P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Hybrid System Modeling

and Event Identification

Technical Report of the ISIS Group
at the University of Notre Dame
ISIS-93-002
January, 1993

Panos J. Antsaklis, Michael D. Lemmon, and James A. Stiver
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556

Interdisciplinary Studies of Intelligent Systems

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Hybrid System Modeling and Event Identification

Panos J. Antsaklis, Michael Lemmon *, and James A. Stiver

Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN 46556 USA

Abstract. Hybrid control systems contain two distinct types of systems,
continuous state and discrete-state, that interact with each other. Their study
is essential in designing sequential supervisory controllers for continuous-
state systems, and it is central in designing control systems with high degree
of autonomy.

After an introduction to intelligent autonomous control and its relation to
hybrid control, models for the plant, controller, and interface are introduced.
The important role of the interface is discussed at length. System theoretic
issues are addressed and the concepts of determinism and quasidetermin-
ism are introduced and studied. The relation to the theory of logical discrete
event systems is shown and discussed. When the system changes, online iden-
tification supervisory control is desirable. To meet the demanding computing
requirements, event identification is performed using inductive inference al-
gorithms.

* The partial financial support of the National Science Foundation (IRI91-09298) is
acknowledged

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Table of Contents

1 Introduction

1.1 Conventional Control - Evolution and Quest for Autonomy

1.2 Intelligent Control for High Autonomy Systems

1.3 An Intelligent High Autonomy Control System Architecture For Fu-
ture Space Vehicles 0000

1.4 Quantitative Models

2 Hybrid Control System Modeling
2.1 Plant
2.2 Controller
2.3 Interface
2.4 Comments on the Generality of the Model

2.5 Exampleso

Example 1 - Thermostat/Furnace System

Example 2 - Surge Tanko oo

3 System Theoretic Issues

3.1 The DES Plant Model
3.2 Double Integrator L o

3.3 Partitioning and Quasideterminism

Selection of Control Action
3.4 Connections to Existing DES Control Theory
Stability
Controllability

4 Event Identification.
4.1 Invariant Subspace Identification (ISID) Problem
4.2 Invariant Subspace Identification Algorithm

4.3 Invariance Oracles
4.4 FEllipsoidal Update Method, ..
4.5 Convergence and Complexity
4.6 Example: AUV Stabilization
4.7 Significant Issues oL oo

4.8 Symbol Grounding and Event Identification

5 Concluding Remarks

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

1 Introduction

Hybrid control systems contain two distinct types of systems, continuous and discrete-
state that interact with each other. An example of such a system 1s the heating and
cooling system of a typical home. Here the furnace and air conditioner together with
the home’s heat loss dynamics can be modeled as continuous-state, (continuous-
time) system which is being controlled by a discrete-state system, the thermostat.
Other examples include systems controlled by bang-bang control or via methods
based on variable structure control. Hybrid control systems also appear as part of
Intelligent Autonomous Control Systems. Being able to control a continuous-state
system using a discrete-state supervisory controller is a central problem in design-
ing control systems with high degrees of autonomy. This is further discussed below.
The analysis and design of hybrid control systems requires the development of an
appropriate mathematical framework. That framework must be both powerful and
simple enough so it leads to manageable descriptions and efficient algorithms for
such systems. Recently, attempts have been made to study hybrid control systems
in a unified, analytical way and a number of results have been reported in the liter-
ature [Benveniste 1990] [Gollu 1989] [Grossman 1992] [Holloway 1992] [Kohn 1992]
[Lemmon 1993b] [Nerode 1992] [Passino 1991b] [Peleties 1988] [Peleties 1989] [Stiver
1991a] [Stiver 1991b] [Stiver 1991c] [Stiver 1992] [Stiver 1993].

In this chapter, a novel approach to hybrid systems modeling and control is de-
scribed. Descriptions of the plant to be controlled, the controller and the interface are
given in Section 2. The important role of the interface is discussed at length. In Sec-
tion 3, certain system theoretic questions are addressed. In particular, the concepts
of determinism and quasideterminism are introduced and results are given. It is then
shown how logical Discrete Event System (DES) models can be used to formulate
the hybrid control problem, thus taking full advantage of existing results on DES
controller design [Cassandras 1990] [Ozveren 1991] [Passino 1989a] [Passino 1989b]
[Passino 1991a] [Passino 1992a] [Ramadge 1987] [Ramadge 1989] [Wonham 1987] for
hybrid control systems. When the system to be controlled is changing, these fixed
controllers may not be adequate to meet the control goals. In this case it is desir-
able to 1dentify the plant and derive the control law on line, and this is addressed
in Section 4. Inductive inference methods are used to identify plant events in a
computationally efficient manner.

In the rest of the introduction the important role hybrid control systems play in
the design of Intelligent Autonomous Control systems is discussed and explained.
In this way, the hybrid control problem can be seen in the appropriate setting
so that its importance in the control of very complex systems may be fully un-
derstood and appreciated. Further discussion can be found in [Passino 1993]; see
[Albus 1981] [Antsaklis 1989] [Antsaklis 1991] [Antsaklis 1993b] [Antsaklis 1993a]
[Antsaklis 1993¢] [IEEE Computer 1989] [Passino 1993] [Saridis 1979] [Saridis 1985]
[Saridis 1987] [Saridis 1989a] [Zeigler 1984] for more information on intelligent con-
trol.

It 1s appropriate to first explain what is meant by the term Intelligent Au-
tonomous Control used above. In the design of controllers for complex dynamical
systems there are needs today that cannot be successfully addressed with the ex-
isting conventional control theory. Heuristic methods may be needed to tune the

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

parameters of an adaptive control law. New control laws to perform novel control
functions to meet new objectives should be designed while the system is in opera-
tion. Learning from past experience and planning control actions may be necessary.
Failure detection and identification is needed. Such functions have been performed
in the past by human operators. To increase the speed of response, to relieve the
operators from mundane tasks, to protect them from hazards, a high degree of au-
tonomy is desired. To achieve this autonomy, high level decision making techniques
for reasoning under uncertainty must be utilized. These techniques, if used by hu-
mans, may be attributed to intelligence. Hence, one way to achieve high degree of
autonomy is to utilize high level decision making techniques, intelligent methods,
in the autonomous controller. In our view, higher autonomy is the objective, and
wntelligent controllers are one way to achieve 1t. The need for quantitative methods
to model and analyze the dynamical behavior of such autonomous systems presents
significant challenges well beyond current capabilities. It is clear that the develop-
ment of autonomous controllers requires significant interdisciplinary research effort
as it integrates concepts and methods from areas such as Control, Identification,
Estimation, Communication Theory, Computer Science, Artificial Intelligence, and
Operations Research.

Control systems have a long history. Mathematical modeling has played a central
role in its development in the last century and today conventional control theory is
based on firm theoretical foundations. Designing control systems with higher degrees
of autonomy has been a strong driving force in the evolution of control systems for a
long time. What is new today is that with the advances of computing machines we
are closer to realizing highly autonomous control systems than ever before. One of
course should never ignore history but learn from it. For this reason, a brief outline
of conventional control system history and methods is given below.

1.1 Conventional Control - Evolution and Quest for Autonomy

The first feedback device on record was the water clock invented by the Greek Ktesi-
bios in Alexandria Egypt around the 3rd century B.C. This was certainly a successful
device as water clocks of similar design were still being made in Baghdad when the
Mongols captured the city in 1258 A.D.! The first mathematical model to describe
plant behavior for control purposes is attributed to J.C. Maxwell, of the Maxwell
equations’ fame, who in 1868 used differential equations to explain instability prob-
lems encountered with James Watt’s flyball governor; the governor was introduced
in the late 18th century to regulate the speed of steam engine vehicles. Control the-
ory made significant strides in the past 120 years, with the use of frequency domain
methods and Laplace transforms in the 1930s and 1940s and the development of
optimal control methods and state space analysis in the 1950s and 1960s. Optimal
control in the 1950s and 1960s, followed by progress in stochastic, robust and adap-
tive control methods in the 1960s to today, have made it possible to control more
accurately significantly more complex dynamical systems than the original flyball
governor.

When J.C Maxwell used mathematical modeling and methods to explain insta-
bility problems encountered with James Watt’s flyball governor, he demonstrated

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

the importance and usefulness of mathematical models and methods in understand-
ing complex phenomena and signaled the beginning of mathematical system and
control theory. It also signaled the end of the era of intuitive invention. The perfor-
mance of the flyball governor was sufficient to meet the control needs of the day. As
time progressed and more demands were put on the device there came a point when
better and deeper understanding of the device was necessary as it started exhibiting
some undesirable and unexplained behavior, in particular oscillations. This is quite
typical of the situation in man made systems even today where systems based on
intuitive invention rather than quantitative theory can be rather limited. To be able
to control highly complex and uncertain systems we need deeper understanding of
the processes involved and systematic design methods, we need quantitative mod-
els and design techniques. Such a need is quite apparent in intelligent autonomous
control systems and in particular in hybrid control systems.

Conventional control design methods: Conventional control systems are designed
today using mathematical models of physical systems. A mathematical model, which
captures the dynamical behavior of interest, is chosen and then control design tech-
niques are applied, aided by Computer Aided Design (CAD) packages, to design the
mathematical model of an appropriate controller. The controller is then realized via
hardware or software and it i1s used to control the physical system. The procedure
may take several iterations. The mathematical model of the system must be “simple
enough” so that it can be analyzed with available mathematical techniques, and
“accurate enough” to describe the important aspects of the relevant dynamical be-
havior. It approximates the behavior of a plant in the neighborhood of an operating
point.

The control methods and the underlying mathematical theory were developed
to meet the ever increasing control needs of our technology. The need to achieve
the demanding control specifications for increasingly complex dynamical systems
has been addressed by using more complex mathematical models and by develop-
ing more sophisticated design algorithms. The use of highly complex mathematical
models however, can seriously inhibit our ability to develop control algorithms. For-
tunately, simpler plant models, for example linear models, can be used in the control
design; this is possible because of the feedback used in control which can tolerate
significant model uncertainties. Controllers can for example be designed to meet the
specifications around an operating point, where the linear model is valid and then
via a scheduler a controller emerges which can accomplish the control objectives
over the whole operating range. This is in fact the method typically used for air-
craft flight control. When the uncertainties in the plant and environment are large,
the fixed feedback controllers may not be adequate, and adaptive controllers are
used. Note that adaptive control in conventional control theory has a specific and
rather narrow meaning. In particular it typically refers to adapting to variations
in the constant coefficients in the equations describing the linear plant: these new
coefficient values are identified and then used, directly or indirectly, to reassign the
values of the constant coefficients in the equations describing the linear controller.
Adaptive controllers provide for wider operating ranges than fixed controllers and
so conventional adaptive control systems can be considered to have higher degrees
of autonomy than control systems employing fixed feedback controllers. There are
many cases however where conventional adaptive controllers are not adequate to

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

meet the needs and novel methods are necessary.

