
ftsudosdk
_>_r_

UsF_WCX_*O_ 1
FA9- 10:15

State Space Partitioning for Hybrid Control Systems

James A. Stiver and Panos J. Antsaklis
Department of Electrical Engmeerng

University of Notre Dame, Notre Dame, IN 46556

Abstract
In this paper, the state space partitioning i'n the inter-

face of the hybrid control system is modeled using cover-
Lug halfpaces; this formulation extends the model intro-
duced in [1]. The concept of determinism is then defined
and liked to controllability and observability.

1 Introduction
A hybrid control system consists of a continuous-time

system wlhich is being controlled by a discrete event sys-
tem. The continuous-time system is referred to as the
plant because it is the system under control. The plant
is usually termed a "conventional" system as it has a
continuous state space and it is described by a set of
differential (or difference) equations. The discrete event
system, called the controller, has a discrete state space
and symbolic input and output. In addition to the plant
and controller, there is an interface which provides com-
munication between them. The interface generates sym-
bols for the controller as the state of the plant moves
through a partitioned state space. It also converts sym-
bols from the controller into plant inputs. The interface,
and in particular the partition which it implements, is
very important because it governs the interaction of the
controller and plant. The design of the partition will
depend upon the control goals and the available control
actions, and it relates to the basic question of how much
information is required to control a system.

In this work, using the model for hybrid control sys-.
tems orignally described in [1] and [2], we present a
mathematical description for the generator in the inter-
face using covering halfspaces. This model is used to
examine the adequacy of the interface via the concept of
determinism. Determinism is then linked to controllabil-
ity and observability.

It should be noted that [2] also contains an extended
list of references on hybrid control systems which cannot
be iMduded here due to lack of space.

2 Hybrid Control System Model
A hybrid control system consists of three parts. The

modeling and interactions of these parts are now de-
scribed.

2.1 Plant
The plant is modeled as a time-invariant, continuous-

time system, represted by the familiar equations,
* = f(x,r)
z = g(x)

(1)
(2)

where x E JR., r EIRm, and z E RP? are the state, input,
and output vectors respectively. For the purposes of this
work we assume that z = x.

2.2 Controller
The controller is a discrete event system which is mod-

eled as a deterministic automaton specified by the quin-
tuple, {S, Z, f,, fpl}, where S is the (possibly infinite)
set of states, Z is the set of plant symbols which are gen-
erated by events in the plant and make up the controller
input, R is the set of controller symbols which consti-
tute the controller's output set, 6: S xZ - S is the
state transition function, and t : S -R A is the output
function. The behavior of the controller is described by

i[n] = 6(i[n- 1], [n])
f[n] = (i[n)

(3)
(4)

where 4[n] E S,zn] E Z, and f[n] E R. The index n
indicates the order of the symbols.

2.3 Interface
The interface of a hybrid control system consists of

two memoryless maps which convert between continuous-
time signals and symbolic signals. The first map, called
the actuator, -: R --. lR', converts a sequence of con-
troler symbols to a piecewise constant plant input as
follows

r = 7(r) (5)
The plant input, r, can change only when a plant symbol
occurs.
The second map, called the generator, a : lRI" -- Z, is

a function which maps the state space of the plant to the
set of plant symbols as follows

z = a(x) (6)

The generator is based upon a partition of the state
space, where each region of the partition is an open sub-
set of the state space, caled an event. Each of these
events is associated with a unique plant symbol. A plant
symbol is generated only when the state first enters the
asscated event. The set of events is denoted by, Z, and
the the plant symbol asociated with event z, E Z is ii.
The partition is formed by a set of (n -1) dimensional

hypersurfaces, which are described by a set of functions,
h, : -n EL Each function, hi, divides the state space
into two haspaces, {x : h,(x) > 0) and {x: hi(x) <
0). Each point in the state space which does not lie on
a hypersurface can be associated with a binary vector,
where the ith element of the vector is: 0 if hi(x) < 0 or
1 if hi(x) > 0. For {x : hix = 0}, a does not generate
a symbol as described above. These binary vectors make
up the set of plant. symbols. For example 25 = [101]
would be the plant symbol associated with the event Z5-
{x : hi(x) > 0, h2(x) < 0, h3(x) > 01.
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2:4 DES Plant Model
When the plant and interface of a hybrid control up-

