. Inductive inference is a machine
learning algorithm which has found extensive appli-
cations in the learning of Boolean functions by ex-
ample [Angluin 1983] and the proof of polynomial
time-complexity for certain linear programming al-
gorithms [Khachiyan 1979]. The ability to reframe
the search as an inductive inference protocol imme-
diately suggests that the search can be viewed as a
“learning” procedure. This means that the use of
such protocols will provide a method by .which the
hybrid system can learn a set. of coordinating con-
trol vectars r by simply observing the plant’s be-
haviour. In other words, for a given set of covering
events, these ideas imply that the system can auto-
matically learn those controls which insure that the
given events yield a “supervisable” hybrid control
system.

The specific inductive protocol proposed in this
paper consists of four fundamental components.

1. Hypothesis: Form an initial hypothesm Let
R be consist of symbols {c }. Specify an
acutator ma.ppmg a : R — R™ such that

('*) = r foralli = 1,...,p. The hypoth-
esis is that the actuator mapping satisfies the
Lyapunov inequalities implied by equation 20.

2. Experiment: The information needed to
evaluate inequality system 20 is contained in
8;fj(x) for all i = 1,...,p. This requires that
the individual influence of each ¢ontrol policy,
fi(x), must be measured or estimated. The
“experiment”™ consists of the hybrid system’s
measurment of these quantities.

3. Oracle Query: The information gathered by
the experiment is tested to see if it is consistent
with the hypothesis. This test is simply the
evaluation of inequality 20. The oracle is then
a Boolean functional which declares TRUE if
the current data satisfies the inequalities and
declares FALSE if the current data does not
satisfy (i.e. is inconsistent) with the inequali-
ties.

4. Update Algorithm: If the oracle detects
no inconsistency, then nothing is done. If|
however, the oracle detects an inconsistency
between the currently collected data and the
hypothesis, then that implies the hypothesis
is incorrect. The direct application of the
central-cut ellipsoid method [Shor 1977] allows
the computation of a new hypothesis (actuator
mapping) which is consistent with the current
and all prior data collected by the experiment.

)

More details on the use of this algorithm can
be found in [Lemmon 1992).

Remark 1: The preceding algorithm makes ex-
tensive use of the so-called ellipsoid algorithm. The
value of using the ellipsoid updating method is that it
can be easily shown to converge after a finite number
of updates. If it is known that the supervising gon-
trol vectors r* associated with control symbol ¢ c lie
within an m- dlmenslonal ellipsoid of volume v, then
the learning protocol can be shown [Lemmon 1992]
to find the desired control vector after no more than
2mlnv~?! updates.

Remark 2: The finite time bound determined in
remark 1 will also imply polynomial time complexity.
Using the fact that the volume of an m-dimensional
unit sphere is bounded below by m™™, it can be
shown that the bound cited in remark 1 will scale as
m?lnm ~ m25,

5 Example

The hybrid system framework introduced in this
paper can be illustrated by a simple example. The
event collection, C, for a hypothetical second order
system is shown in figure 1.
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Figure 1: Event Covering for Example

The illustrated event covering consists of twelve

events,

er ¢ ef - eq ¢ cF (21)
where the plant events are characterized by 2-
dimensional vectors s. and real parameters, a;, gG;,
and 8, fori =1,.

Tlns section shows how the proposed supervisor
transitions the plant from partition event vg = ¢1Ney
to partition event v; = ¢z Nc3. In order to accom-
plish this task, we must first determine a connected
sequence of command events for the initial and fi-
nal partition events. In this example the command
sequence of events will be

ci1cg €4 c4Ncz ¢c2 caNcs (22)

Assume that the plant starts at the location
marked “A” in figure 2. In this case, the first symbol
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issued by the generator will be

w={a & & & & &} @)
The positive and negative index sets will be I, =
{1,2,3,4}. The first commanded event is ¢; N ¢4
with index set {1,4}. Therefore the control symbol
issued by the supervisor will be c4 Thls control
symbol will drive the plant state out of ¢} and ¢ so
that the plant state, x, is constrained to the shaded
boundary layer marked as “B” in figure 2.

B
A ti
ti
- o - - ..lL -
C Ll
i
11
1
D 11 E

[ ]
Figure 2: Event Trajectory for Example

With the plant state confined to the boundary
layer marked “B”, then the generator issues a dif-
ferent event of the form

ip={& & & & & } (24)

The positive and negative index sets will be I =
{1,2,3}. The command event is still ¢; N ¢4 so that
the control symbol issued by the supervisor will be
Ei. This control symbol drives the plant state out of
c] and c] so that the plant state, x, is constrained
to the shaded region marked as “C” in figure 2.

- Note that the collection of control symbols gen-
erated by the supervisor will now be the empty
set. This control symbol signals that the supervi-
sor should use the next command event to supervise
the plant. The next command event is ¢4. Which
will once again yield the empty set as the control
symbol. The following command event, ¢4 N ¢ must
therefore be used. This results in the control sym-
bol &; being issued by the supervisor. The resulting
action is to drive the plant state into region “D” of
figure 2. Once the plant enters region “D”, then the
final command events ¢; and ¢2 Nca can be used by
the supervisor in the same way. This leads to the is-
suance of control symbols which drive the plant along
another boundary layer connecting events “D” and
“E” as shown in figure 2. Event “E” is, of course,
the final desired state of the system.

6 Summary

This paper builds upon prior work [Stiver 1992] in
which the interface between a CSS plant and DES su-
pervisor was consisted of two memoryless mappings

between continuous and logical variables. The cur-
rent work modifies that earlier work in that the gen-
erator realizes a finite open cover for the plant’s state
space which is formed by a family of linear halfspaces.
This paper has two principal results concerning this
family of hybrid systems. The first result establishes
sufficient conditions for the plant to be supervised
through a sequence of “command” evenis. The sec-
ond result shows that an interface satisfying these
supervisability conditions can be learned using an
inductive inference protocol after a finite number of
updates.
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