1.2 Intelligent Control for High Autonomy Systems

There are cases where we need to significantly increase the operating range of control
systems. We must be able to deal effectively with significant uncertainties in models
of increasingly complex dynamical systems in addition to increasing the validity
range of our control methods. We need to cope with significant unmodeled and
unanticipated changes in the plant, in the environment and in the control objectives.
This will involve the use of intelligent decision making processes to generate control
actions so that certain performance level is maintained even though there are drastic
changes in the operating conditions. It is useful to keep in mind an example, the
Houston Control example . It is an example that sets goals for the future and it also
teaches humility as it indicates how difficult demanding and complex autonomous
systems can be. Currently, if there is a problem on the space shuttle, the problem is
addressed by the large number of engineers working in Houston Control, the ground
station. When the problem is solved the specific detailed instructions about how to
deal with the problem are sent to the shuttle. Imagine the time when we will need
the tools and expertise of all Houston Control engineers aboard the space shuttle,
space vehicle, for extended space travel.

In view of the above it is quite clear that in the control of systems there are
requirements today that cannot be successfully addressed with the existing conven-
tional control theory. They mainly pertain to the area of uncertainty, present because
of poor models due to lack of knowledge, or due to high level models used to avoid
excessive computational complexity.

The control design approach taken here 1s a bottom-up approach. One turns to
more sophisticated controllers only if simpler ones cannot meet the required objec-
tives. The need to use intelligent autonomous control stems from the need for an
increased level of autonomous decision making abilities in achieving complex control
tasks. Note that intelligent methods are not necessary for increase in the control sys-
tem autonomy. It is possible to attain higher degrees of autonomy by using methods
that are not considered intelligent. It appears however that to achieve the highest
degrees of autonomy, intelligent methods are necessary indeed.

1.3 An Intelligent High Autonomy Control System Architecture For
Future Space Vehicles

To illustrate the concepts and ideas involved and to provide a more concrete frame-
work to discuss the issues, a hierarchical functional architecture of an intelligent
controller that is used to attain high degrees of autonomy in future space vehicles
is briefly outlined; full details can be found in [Passino 1993]. This hierarchical ar-
chitecture has three levels, the Execution Level, the Coordination Level, and the
Management and Organization Level. The architecture exhibits certain character-
istics, which have been shown in the literature to be necessary and desirable in
autonomous intelligent systems.

It is important at this point to comment on the choice for a hierarchical archi-
tecture. Hierarchies offer very convenient ways to describe the operation of complex

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

systems and deal with computational complexity issues, and they are used exten-
sively in the modeling of intelligent autonomous control systems. Such hierarchical
approach is taken here (and in [Passino 1993]) to study intelligent autonomous and
hybrid control systems.

Architecture Querview: The overall functional architecture for an autonomous
controller is given by the architectural schematic of the figure below. This is a func-
tional architecture rather than a hardware processing one; therefore, it does not
specify the arrangement and duties of the hardware used to implement the functions
described. Note that the processing architecture also depends on the characteristics
of the current processing technology; centralized or distributed processing may be
chosen for function implementation depending on available computer technology.

Fig. 1. Intelligent Autonomous Controller Functional Architecture

The architecture in Figure 1 has three levels; this is rather typical in the In-

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

telligent Control literature. At the lowest level, the Execution Level, there is the
interface to the vehicle and its environment via the sensors and actuators. At the
highest level, the Management and Organization Level, there is the interface to the
pilot and crew, ground station, or onboard systems. The middle level, called the
Coordination Level, provides the link between the Execution Level and the Man-
agement Level. Note that we follow the somewhat standard viewpoint that there
are three major levels in the hierarchy. It must be stressed that the system may
have more or fewer than three levels. Some characteristics of the system which dic-
tate the number of levels are the extent to which the operator can intervene in
the system’s operations, the degree of autonomy or level of intelligence in the vari-
ous subsystems, the hierarchical characteristics of the plant. Note however that the
three levels shown here in figure are applicable to most architectures of autonomous
controllers, by grouping together sublevels of the architecture if necessary. As it is
indicated in the Figure, the lowest, Execution Level involves conventional control
algorithms, while the highest, Management and Organization Level involves only
higher level, intelligent, decision making methods. The Coordination Level is the
level which provides the interface between the actions of the other two levels and
it uses a combination of conventional and intelligent decision making methods. The
sensors and actuators are implemented mainly with hardware. Software and perhaps
hardware are used to implement the Execution Level. Mainly software is used for
both the Coordination and Management Levels. There are multiple copies of the
control functions at each level, more at the lower and fewer at the higher levels. See
[Passino 1993] for an extended discussion of the issues involved.

Hybrid control systems do appear in the intelligent autonomous control sys-
tem framework whenever one considers the Execution level together with control
functions performed in the higher Coordination and Management levels. Examples
include expert systems supervising and tuning conventional controller parameters,
planning systems setting the set points of local control regulators, sequential con-
trollers deciding which from a number of conventional controllers is to be used to
control a system, to mention but a few. One obtains a hybrid control system of in-
terest whenever one considers controlling a continuous-state plant (in the Execution
level) by a control algorithm that manipulates symbols, that is by a discrete-state
controller (in Coordination and/or Management levels).

1.4 Quantitative Models

For highly autonomous control systems, normally the plant is so complex that it
is either impossible or inappropriate to describe it with conventional mathematical
system models such as differential or difference equations. Even though it might
be possible to accurately describe some system with highly complex nonlinear dif-
ferential equations, it may be inappropriate if this description makes subsequent
analysis too difficult or too computationally complex to be useful. The complexity
of the plant model needed in design depends on both the complexity of the physical
system and on how demanding the design specifications are. There is a tradeoff be-
tween model complexity and our ability to perform analysis on the system via the
model. However, if the control performance specifications are not too demanding, a
more abstract, higher level, model can be utilized, which will make subsequent anal-

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

ysis simpler. This model intentionally ignores some of the system characteristics,
specifically those that need not be considered in attempting to meet the particular
performance specifications. For example, a simple temperature controller could ig-
nore almost all dynamics of the house or the office and consider only a temperature
threshold model of the system to switch the furnace off or on.

The quantitative, systematic techniques for modeling, analysis, and design of
control systems are of central and utmost practical importance in conventional con-
trol theory. Similar techniques for intelligent autonomous controllers do not exist.
This is mainly due to the hybrid structure (nonuniform, nonhomogeneous nature) of
the dynamical systems under consideration; they include both continuous-state and
discrete-state systems. Modeling techniques for intelligent autonomous systems must
be able to support a macroscopic view of the dynamical system, hence it is necessary
to represent both numeric and symbolic information. The nonuniform components
of the intelligent controller all take part in the generation of the low level control
inputs to the dynamical system, therefore they all must be considered in a complete
analysis. Therefore the study of modeling and control of hybrid control systems is
essential in understanding highly autonomous control systems.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

2 Hybrid Control System Modeling

The hybrid control systems considered here consist of three distinct levels; see Figure
2. The controller is a discrete-state system, a sequential machine, seen as a Discrete
Event System (DES). The controller receives, manipulates and outputs events rep-
resented by symbols. The plant is a continuous-state system typically modeled by
differential /difference equations and it is the system to be controlled by the discrete-
state controller. The plant receives, manipulates and outputs signals represented by
real variables that are typically (piecewise) continuous. The controller and the plant
communicate via the interface that translates plant outputs into events for the con-
troller to use, and controller output events into command signals for the plant input.
The interface can be seen as consisting of two subsystems: the event generator that
senses the plant outputs and generates symbols representing plant events, and the
actuator that translates the controller symbolic commands into piecewise constant
plant input signals.

Controller

~
ISR

actuator | Interface |generator

Plant

Fig.2. Hybrid Control System

To be able to develop a useful mathematical framework we keep the interface
as simple as possible; this 1s further discussed below. The interface determines the
events the controller sees that uses to decide the appropriate control action. If the
plant and the interface are taken together the resulting system is a DES, called
the DES Plant, that the controller sees and attempts to control. Another way of
expressing this is that the DES controller only sees a more abstract model of the
plant; a higher level less detailed plant model than the differential / difference equa-
tion model. The complexity of this more abstract DES plant model depends on the
interface. It is therefore very important to understand the issues involved in the
interface design so that the appropriate DES model is simple enough so to lead to a
low complexity controller. It should be noted that this lower complexity is essential

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

for real time adaptation of hybrid control systems. All these issues pointed out here
are discussed in detail later in this chapter.

It 1s important to identify the important concepts and develop an appropriate
mathematical framework to describe hybrid control systems. Here the logical DES
theory and the theory of automata is used. The aim is to take advantage as much as
possible of the recent developments in the analysis and control design of DES. These
include results on controllability, observability, stability of DES and algorithms for
control design among others. We first present a flexible and tractable way of mod-
eling hybrid control systems. Our goal is to develop a model which can adequately
represent a wide variety of hybrid control systems, while remaining simple enough
to permit analysis. We then present a methods which can be used to analyze and
aid in the design of hybrid control systems. These methods relate to the design of
the interface which 1s a necessary component of a hybrid system and its particular
structure reflects both the dynamics of the plant and the aims of the controller.

Below the plant, interface and controller are described first. The assumptions
made and the generality of the models are discussed. In Section 3, the DES plant
model is then derived and the concepts of determinism and quasideterminism are
introduced and certain results are shown. The description of the generator in the
interface via covers is discussed. Controllability of the DES plant model is studied.
The selection of the interface is discussed at length and the fundamental issues
are identified. Connections to Ramadge-Wonham model are shown, the difficulties
involved are indicated, and some recent results are outlined. Simple examples are
used throughout to illustrate and explain. Note that most of these results can be
found in [Stiver 1992].