tem are viewed as a single system, this system appears
as a discrete event system called the DES plant model
(1]. Like the controller, the DES piant is modeled as an
automaton, {P, Z, R, t, A}, where P is the set of states,
2 and A are as before, t: P x A * P is the state tran-
sition function, and A: P - Z is the output function.
We are interested in the state transition function of the
DES plant which was found in [1] to be

where r E {-l, 0,1} whih yields

fA(X) = [ o O ] [

f2(X) = [ O x

f3(X) = [ o O x [ 1

The events are formed by the following two hypersurfaces

t(Pt rk) = -((Fk(0))) (7)

where xo is the current state of the plant, 4h is the con-

troller symbol, and Fk(o) is the value of the state when
it will next cross a boundary. Since this equation depends
upon xo and xo could be anywhere in the event associ-

ated with the previous plant symbol, the DES plant will
be nondeterministic in general.

3 Determinism

Determinism is the ability to uniquely predict future
states based on the current state and input. Unlike
conventional systems, the DES plant model is not gen-
erally deterministic. The following conditions can be
used to test for determinism. Note we have allowed
hj(zn) = hj(x) where x E Z..n

Definition 1 A surface, hi, is an exit boundary of event
Zn under fit if 3x E {x: hi(x) = 0, hiz(x) = hj(zn)Vi #

i} such that hi(zn)(fk(x) Vh.(x)) < 0.

Definition 2 A surface, hi, is an entry boundary of
event z,n under 4k if 3x e {x: hi(x) = 0,h,(h ) =

hj(Zn)V; i$ such that hi(zn)(fk(x) Vhi,(x)) > 0.

In view of the above definition, the proof of the following
theorem is straight forward.

Theorem 1 The DES plant model is deterministic if
there is no event with more than one exit boundary under
any given controller symbol.

Lack of determinism implies that the system is not fully
controllable. Full controllability requires that the system
can be driven from one state to another with appropriate
inputs, but this cannot be achieved when the system's re-

sponse to a given input is not predictable. A relaxed form
of controllability, in which a system can be driven from

one state to a subset of states, is possible as described in

[2].
Lack of determ m also renders the notion of observ-

ability less useful, as the knowledge of an initial state and
input will still not uniquely predict future states. Thus
even full observability wil not make the system's future
behavior known.

4 Examples

4.1 Example 1 - Nondeterministic System
The plant is a double integrator

[= O O ]x+ [ ]r0 (8)

hi(x) = xi

h2(X)=2
(12)
(13)

These two hypersurfaces form four events which are sun-

ply the four quadrants. This system can be shown to
be nondeterministic by showing that one of the events,
corresponding to -=[01], has two exit boundaries under
rl.

fi(X) * Vhl(X) = x2 > 0

fl(x) Vh2(X) = -1 < 0
(14)
(15)

In this cae hi(s) < 0 and h2(Z) > 0 so both hi and h2
are exit bondaries for this event.

4.2 Example 2 - Deterministic System
Using the sme plant as in Example 1, we can obtain a

deterministic system by replacing the first hypersurface,
hi, by

= 2
=x~i+2

2
(16)

With four events, two boundaries per event, and three
controller symbols, there are 24 equations which need
to be evaluated to assess determinism. Here are the six
equation pertainig to the event represented by plant
symbol i = [01].

fl(X)'Vhl(X) = 0

fl(x) Vh2(X) = -1 <0

f2(X) * Vhl (x) 2 < O
f2(X) * Vh2(X) 0

f3(x)Vhs(x) = 2xT>0

f3(X)Vh2(X) = 1 > 0

(17)
(18)
(19)
(20)
(21)
(22)

As in the previous example, hi(z) c 0 and h2(Z) > 0,
so it can be seen that this event has no more than one

exit region under each controller symbol. This is true
for the other three events as well, meaning this system is
determinustic.
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