A hybrid control system, can be divided into three parts as shown in Figure 2.
The models we use for each of these three parts, as well as the way they interact are
now described.

2.1 Plant

The system to be controlled, called the plant, is modeled as a time-invariant, contin-
uous-time system. This part of the hybrid control system contains the entire continu-
ous-time portion of the system, possibly including a continuous-time controller.
Mathematically, the plant is represented by the familiar equations

X = f(X, I‘) (1)
z=yg(x) (2)

where x € R, r € R™, and z € RF are the state, input, and output vectors
respectively. f : R” x ™ — R” and ¢ : R — RP are functions. For the purposes
of this work we assume that z = x. Note that the plant input and output are
continuous-time vector valued signals. Bold face letters are used to denote vectors
and vector valued signals.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

2.2 Controller

The controller is a discrete event system which is modeled as a deterministic au-
tomaton. This automaton can be specified by a quintuple, {5’, Z, R, ¢}, where S
is the (possibly infinite) set of states, Z is the set of plant symbols, R is the set of
controller symbols, 6 : S x Z — S is the state transition function, and ¢ : S — R
is the output function. The symbols in set R are called controller symbols because
they are generated by the controller. Likewise, the symbols in set Z are called plant
symbols and are generated by the occurrence of events in the plant. The action of

the controller can be described by the equations

8[n] = é(3[n — 1], 2[n]) (3)
r[n] = ¢(3[n]) (4)

where 3[n] € S, 2[n] € Z, and #[n] € R. The index n is analogous to a time index in
that it specifies the order of the symbols in a sequence. The input and output signals
associated with the controller are asynchronous sequences of symbols, rather than
continuous-time signals. Notice that there is no delay in the controller. The state
transition, from §[n — 1] to 3[n], and the controller symbol, 7[n], occur immediately
when the plant symbol Z[n] occurs.

Tildes are used to indicate that the particular set or signal is made up of symbols.
For example, Z is the set of plant symbols and Z is a sequence of plant symbols.
An argument in brackets; e.g. Z[n], represents the nth symbol in the sequence Z. A
subscript, e.g. z;, 1s used to denote a particular event from a set.

2.3 Interface

The controller and plant cannot communicate directly in a hybrid control system
because each utilizes a different type of signal. Thus an interface is required which can
convert continuous- time signals to sequences of symbols and vice versa. The interface
consists of two memoryless maps, v and «. The first map, called the actuating
function or actuator, v : R — R™, converts a sequence of controller symbols to a
piecewise constant plant input as follows

r = 5(7) (5)
The plant input, r, can only take on certain constant values, where each value is
associated with a particular controller symbol. Thus the plant input is a piecewise
constant signal which may change only when a controller symbol occurs. The second
map, the plant symbol generating function or generator, « : R” — Z, is a function
which maps the state space of the plant to the set of plant symbols as follows

f = a(x) (6)

It would appear from Equation 6 that, as x changes, z also continuously changes.
That is, there is a continuous generation of plant symbols by the interface because
each state is mapped to a symbol. This is not the case due to the way « is defined
as will now be explained.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

The plant symbol generating function, «, is designed based on an open covering
of the state space of the plant. Consider a collection of p open subsets in %™ which
form an open cover for the plant state space. Let this collection be represented as

C ={ciea...cp} (7)

The collection consists of open subsets, each subset is called a covering event. Let
the ith covering event, ¢;, be associated with a unique covering symbol, ¢;. The
“alphabet” of covering symbols can therefore be represented as

C = {é18...8,} (8)

These covering symbols are used to define the plant symbols as follows

F=alx)=1{& :x € ¢} (9)

As shown in Equation 9, a plant symbol is a collection of covering symbols which
defines a region in the state space. It is convenient to treat this collection as a symbol.
This will be done in this and the following section. A plant symbol is generated only
when a new event first occurs. The overall effect 1s that the state space of the plant
is partitioned into a number of regions and each is associated with a unique plant
symbol which 1s generated whenever the state enters that region. Note that these
regions form the equivalence classes of «.

The use of open covers to describe the state space is motivated by several things.
The generator, «, must take subsets of states onto a “unique” plant symbol. The
representation should be “well posed” so open sets are used so that a small change
in state can be made without changing the event. The representation must also
be complete, meaning every state must be contained within a plant event. These
conditions suggest that « should realize an open covering of the state space.

2.4 Comments on the Generality of the Model

The model described above may appear at first to be too limited but this is not the
case. The simplicity of this model is its strength and it does not reduce its flexibility
when modeling a hybrid control system. It is tempting to add complexity to the
interface, however this typically leads to additional mathematical difficulties that
are not necessary. Consider first the function v which maps controller symbols to
plant inputs. Our model features only constant plant inputs, no ramps, sinusoids, or
feedback strategies. The reasons for this are two fold. First, in order for the interface
to generate a nonconstant signal or feedback signal it must contain components
which can be more appropriately included in the continuous time plant, as is done
in the model above. Second, making the interface more complex will complicate the
analysis of the overall system. Keeping the function 4 as a simple mapping from
each controller symbol to a unique numeric value is the solution.

The interface could also be made more complex by generalizing the definition
of a plant symbol. A plant symbol is defined solely by the current plant state, but
this could be expanded by defining a plant symbol as being generated following the
occurrence of a specific series of conditions in the plant. For example, the interface

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

could be made capable of generating a symbol which is dependent upon the current
and previous values of the state. However, doing this entails including dynamics in
the interface which actually belong in the controller. The controller, as a dynamic
system, 1s capable of using its state as a memory to keep track of previous plant
symbols.

The key feature of this hybrid control system model is its simple and unam-
biguous nature, especially with respect to the interface. To enable analysis, hybrid
control systems must be described in a consistent and complete manner. Varying
the nature of the interface from system to system in an ad hoc manner, or leaving
its mathematical description vague causes difficulties.

2.5 Examples

Example 1 - Thermostat/Furnace System This example will show how an
actual physical system can be modeled and how the parts of the physical system
correspond to the parts found in the model. The particular hybrid control system
in this example consists of a typical thermostat and furnace. Assuming the ther-
mostat is set at 70 degrees Fahrenheit, the system behaves as follows. If the room
temperature falls below 70 degrees the furnace starts and remains on until the room
temperature exceeds 75 degrees. At 75 degrees the furnace shuts off. For simplicity,
we will assume that when the furnace is on it produces a constant amount of heat
per unit time.

The plant in the thermostat/furnace hybrid control system is made up of the
furnace and room. It can be modeled with the following differential equation

x = .0042(Ty — x) + 2step(r) (10)

where the plant state, x, is the temperature of the room in degrees Fahrenheit, the
input, r, is the voltage on the furnace control circuit, and 7j is the outside temper-
ature. The units for time are minutes. This model of the furnace is a simplification,
but it is adequate for this example.

The remainder of the hybrid control system is found in the thermostat which is
pictured in Figure 3. As the temperature of the room varies, the two strips of metal
which form the bimetal band expand and contract at different rates thus causing the
band to bend. As the band bends, it brings the steel closer to one side of the glass
bulb. Inside the bulb, a magnet moves toward the nearest part of the steel and opens
or closes the control circuit in the process. The bimetal band effectively partitions
the state space of the plant, x, as follows

i x <70
a(x) =4 HifT0<x< 75, (11)
Zif x> 75

where the three symbols correspond to 1) steel is moved against the left side of the
bulb, 2) band is relaxed, and 3) steel is moved against the right side of the bulb.
Inside the glass bulb is a magnetic switch which is the DES controller. It has two
states because the switch has two positions, on and off. The DES controller input,
Z, 18 a magnetic signal because the symbols generated by the generator are conveyed

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,

Univ of Notre Dame, January 1993.

magnetically. The state transition graph of this simple controller is shown in Figure
4. The output function of the controller is essentially the following

#(51) = 71 < close control circuit

$(82) = 72 <> open control circuit

Fig. 3. Thermostat

Fig. 4. Controller for Thermostat/Furnace System

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

The contacts on the switch which open and close the control circuit can be
thought of as the actuator, although there is no logical place to separate the actuator
from the DES controller. The commands from the controller to the actuator are
basically a formality here because the controller and actuator are mechanically one

piece. With this in mind, the actuator operates as

7(7a) = 24

Example 2 - Surge Tank This is another example to illustrate how a simple
hybrid control system can be modeled. The system consists of a surge tank which
is draining through a fixed outlet valve, while the inlet valve is being controlled by
a discrete event system. The controller allows the tank to drain to a minimum level
and then opens the inlet valve to refill it. When the tank has reached a maximum
level, the inlet valve is closed. The surge tank is modeled by a differential equation,

x=r—x/2

where x is the liquid level and r is the inlet flow. The interface partitions the

state space into three regions as follows

Z 1f X > max
a(x) = ¢ Z ifmin < x < maz
z3 1f X < min

bl

Thus when the level exceeds maz, plant symbol z; 1s generated, and when the
level falls below mien, plant symbol z3 is generated. The interface provides for two

inputs corresponding to the two controller symbols 71 and 7 as follows

Since r = ¥(7), this means the inlet valve will be open following controller symbol

71, and closed following controller symbol 75.

The controller for the surge tank is a two state automaton which moves to state
$1 whenever Z3 is received, moves to state S, whenever Z; is received and returns to

the current state if Z5 is received. Furthermore ¢(51) = 71 and ¢(52) = 72.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

3 System Theoretic Issues

3.1 The DES Plant Model

If the plant and interface of a hybrid control system are viewed as a single component,
this component behaves like a discrete event system. It is advantageous to view a
hybrid control system this way because it allows it to be modeled as two interacting
discrete event systems which are more easily analyzed than the system in its original
form. The discrete event system which models the plant and interface is called the
DES Plant Model and is modeled as an automaton similar to the controller. The
automaton is specified by a quintuple, {ﬁ, Z, R, ¥, A}, where P is the set of states,
Z and R are the sets of plant symbols and controller symbols, ¢ : P x R — Pis the
state transition function, and A : P — Z is the output function. The behavior of the
DES plant is as follows

pln + 1] = ¥(p[n], 7ln]) (19)
Z[n] = Mpln]) (20)

where f[n] € P,#[n] € R, and Z[n] € Z. There are two differences between the DES
plant model and the controller. First, as can be seen from Equation 19, the state
transitions in the DES plant do not occur immediately when a controller symbol
occurs. This is in contrast to the controller where state transitions occur immediately
with the occurrence of a plant symbol. The second difference is that the automaton
which models the DES plant may be non-deterministic, meaning p[n+1] in Equation
19 is not determined exactly but rather is limited to some subset of P. The reason for
these differences is that the DES plant model is a simplification of a continuous-time
plant and an interface. This simplification results in a loss of information about the
internal dynamics, leading to non-deterministic behavior.

The set of states,]5, of the DES plant i1s based on the open covering realized in
the interface. Specifically, each state in P corresponds to a region, in the state space
of the continuous-time plant, which 1s equivalent under «. Thus there is a one-to-one
correspondence between the set of states, P, and the set of plant symbols, Z. It is
this relationship between the states of the DES plant model and the plant symbols
which forms the basis for the work described in this section. It can be used to develop
an expression for the state transition function, ¢. Starting with the continuous-time
plant, we integrate Equation 19 to get the state after a time ¢, under constant input

r = ()
x(t) = Fi(x0,1) (21)

Here xg is the initial state, ¢ is the elapsed time, and 7, € R. Fr(xg,t) is obtained
by integrating f(x,r), with r = (7). Next we define

Fi(x0) = Fr(x0,1), (22)

where

t = min{t|a(F(xo,1)) # a(xo)} (23)

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Equation 22 gives the state, x, where it will first cross into a new region. Now the
dynamics of the DES plant model can be derived from Equations 5, 6, 22.

Z[n + 1] = A((pIn], 7ln])) (24)
Zn+ 1] = a(£k(x0)) (25)
Y (pln], 7[n]) = A7 (o(Fi(x0))) (26)

where 7[n] = 7, and {x¢ € {x|a(x) = A(p[n])}. As can be seen, the only uncertainty
in Equation 26 is the value of xg. x¢ 18 the state of the continuous-time plant at
the time of the last plant symbol, Z[n], i.e. the time that the DES plant entered
state p[n]. xo is only known to within an equivalence class of «. The condition for a
deterministic DES plant is that the state transition function, ¥, must be invariant
to this uncertainty.

Definition1l. A DES is determunistic iff for any state and any input, there is only
one possible subsequent state.

The following theorem gives the conditions upon the hybrid control system such
that the DES plant will be deterministic.

Theorem 2. The DES plant will be deterministic iff given any p[n] € P and 7y € R,
there exists pln + 1] € P such that for every xo € {x|a(x) = A(p[n])} we have
a(Fr(x0)) = A(p[n + 1]).

Proof: Notice that the set {x|a(x) = A(p[n])} represents the set of all states, x,
in the continuous-time plant which could give rise to the state p[n] in the DES plant.
The theorem guarantees that the subsequent DES plant state, p[n + 1], is unique for
a given input and thus the DES plant i1s deterministic.

To prove that the theorem is necessary, assume that it does not hold. There
must then exist a p[n] € P and 7, € R such that no p[n + 1] exists to satisfy the
condition: a(Fy(x0)) = Mp[n + 1]) for every x¢ € {x|a(x) = A(p[n])}. This is not a
deterministic system because there is uncertainty in the state transition for at least
one state and input. a

Theorem 2 states that the DES plant will be deterministic if all the state trajec-
tories in the continuous-time plant, which start in the same region and are driven
by the same input, move to the same subsequent region.

3.2 Double Integrator

To illustrate the DES plant model, an example of a hybrid control system containing
a double integrator is given. Double integrators often arise in systems. For example,
a satellite equipped with a thruster will behave as a double integrator when the
thrust is considered the input and the velocity and position are the two states.

X:[gé]x—l—[?]r (27)

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

The general control goal in this system, which motivates the design of the interface,
is to move the state of the double integrator between the four quadrants of the state-
space. In the interface, the function a partitions the state space into four regions as
follows,

zZp 1f $1,l‘2>0

) 22 if 21 <0,22>0
V=950 aam<0 (28
Zg U x4 >0,l‘2<0
and the function v provides three set points,
—10 if r=r
y(7) = 0 if =7, (29)
10 if =73

So whenever the state of the double integrator enters quadrant 1, for example, the
plant symbol Z; is generated. When the controller (which is unspecified) generates
controller symbol 71, the double integrator is driven with an input of —10.

Now we know that the DES plant will have four states because there are four
regions in the state space of the actual plant. By examining the various state tra-
jectories given by Equation 30, we can find the DES plant which is shown in Figure
5. Equation 30 is obtained by integrating Equation 27 and adding x(0).

x = [é i] xo + [.5;2] NG (30)

Fig.5. DES Plant Model for Double Integrator

As can be seen in Figure 5, the DES plant is not deterministic. If we consider
p[n] = p2 and 7[n] = 71, there exists no uniquely defined p[n+1], it could be either p;

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

or ps. This could present a problem in designing a controller for this system because
it is not entirely predictable. In the following section a possible remedy for lack of
determinism is presented and this example is revisited.

3.3 Partitioning and Quasideterminism

A particular problem in the design of a hybrid control system is the selection of the
function «, which partitions the state-space of the plant into various regions. Since
this partition is used to generate the plant symbols, it must be chosen to provide
sufficient information to the controller to allow control without being so fine that it
leads to an unmanageably complex system or simply degenerates the system into an
essentially conventional control system. The partition must accomplish two goals.
First it must give the controller sufficient information to determine whether or not
the current state is in an acceptable region. For example, in an aircraft these regions
may correspond to climbing, diving, turning right, etc. Second, the partition must
provide enough additional information about the state, to enable the controller to
drive the plant to an acceptable region. In an aircraft, for instance, the input required
to cause the plane to climb may vary depending on the current state of the plane. So
to summarize, the partition must be detailed enough to answer: 1) is the current state
acceptable; and 2) which input can be applied to drive the state to an acceptable
region.

In a hybrid control system, the controller needs information about the plant for
two reasons. First the controller must be able to assess whether the plant is operating
as desired or if some new control action is needed. Second, if control action is called
for, the controller needs to know which control action will achieve the desired effect.
Both of these tasks require information about the plant. Consider for example a
climate control system in a building. To assess the current condition, the controller
needs to know whether the temperature and humidity fall within a certain range of
acceptable values. If not the controller needs additional, more detailed, information
about which condition is unacceptable and how much and in which direction 1t must
be changed to reach the desired range.

To design a partition, we can start by designing a primary partition to meet
the first goal mentioned above. This primary partition will identify all the desired
operating regions of the plant state space, so its design will be dictated by the control
goals. The final partition will represent a refinement of the primary partition which
enables the controller to regulate the plant to any of the desired operating regions,
thus meeting the second goal. An obvious choice for the final partition is one which
makes the DES plant deterministic and therefore guarantees that the controller will
have full information about the behavior of the plant. In addition to being very
hard to meet, this requirement is overly strict because the controller only needs to
regulate the plant to the regions in the primary partition, not the final partition.
For this reason we define quasideterminism, a weaker form of determinism. In the
DES plant, the states which are in the same region of the primary partition can be
grouped together, and if the DES plant is deterministic with respect to these groups,
then we say it is quasideterministic. So if the DES plant is quasideterministic, then
we may not be able to predict the next state exactly, but we will be able to predict
its region of the primary partition and thus whether or not it is acceptable.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Definition3. The DES plant will be quasideterministic iff given any p[n] € P and
7r € R, there exists C P such that for every xo € {x|a(x) = A(p[n])} we have
ap(Fk(xo)) Ay (B[n + 1]) where p[n + 1] € Q and A,(§) is the same for all § € Q. O

The functions o, and A, are analogous to o and A but apply to the primary
partition. They are useful for comparing states but they are never implemented and
their actual values are irrelevant. For example, if ap(x1) = ap(x2), then x; and x5
are in the same region of the primary partition. Or, if ap(x1) = Ap(p1), then x5 is
in the same region of the primary partition as p; in the DES plant. When used with
ap we define F as

Fi(x0) = Fr(x0,1), (31)
where

t = min{t|ap(F(x0,1)) # ap(x0)} (32)

We would like to find the coarsest partition which meets the conditions of Defini-
tion 1 for a given primary partition. Such a partition is formed when the equivalence
classes of « are as follows,

Ela] = inf{E[a,], Eay, o |7, € R} (33)

Where we use Ele] to denote the equivalence classes of e. The infimum, in this
case, means the coarsest partition which is at least as fine as any of the partitions
in the set.

Theorem4. The regions described by Fquation (33) form the coarsest partition
which generates a quasideterministic DES plant.

Proof: First we will prove that the partition does, in fact, lead to a quasideter-
ministic system. For any two states, x; and x5, which are in the same equivalence
class of «, we apply some control r = (7). The two states will subsequently enter
new regions of the primary partition at Fk(xl) and Fk(xz) respectively. The actual
regions entered are ap(Fk(xl)) and ap(Fk (x2)). Now according to Equation 33, if
x; and x5 are in the same equivalence class of «, then they are also in the same
equivalence class of ap o Fy. Therefore ozp(Fk (x1)) = ozp(Fk (x2)) and the system is
quasideterministic.

Next we will prove that the partition is as coarse as possible. Assume there 1s
a coarser partition which also generates a quasideterministic system. That is, there
exists two states, x3 and x4, in the same region of the primary partition such that

a(x3) # a(x4), but ap(Fk(X3)) = ap(Fk(X4)) for any poss1ble k. These two states
would lie in the same equivalence class of ap o Fk for all 7, € R and therefore in the
same equivalence class of inf{ E[a,], E[a, 0 Fi |y € R}. This violates the assumption
that x3 and x4 do not lie in the same equivalence class of «, so two such states could
not exist and therefore a coarser partition can not exist. a

Quasideterminism accomplishes its goal by causing the trajectories of the various
states within a given region of the final partition, under the same control, to be
invariant with respect to the regions of the primary partition.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

We can return now to the double integrator discussed previously and us it to
illustrate quasideterminism. The state space of the double integrator had been par-
titioned into the four quadrants and this gave rise to the nondeterministic DES plant
shown in Figure 5. Using those four regions as the primary partition, a final parti-
tion can be obtain according to Theorem 4. This partition is shown in Figure 6 and
the resulting DES plant is shown in Figure 7. The final partition refined the regions
in quadrants IT and TV, and the DES plant is now quasideterministic (in fact it is
deterministic but unfortunately that is not generally the result).

Fig. 6. State Space Partition for Double Integrator

Note that the partition described in Equation 33 and discussed in Theorem 4
is not dependent upon any specific sequence of controller events. It 1s intended to
yield a DES plant which is as “controllable” as possible, given the continuous-time
plant and available inputs. If the specific control goals are know, it may be possible
to derive a coarser partition which is still adequate. This can be done in an ad hoc
fashion, for instance, by combining regions which are equivalent under the inputs
which are anticipated when the plant is in those regions.

Selection of Control Action In hybrid control systems, the choice of the plant
inputs which make up the range of the actuator, v, play an important role in defining
the system. At this time we have no way of systematically deriving a set of control
actions which will achieve the desired control goals, either optimally or otherwise. We
can assume that the control actions available are determined by the plant (positions
of the various valves, switches, etc.) and thus represent a constraint on the controller
design.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Fig.7. DES Plant Model for Double Integrator

3.4 Connections to Existing DES Control Theory

A significant amount of work has been done on the analysis and design of discrete
event systems, especially the design of controllers for discrete event systems. Since
the controller of a hybrid control system is a DES and we can use a DES to represent
the plant in a hybrid control system, we can apply many of the theories and tech-
niques, which were developed for DES’s, to hybrid control systems. In this section,
we draw on some of this work.

Stability Several papers have been written dealing with the stability of discrete
event systems, e.g. [Passino 1992a] and [Ozveren 1991]. In [Passino 1992a] the ideas
of Lyapunov stability are applied to discrete event systems. These same techniques
can be applied to the DES plant in a hybrid system. The states of the DES plant
which are considered “desirable” are identified and a metric is defined on the re-
maining “undesirable” states. With a metric defined on the state space, finding a
Lyapunov function will prove that the DES is stable. In the case of a hybrid control
system, this interpretation of definition Lyapunov stability means the following. The
state of the plant will remain with in the events which were deemed “desirable” and
if it is perturbed from this area, the state will return to it. A detailed application of
these results to hybrid control systems can be found in [Stiver 1991b].

In [Ozveren 1991] the stability of a DES is defined as the property that the state
of the DES will visit a certain subset infinitely often. This subset is analogous to the
“desirable” set mention above. In a hybrid control system, this would imply that
the state of the plant could leave the subset of states but would eventually return.

Controllability Work has been done on the controllability of discrete event systems
using the Ramadge-Wonham framework [Ramadge 1987] [Ramadge 1989] [Wonham
1987]. The DES models used in the Ramadge-Wonham framework differ from the

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

models developed for hybrid control systems as described in this chapter, therefore
the theorems and techniques cannot be applied directly, but must be adapted to
work with a slightly different model.

The model developed by Ramadge and Wonham (henceforth RWM) features a
generator and a supervisor, both DES’s; which are analogous to the DES plant model
and DES controller, respectively. There are, however, several differences which must
be addressed first.

In the generator, the state transitions are divided into two sets, those which are
controllable and those which are uncontrollable. The controllable state transitions,
or events, can be individually enabled by a command from the supervisor, while the
uncontrollable state transitions are always enabled. Also, the effect of the supervisor
commands is not changed by the state of the generator. This is in contrast to our
DES plant model where commands from the DES controller can enable one or more
state transitions depending on the current state. The general inability to enable
events individually and the dependence of DES controller commands upon the state
of the DES plant model, are what differentiate the DES models used our work on
hybrid control systems from the RWM.

The reason for the differences between the RWM and the model used for hybrid
control systems is chiefly due to the fact that the RWM is suited to modeling actual
discrete event systems, while the DES plant model is an abstraction of a continuous-
time system. This means that a particular state of the DES plant corresponds to
more than one state in the continuous-time plant.

Controllability in a DES can be characterized by the set of event sequences which
can be made to occur in the DES plant, [Ramadge 1989]. This set is referred to as the
language of the particular DES. When under control, the DES will exhibit behavior
which lies in a subset of its language. A theorem has been developed to determined
whether a given RWM DES can be controlled to a desired language and if not, what
is the greatest portion of the desired language which can be achieved via control.
With appropriate modifications this theorem can be applied to the DES plant to
determine whether a given control goal is possible.

If a desired behavior (i.e. language) is not attainable for a given controlled DES, it
may be possible to find a more restricted behavior which 1s. If so, the least restricted
behavior is desirable. [Wonham 1987] provides a method for finding this behavior
which is referred to as the supremal sublanguage of the desired language.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

4 Event Identification

Hybrid dynamical systems provide a convenient tool for the analysis and design
of supervisory control systems. A supervisory control system arises when a dis-
crete event system is used to supervise the behaviour of a plant by the issuance of
logical control directives. The hybrid system framework shown in figure 2 clearly
illustrates this architecture. In this case, the DES or supervisor is used to control
the continuous-state plant. The supervisor, of course, is a symbol manipulation sys-
tem where the logical symbols have “meanings” grounded in nonsymbolic external
“events”. For example, a certain set of temperatures and pressure measurements may
be indicative of a potential system failure. In this case, we would like to associate the
“nonsymbolic” measurements with a “symbolic” label called “FAILURE”. Therefore
the supervisor’s computations represent the manipulation of abstractions about the
plant’s current state. The use of such high-level abstractions (representations) of
system state to control the system is sometimes called “intelligent” control.

This notion of intelligence, however, is singularly unsatisfying. Note that the ac-
tion of the controller relies on the prior interpretation assigned to the plant and
control symbols. Therefore the “intelligence” of the system lies in the interpretation
of these symbols. The “intelligent” choices, however, were made by the human de-
signer, not by the machine. Therefore it is the designer, rather than the machine
which is intelligent. This same fundamental argument has been previously leveled
against production based inference as a model for human cognition [Searle 1984].
Essentially, it asserts that the “blind” manipulation of symbols is not sufficient to
render a system intelligent.

The reduction of the plant to an effective DES plant model, represents one way of
designing so-called “intelligent” controllers. This approach to design was discussed
briefly in the preceding section. However, this design approach represents the pre-
cise disembodiment of controller symbol and event, which was immediately discussed
above. In this regard, an approach to supervisory control which assumes a priori sym-
bol/event bindings cannot be considered an “intelligent” control system. Intelligence
will only arise when the system is capable of determining its own event/symbol bind-
ings. This requires that any intelligent system solve what may be called the event
identification problem. The relationship between this “event identification” problem
and more traditional issues in artificial intelligence such as the symbol grounding
problem [Harnad 1990] is discussed in one of the closing subsections of this chapter.

Whether or not the symbolic manipulations of a computational system consti-
tutes intelligence can, no doubt, be argued endlessly. There is, however, a much
more pragmatic reason for considering such a system undesirable. If we consider
those applications for which supervisory control systems are intended, it is immedi-
ately apparent that supervision is meant for complex and and unpredictable systems.
For such systems, prior plant knowledge or complete plant knowledge may be im-
possible. This means that “events” which are defined with respect to an assumed
plant structure, may change unexpectedly. If this is the case, then it is well within
the realm of possiblity for our not-so intelligent supervisor to happily chunk away
and produce of stream of nonsensical control symbols. The reason this occurs, of
course, is because the supervisor really doesn’t understand the significance of the
symbols it i1s manipulating. If we wish to call this un-intelligent processing, that is

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

fine. The end result is the same, however, a system whose autonomy is limited by the
designer’s initial assignment of symbol bindings. Therefore, a more pragmatic reason
for requiring event identification of “intelligent” control systems is that it will un-
doubtably lead to increased system autonomy. The issue of autonomy in intelligent
control was discussed thoroughly in the introduction. It is the need for such auton-
omy that really motivates the requirement for event identification in hybrid systems.
As will be pointed out in one of the closing subsections, this ability is also consis-
tent with notions of “intelligence” stemming from the symbolic and subsymbolic AT
communities [Chalmers 1992].

The preceding discussion therefore indicates that an important problem in hybrid
system control 1s the identification of events. How does one choose events which
are consistent with the desired control objectives? Is it possible for the system to
identify 1ts own set of “optimal” events. This section presents one example of how
such event identification can be accomplished. The problem of event identification
can be view in a variety of contexts. For example, consider a system which has the
general architecture shown in figure 2. Assume that the plant uses a collection of
control policies, so that the plant’s differential equation has the form

X = Z ri fi(x) (34)

where x is the state vector and r is an m-vector of “coordination” coefficients.
The individual vector fields can be seen as “control policies” which are coordinated
through the specification of the vector r. In figure 2, it can now be seen that the
binding of plant/control symbols with subsets of the state space determines the
behaviour of this system. One side of the problem, involves determining plant symbol
and event bindings which allow a determinisitic or quasideterministic plant DES
(see section 3). The solution of this problem yields a design for the interface’s event
generator. A system which can learn a set of bindings consistent with deterministic
behaviour will have gone a long way in learning to control itself. Another side of the
problem focuses on learning the symbol bindings between the control symbols, 7, and
vectors r. The solution to this problem yields a design for the interface’s actuator.
System’s which are capable of forming the event/symbol bindings consistent with
with control objectives (i.e. determinism or controllability) will go a long way towards
realizing “intelligent” control systems exhibiting a high degree of autonomy.

The following subsections provide a specific example of a hybrid system which
can automatically learn event/symbol bindings. The example system is a variable
structure system and the symbol bindings are learned with regard to invariant sets
generated by the plant’s dynamics. Early work on this was done in [Lemmon 1992]
and refined in [Lemmon 1993a] with regard to the binding of plant symbols. Consid-
erations on the binding of control symbols was discussed in [Lemmon 1993b]. In all
of this work it was shown that bindings could be learned in finite time with a sample
complexity that scales in a polynomial manner with plant complexity. The remainder
of this section 1s organized as follows. Subsection 4.1 discusses the example problem
which is referred to in this section as the invariant subspace identification (ISID)
problem. Subsection 4.2 introduces the learning algorithm. This algorithm consists
of two procedures called the oracle and the update procedure. These procedures are

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

derived in subsections 4.3 and 4.4. The convergence and complexity properties of
this learning procedure are discussed in section 4.5. An example of this algorithm’s
use 1s illustrated in section 4.6. The importance of the following example is that it
provides a concrete example of a hybrid system which learns to “identify” its own
events in a computationally efficient manner. Some issues and concerns associated
with this example are discussed in subsection 4.7. The presented algorithm also pro-
vides a slightly different perspective on the relationship between intelligence and
control. The central issue in this perspective is the so-called “symbol grounding”
problem [Harnad 1990]. This novel perspective on “intelligence” will be discussed in
subsection 4.8.

4.1 Invariant Subspace Identification (ISID) Problem

The hybrid system under consideration is assumed to have a very special form.
Specifically, it will be assumed that the plant’s dynamics are represented by the
following differential equations.

X = Z?“ifi(x) (35)

where x € R” is the state vector, f; and fy are smooth mappings from £" onto R".
It is also assumed that the vector r = (ry,r2)' takes on the values of (0,0),(1,0)
or (0,1). The resulting plant is therefore a variable structure system [Utkin 1977]
[DeCarlo 1988].

The interface generator for this hybrid system will be formed with respect to a
covering collection consisting of two events, ¢t and ¢~.

F={xeR":s'x > —|a|} (36)
c”={xeR" s'x < |a|} (37)

where « is a real number and s is an n-dimensional real vector. These two events form
overlapping linear halfspaces. The covering generates three distinct plant events. The
plant state either lies in the deadzone formed by the intersection of ¢t and ¢~ or
else it lies only in one of the halfspaces. Therefore the plant symbols issued by the
generator will be either {¢+,¢7}, {¢T}, or {¢7}.

It will be assumed that the supervisor is an identity mapping which simply passes
on the plant symbol to the interface actuator. The actuator will then associate each
symbol with a control vector r as follows

(10)" if {e*}
r=1< (00)" if{ct 7} (38)
(01)t if{c}
These assumptions for the plant, actuator, generator, and supervisor yield a hybrid
system which is, essentially, a variable structure control system. The dynamics of the
plant under the supervisor’s control are represented by the following set of switching
differential equations
fi(x)if s'x < —|af
x = if |s'x| < |af (39)
fa(x) if s'x > |af

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

One objective in variable structure control is to drive the plant state onto the
hyperplane, Hg, and keep it in the neighborhood of that surface. Define the surface
Hg as

Hs={xeRN" :s'x =0} (40)
This is a hyperplane passing through the origin, with normal vector s. The neighbor-
hood of this surface is represented by the set formed by intersecting the two events
¢t and c¢~. Since the control objective is to drive the system state into ¢t N ¢~
and keep it there, it 1s important that this set be an attracting invariant set with
respect to the controlled plant’s dynamics as shown in equation 39. The Hg which is
invariant with respect tot he plant’s dynamics will be referred to as a sliding mode.

An invariant subset with respect to a transformation group {®;} is defined as
follows.

Definition 5. The set H C R will be a @-invariant of the transformation group
{P; : " — R"} if and only if for any x € H, &4(x) € H for all t > 0.

Of more interest are sets which are attracting invariants of the flow.

Definition 6. The set H C R will be an attracting @-invariant of the transforma-
tion group {@; : R® — R"} if and only if for any x € H, there exists a finite T'> 0
such that ¢;(x) € H for all ¢ > T

In our example, the transformation groups are the family of transition operators
generated by the differential equations 39. These transformations, @;, represent a
collection of automorphisms over the state space which are sometimes called the
“flow” of the dynamical system.

Unfortunately, not all choices of s will leave the target event invariant. Those
hyperplanes which yield invariant target events can be determined directly from the
set of vector fields {f1, f2} representing the system’s control policies. Examples of
this computation can be found in nonlinear systems theory [Olver 1986]. However,
this computation requires explicit equations for these control policies and there are
numerous applications where such prior knowledge is unavailable. Uncertainty in
the precise form of the control policies can arise from unpredicted variations in the
plant’s structure. Uncertainty can also arise in highly complex systems where the
state space’s high dimensionality precludes complete prior knowledge of the distri-
butions. In such situations, it is necessary that the invariants be determined directly
from the system’s observed behaviour. Since the hybrid system’s event covering is
defined with respect to these invariants, we see that the problem of finding such
invariants is essentially the problem of event identification. In other words, we need
to identify a collection of covering events which are invariant with respect to the
available control policies f; and f5. This problem is referred to in this chapter as the
invariant subspace identification (ISID) problem. The algorithms discussed in the
following subsections provide one way of solving the ISID problem by direct (active)
experimentation.

4.2 Invariant Subspace Identification Algorithm

Inductive inference is a machine learning protocol in which a system learns by ex-
ample. It has found significant practical and theoretical uses in learning Boolean

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

functions by example [Angluin 1983], proving poly-time complexity of linear pro-
gramming [Khachiyan 1979] and combinatorial optimization [Groetschel 1988] al-
gorithms, developing finite-time procedures for training linear classifiers [Rosen-
blatt 1962] [Ho-Kashyap 1965], and estimating sets bounding unknown parame-
ters [Dasgupta 1987]. In this section, an inductive protocol for learning an n — 1-
dimensional invariant subspace of a variable structure system is formally stated.

The inductive protocol developed in this chapter can be seen as consisting of
three fundamental components;

— an experiment for generating examples,

— a query to an algorithm called the membership oracle,

— and an update algorithm for modifying the system’s current controller (i.e.
switching surface).

These components are used to iteratively adjust the system’s current estimate for
the invariant subspace Hg. Figure 8 illustrates the relationship between these three
algorithm components.

[h]

Fig. 8. Flow chart for an inductive inference protocol solving the ISID problem

The algorithm begins by forming an initial hypothesis about the system’s sliding

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

mode. This hypothesis takes the form of an n-dimensional vector s and an n by n
symmetric matrix, Q. The vector represents a unit normal to a switching surface,
Hg, which is hypothesized to be a sliding mode. The matrix represents a convex
cone which i1s known to contain those vectors normal to all sliding modes of the
system. Because the matrix, Q, is associated with a convex cone in ", it will have
1 negative eigenvalue and n — 1 positive eigenvalues. For the purposes of this section
it will therefore be convenient to make the following notational conventions. Let e;
be the ith eigenvector of Q and let A; be its associated eigenvalue. Assume that the
eigenvalues and eigenvectors are ordered so that A; > A;41 for all ¢. Define an n by
n — 1 matrix, E, whose columns are the eigenvectors of Q with positive eigenvalues.
This matrix will be called Q’s positive eigenvector matrix. Also form an n — 1 by
n — 1 diagonal matrix, L, from the positive eigenvalues of Q. This matrix will be
called the positive eigenvalue matrix. Both matrices are shown below.

MO - 0
E=(ejeseny) L=| 0 0 (41)
00 - Ay

The normalized eigenvalue matrix will be defined as R = L/|A,|.

After forming the initial hypothesis, the algorithm’s first component, the ex-
periment, is performed. This component involves the active measurement of the
system’s state and state velocity. The second algorithm component uses these ex-
perimental measurements to make a declaration on the validity of the hypothesis
that the switching surface Hg is indeed a sliding mode. The declaration is made by
a Boolean functional called the invariance oracle. The oracle’s response is a MAYBE
or FALSE declaration. If the answer is MAYBE then nothing is done. If the answer
is FALSE, however, then the current hypothesis is modified using the algorithm’s
third component, the update algorithm.

The update algorithm uses a modification of the central-cut ellipsoid method
[Shor 1977] to recompute the symmetric matrix Q and the vector s. In modifying
the hypothesis after the oracle’s FALSE declaration, the update procedure attempts
to generate a new hypothesis which is consistent with prior experimental data. This
basic cycle of experiment, query, and update continues until an attracting invariant
subspace 1s found.

The ISID algorithm can now be formally stated.

Invariant Subspace Identification (ISID) Algorithm

1. Initialize: Initialize an n by n symmetric matrix, Q, which has n — 1 positive
eigenvalues and 1 negative eigenvalue such that if Hy is a sliding mode, then
z'Qz < 0. Compute the eigendecomposition of Q.

2. Form Hypothesis: Set the system’s current switching surface, s, equal to the

negative eigenvector, e, , of Q.

Experiment: Measure the system’s state and state velocity, x and x.

o

4. Query: Compute the invariance oracle’s response,

)= {0 if (s'x) (s'x) < 0 (42)

Lix x,8) = 1 otherwise

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

5. Update Hypothesis: If the oracle returns 1, then recompute Q using the
following equations,

¢ =E'x, (43)
R 'c
b= —— % 44
VetR-1e (44)
1
a = —gb, (45)
=1 _ (n—1)? 1 2y
R = o (R - =bb' |, (46)
x, = Ea+e,, (47)
Q = (I—-e,x")ERE"(I - x,e!,), (48)

Set Q equal to Q and recompute the eigendecomposition of Q.
6. If the oracle returns 0, then do nothing.
7. Loop: go to step 2.

4.3 Invariance Oracles

This subsection derives the oracle used by the ISID algorithm and formally stated in
equation 42. The oracle 1s a Boolean functional which evaluates a sufficient condition
for the set Hg to be attracting and invariant.

Consider a set X called the sample set and let M/ be a measurable subset of X.
The membership oracle is defined as follows.

Definition7. Given a sample set X and a measurable set M C X, the membership
oracle for M is a mapping, O : X — {0, 1}, such that for any x € X

0 if and only if x € M

Ox) = { lif and only if x ¢ M ° (49)

The membership or M-oracle can be thought of as a decision machine determining
whether or not an example is a member of set M. An example which 1s an element
of M will be called a positive M-example. If M€ is the complement of M, then a
positive M “-example will sometimes be called a negative example. In this regard, the
M -oracle’s response can be interpreted as a TRUE or FALSE declaration concerning
the membership of the example.

In certain cases, complete membership information may not be practical. It is
therefore desirable to consider a weaker form of the M-oracle.

Definition8. Given a sample set X and a measurable set M C X, the mapping,
O : X — {0, 1}, is called an incomplete M-oracle if there exists another measurable
set NV such that M C N and the mapping, O, is an N-oracle.

The incomplete M-oracle is a weaker version of the M-oracle since it only declares
that the example is not an element of M. It does not make any declaration about
an example’s membership in M. In this regard, an incomplete oracle’s response can

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

be interpreted as a FALSE or MAYBE declaration on the example’s membership in
M.

An invariance oracle will be a Boolean functional which declares whether or not a
given subspace, Hg, is attracting and @-invariant. Therefore the first step in defining
an “invariance” oracle is to determine a test by which invariance can be determined.
Sufficient conditions for attracting @-invariant sets form the basis of these tests. The
following theorem provides a specific example of such a test.

Theorem 9. Lets be a given n-dimensional real vector and let x be given by equation
35. If the following condition

(s'x) (s'x) < 0, (50)
is salisfied for all x ¢ Hg, then the subspace, Hs, is an atlracling $-invariant sel.

Proof: Define the functional V(x) = % (stx)z. Clearly, V' > 0 for all x. By the
theorem’s assumption, V < 0, for all x ¢ Hg. Therefore by theorem 8 in [Utkin 1977],
Hg must be a sliding mode and is therefore an attracting @-invariant set of the flow.
QED.

It should be apparent that equation 50 can be recast as a logical function making
a declaration about the consistency of the measured state and state velocity with the
hypothesis that Hg is a sliding mode. This, then motivates the following definition
for an “invariance” oracle.

Definition10. The Boolean functional, I; : %" — {0, 1}, defined by equation 42
will be called an invariance oracle.

Let A denote a subset of R™ consisting of those n-dimensional vectors s for
which Hg is attracting and @-invariant. This set, A, will be referred to as the set of
attracting and invariant subspaces. The following theorem states that the invariance
oracle, Iy, is an incomplete A%-oracle where A° is the complement of set A.

Theorem 11. Let A be the set of attracting invariant subspaces. If the function
I : ®3" — {0,1} is an invariance oracle, then it is an incomplete A°-oracle.

Proof: Let A; be a set of n-dimensional vectors s such that I = 0 for any x and x
given by equation 35. By definition 7, I; must be an Af-oracle. By theorem 1, any
element of A; must also be an attracting @-invariant set. Therefore A; C A, which
implies A® C Af. This therefore establishes I; as an incomplete A°-oracle according
to definition 8. QED

The set A; defined in the above proof will be referred to as the set of attracting
invariant subspaces which are declarable by the invariance oracle, I;. Note that this
set is smaller than A, the set of all attracting invariant subspaces. For this reason, the
oracle is incomplete and its response is a declaration of TRUE or MAYBE concerning
the membership of s in A.

In the remainder of this subsection, the data collection gathered by an experiment
will be denoted as X = {x,x}. It is assumed, that these measurements have no
measurement noise, so that the oracle’s declarations are always correct. An invariance
oracle which always makes the correct declaration for a given data collection, X', will

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

be called a perfect oracle. In practical oracle realizations, the assumption that the
invariance oracle is perfect may be too optimistic due to measurement uncertainty.
This realization prompts the definition of an imperfect oracle as an oracle whose
declarations are incorrect with a given probability. The distinction between perfect
and imperfect oracles is critical, because inductive protocols based on oracle queries
can fail disasterously with imperfect oracles. The convergence results of subsection
4.5 only apply to perfect invariance oracles. Precisely how to manage failures due to
imperfect oracles is an important issue for future study. A preliminary indication of
how to handle this problem will be discussed in subsection 4.7.

4.4 Ellipsoidal Update Method

The ISID algorithm uses an update procedure which recursively adjusts an esti-
mate for the set A; of attracting invariant subspaces declarable by I;. The proposed
updating procedure is therefore a set-estimation algorithm which 1s closely related
to set-membership identification algorithms [Dasgupta 1987] [Deller 1989]. Tt is also
related to analytical techniques used in proving polynomial oracle-time complexity
for certain optimization algorithms [Groetschel 1988] [Khachiyan 1979]. The com-
mon thread between both of these related areas is the use of the ellipsoid method
[Shor 1977] [Bland 1981], which the following discussion also uses to great advantage.

An important property of A; (the set of declarable subspaces) is provided in the
following lemma.

Lemma12. Ay is a convex cone centered at the origin.

Proof: Consider a specific collection of measurements as X = {x,x}. Define Cy
as

Cy ={seR": ,(X,s)=0}. (51)
Ay will therefore be given by
A =0 (52
X

Since the oracle’s response for a given s 1s independent of the vector’s magnitude,
Cy must be a cone centered at the origin. Since Cy is formed by the intersection
of two halfspaces (see inequality 50), it must also be convex. A; is therefore the
intersection of a collection of convex cones centered at the origin and must therefore
be one itself. QED

The significance of the preceding lemma is that it suggests A; may be well
approximated by sets which are themselves convex cones centered at the origin. A
particularly convenient selection of approximating cones are the so-called ellipsoidal
cones.

An “ellipsoidal cone” cone is defined as follows,

Definition13. The ellipsoidal cone, C.(Q), is
C.(Q)={seR":5'Qs < 0}, (53)

where Q is an n by n symmetric matrix with n — 1 positive eigenvalues and one
negative eigenvalue.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

In the update procedure to be derived below, an ellipsoidal cone, C.(Q), will
be used as an initial estimate for A;. The current hypothesis 1s that the subspace
normal to the negative eigenvector of QQ is an attracting invariant set. If any data
collection, X', results in the oracle, I, declaring a failure, then the information from
that failed query can be used to identify a set of subspaces which cannot possibly lie
in Ay. This set will be referred to as the “inconsistent” set of subspaces generated
by X. The following lemma provides one characterization of these sets.

Lemma14. Let C.(Q) be an ellipsoidal cone with negative eigenvector, e,. Let
X be a data collection for which a perfect invariance oracle, I, declares a failure,

L(X,e,) =1 If A1 C C(Q), then Ay C C.(Q)N H(X,ep) where
H(X, e,)={seR" :s'x < el,x}. (54)
The set H(X, en) will be called the inconsistent set generated by X.

Proof: If a perfect invariance oracle I; returns 1 for A’ given the subspace rep-
resented by e,,, then the following inequality holds.

(ef,x) (ehx) > 0. (55)

On the basis of this inequality, 1t 1s apparent that any subspace, Hyg, such that

z'x > elx

- bl

(56)

cannot possibly be an attracting invariant set. The collection of such subspaces
form the complement of the halfspace H(X, e,) defined in the theorem. Since A;
is assumed to lie in C.(Q), it must therefore lie in the intersection of C.(Q) with
H(X,e,). QED

The significance of the preceding lemma is that the inconsistent set is an n-
dimensional halfspace in £"™. To discuss this more fully, we first need to introduce
the linear varieties of n — 1-dimensional subspaces.

Definition15. Let S be an n — 1-dimensional subspace of %" and let x be an
n-dimensional real vector. The linear variety of S generated by x is the set

V(S,x)={s+x:s€ 5} (57)

The following lemma shows that the inconsistent set forms a halfspace in the linear
variety, V(sp(E), e,).

Lemma16. Let C.(Q) be an ellipsoidal cone with negative eigevector, e,. Let V(sp(E), ey)
be a linear variety of the subspace spanned by the positive eigenvectors of Q. If

the inconsistent set H(X,e,) is as defined in lemma 14, then the set H(X e,) N
V(sp(E),e,) is an n — 1 dimensional halfspace.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Fig.9. The set of subspaces, Aur, declarable by a perfect invariance oracle, Ips, forms a
convex cone centered at the origin. The intersection of Ajs with a linear variety of an
n — 1-dimensional subspace will be a bounded n — 1-dimensional convex body, K.

Proof: This result is very straightforward and its formal proof will be found in
[Lemmon 1993a].

The geometry implied by the preceding lemmas is illustrated in figure 9. The
characterization of the ellipsoidal cone and inconsistent sets provided by these lem-
mas forms the basis for the following theorem. This theorem states the equations
used in obtaining a bounding ellipsoidal cone for A; from a prior bounding cone and
the inconsistent set generated by A'. The proof of this theorem is a straightforward
application of the central-cut ellipsoid method [Shor 1977].

Theorem 17. Let C.(Q) be an ellipsoidal cone with negative eigenvector e, such
that A1 C C.(Q). Let X be a data collection for which I1(X,e,) = 1. There exist

ellipsoidal cones, C.(Q) and C.(Q), such that

C.(Q) C H(X,e,)NCL(Q) C C.(Q). (58)

Furthermore if R = L/|A,| where L is the positive eigenvalue matriz and if E is the
positive eigenvector matriz of Q, then Q 1s given by equations 43 through 48 and Q

is given by equations 43 through 48 where R™! = E_l/(n —1)? is used in place of
E_l m equation 43.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Proof: From lemma 2, the intersection of cone C.(Q) with V(sp(E),e,) is an
ellipsoid of the following form

ERL0)={weR" ' w'Rw< 1} (59)

From lemma 4, the intersection of the inconsistent set, H(X',e,) and V(sp(E), e,)
will be an n — 1-dimensional halfspace, H, given by

H={weh" ! we<0}, (60)

where ¢ = E’x. Therefore the intersection of C.(Q), V(sp(E),e,), and H(X,e,)
will be an n — 1-dimensional convex body, K.

It is well known that any bounded convex body can be contained within a unique
ellipsoid of minimal volume called the Lowner-John ellipsoid [John 1984]. For convex
bodies formed by single cuts of an ellipse, however, the Lowner-John ellipse can be
computed in closed form [Groetschel 1988] [Bland 1981]. In particular, let K be the
convex body formed by the intersection of an ellipse

E(A,a):{xew;(x_a)fA—l(x_a)g}. (61)

with a halfspace, {x : ¢'x < c’a}, then the Lowner-John ellipse, E(A, a) is given by

2

n

a—a— ——>b 2

a—a meiLd (62)

— n? 2 ‘

A_n2_1<A—n+1bb), (63)
A

b= —— (64)

VctAe
Computing the Lowner-John ellipsoid for K = E(R~! 0) N H will yield the

ellipsoid E(E_l, a) where R and a are as given in the theorem. Figure 10 illustrates
the geometry implied by the central-cut ellipsoid method.

The n — 1-dimensional Lowner-John ellipsoid generates an n-dimensional ellip-
soidal cone. Let s be any point in the cone generated by the ellipsoid E(E_l,a).

There exists an o € R such that as is in the linear variety, V(sp(E), e,). The « for
which this is true must satisfy the orthogonality condition,

0=-el (as—ey,) (65)
aels — 1, (66)

which implies that o = 1/els.
Since, s = Ew + e,,, the ellipsoid equation for E(E_l,a) is

1> (w—a)'R(w — a) (67)
> (s — x4)'E'RE(s — x,), (68)

where x, = Ea + e,,. The vector s in this equation must, of course, lie in the linear
variety generated by e, V(sp(E), e,). From our preceding discussion, any vector in

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Fig. 10. Lowner-John ellipsoid for convex body formed by a central cut ellipsoid.

the cone can be pulled back to the variety by appropriate renormalization with «.
This then implies that if s is any vector in the cone, then

3
(= xa) E'RE (ti - xa) <1 (69)
sten ens

Multiplying through by |s’e,|?, we obtain

s'[(I-e,x}) E'RE (I -x,el,) —e,el]s<0. (70)

This inequality determines an ellipsoidal cone and the term within the square brack-
ets 18 Q.

Q is obtained by noting that if E(E_l, a) is a Lowner-John ellipsoid for K, then
E(E_l/(n — 1)? a) is an ellipsoid contained within K. By repeating the preceding
construction with this smaller ellipsoid, the equation for Q is obtained. QED

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

4.5 Convergence and Complexity

This subsection shows that the ISID algorithm generates a sequence of ellipsoidal
cones whose negative eigenvectors must eventually lie in A;. In particular, it is
shown that if A; is non-empty then the ISID algorithm must converge after a finite
number of MAYBE (1) declarations by the invariance oracle. It is further shown
that under certain conditions the convergence time scales with the square of the
state space dimension. The subsection therefore proves that the ISID algorithm has
finite oracle-time convergence and polynomial oracle-time complexity where oracle-
time is measured by the number of MAYBE declarations by the invariance oracle.

To prove the convergence of the ISID algorithm requires that there be some
measure of the ellipsoidal cone’s size or “volume”. The set function used to define
this volume is given below.

Definition18. Let C.(Q) be an ellipsoidal cone and let the eigenvalues of Q be
ordered as A; > A;41. The volume of cone C,(Q) is defined to be

The volume of an ellipsoid, F(A,a), will be proportional to the square root
of the determinant of A. Since the determinant of A is simply the product of its
eigenvalues, it should be clear that the preceding definition is using the volume of
the n — 1-dimensional ellipsoid contained in the linear variety V(sp(E), e,) as the
“volume” of the cone.

The following theorem shows that the ISID algorithm must locate an attracting
invariant subspace after a finite number of failed queries to a perfect invariance
oracle.

Theorem 19. [Initialize the ISID algorithm with an ellipsoidal cone whose volume
15 unity and which is known to contain Ay. Let € denote the volume of the smallest
ellipsoidal cone containing Ai. If n is the state space dimension, then the ISID
algorithm will determine an altracting invariant subspace after no more than 2(n —
1)Ine™! failed queries to a perfect invariance oracle.

Proof: Consider the ellipsoidal cone C,.(Q;) after the ith failed invariance test. Let
E and L be the positive eigenvector and eigenvalue matrices of Q;, respectively. The
volume of this ellipsoid will be given by

1
n—1
H]’:l ’\J'(R)
where A;(R) is the jth positive eigenvalue of R and R = L/|),|. Consider the ellip-

soidal cone obtained using equations 43 through 48 of subsection 4.2. The symmetric
matrix characterizing this cone is Q = X'YX where

X — (Et(I—tﬁeae;))’ (73)

=2

Y:(I(){_Ol). (74)

volC(Q;) = , (72)

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”

Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,

Univ of Notre Dame, January 1993.

where 8 = ||xal|. Applying the orthogonal transformation,
P=(Ee,), (75)
to X, yields
PIX! = (—ﬁiflE (1)) (76)
where 8 = ||x4]| and fe, = x4. Recall that x, is the center of the updated ellipsoid
in the linear variety V (sp(E), e,). For convenience, let vi=—gel b.

Since the eigenvalues of Q are unchanged by an orthogonal transformation, the
eigenvalues of P'X"YXP can be used to compute the volume of Q. This transformed
matrix has the form

P'QP = P'’X'YXP (77)
R Rv
- (vtﬁ viRv — 1) ’ (78)

Note that R is an n — 1 by n — 1 leading principal submatrix of P!QP, so the eigen-
values of the two matrices satisfy the following interlacing property [Golub 1983].

A(Q) < Mci(R) < A,-1(Q) < - < X2(Q) < M(R) < M(Q). (79)

Since it is known that A, (Q) is negative (by the definition of an ellipsoidal cone),
it can be shown that

M (P'X'YXP) < o2(P'X)A,(Y), (80)

where ¢, (P'X") is the smallest singular value of P'X* and A,(Y) is the negative
eigenvalue of Y [Golub 1983]. Note that this eigenvalue must be negative one (by
construction of Y). Also note that the singular value must satisfy the following
inequality for any x € R”,

x'PI X! XPx

P e —
P'XY) <
Ta)< xix

(81)
In particular, if we let x = (0---01)?, then the smallest singular value must be less
than unity. It can therefore be concluded that |A,(Q)| < 1.

With the preceding results, it can be concluded that

volC.(Q) = '_ :\\n((g)) (82)
n—1 1

= j=1 ’\j(ﬁ) (8

< e T T volCL(Q). (84)

Inequality 84 is a consequence of the bound on the absolute value of the negative
eigenvalue as well as the interlacing property (Eq. 79). This inequality is simply

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

the volume of an ellipsoid E(R™ ", a). Recall, however, that R is obtained from
R using the central-cut ellipsoid method. The relationship between the volumes
of these ellipsoids is given by the last line of the inequality. This last inequality
[Groetschel 1988] is

VolE(X,ﬁ) _ 1/
volE(A,a) ‘ ’ (85)

which bound the rate at which ellipsoid volumes decrease when the central-cut el-
lipsoid method is used.

Since the initial ellipsoidal cone’s volume is unity, then the ellipsoidal cone’s
volume after the Lth failed query must be bounded as follows,

volC.(Qp) < ™ 70D . (86)

However, C.(Qr) cannot be smaller than € by assumption, therefore the number of
failed queries, L, must satisfy

L
e <e Ty, (87)

Rearranging this inequality to extract L shows that the number of failed invariance
queries can be no larger than the bound stated by the theorem. QED

The following corollary for the preceding theorem establishes the polynomial
oracle-time complexity of the ISID algorithm.

Corollary 20. Assume that Ay is a set which is contained within an ellipsoidal
cone characterized by a matriz, Q, whose normalized positive eigenvalues satisfy the
mequality
|An]
As

>y (88)

for1 >~ >0and i = 1,...,n— 1. Under the assumptions of theorem 19, the
ISID algorithm will determine an attracting invariant subspace after no more than
2(n—1)?In(n — 1)+ (n — 1)?Iny~! MAYBE declarations by the invariance oracle.

Proof: Because of the constraints on Q, the volume of the smallest bounding ellip-
soid will be no greater than 7(”_1)/2(71 — 1)="*!. Inserting this into the bound of
theorem 19 yields the asserted result. QED

The significance of the preceding corollary is apparent when we consider how
such restrictions on the eigenvalues of Q might arise. In particular, if the ISID
algorithm is realized in finite precision arithmetic, then ¥ is proportional to the
least significant bit of the realization. In this regard, the result shows that for finite
precision implementations, there is an upper bound on the number of queries which
the system can fail before exceeding the realization’s precision. In particular, this
result then shows that the bound scales with the square of the state space dimension,
thereby establishing the polynomial oracle-time complexity of the algorithm.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

4.6 Example: AUV Stabilization

This section discusses an application of the ISID algorithm to the stabilization of
an autonomous underwater vehicle’s (AUV) dive plane dynamics. This problem rep-
resents an example of the ISID algorithm’s use as an adaptive variable structure
control algorithm.

AUV dynamics are highly nonlinear and highly uncertain systems. Nonlinearities
arise from hydrodynamic forces, uncompensated buoyancy effects, as well as cross-
state dynamical coupling. Uncertainties arise due to environmental effects such as
changing current and water conditions as well as poorly known mass and hydrody-
namic properties. When an AUV retrieves a large object, for example, the drag and
mass of this object may substantially modify the vehicle’s buoyancy and drag coef-
ficients. Such changes cannot be accurately modeled beforehand and can therefore
have a disasterous effect on the success of the AUV’s mission. In these situations, it
would be highly desirable to develop an algorithm which can quickly and efficiently
relearn the stabilizing controller for the system. The ISID algorithm represents one
method for achieving this goal.

The following simulation results illustrate how the ISID algorithm can quickly
stabilize an AUV’s dive plane dynamics. The simplified equations of motion for
vehicle (pitch) angle of attack, #, in the dive plane as a function of velocity, v, may
be written as

0 = K10 + K2010] + K30]v| + ug, (89)
0= —v+ Ka|0lv + uy, (90)

where Ky, Ko, K3, and K4 are hydrodynamic force coefficients. u, and wug represent
control forces applied in the velocity and angle of attack channels, respectively.
These equations clearly show how nonlinearities enter the dynamics through the
hydrodynamic cross coupling between # and v. Uncertainty arises from the simple
fact that the hydrodynamic coefficients may be poorly known. In general, these
coefficients will be complex functions of vehicle geometry, speed, orientation, and
water conditions. Consequently, they can never be completely characterized because
there are too many degrees of freedom. Figure 11 illustrates the geometry implied
by the equations of motion.

Figure 12 illustrates the behaviour of an AUV without active attitude control.
The figure shows the 3-d state space trajectory for a vehicle with initial condition
f =1 and v = 1. The commanded state 1s § = 0 and v = 2. Without active attitude
control, ug = 0, and u, = —v + 2. In this example, the system is hydrodynamically
stable so that natural system damping can be used to eventually null the angle of
attack. The figure shows that by using this control strategy, the vehicle exhibits large
oscillations in § and v before settling to the commanded state. For this particular
system, the results therefore indicate that the angle of attack should be actively
nulled to improve trajectory tracking.

Variable structure control (VSC) has emerged as a powerful technique for con-
trolling AUV’s with uncertain dynamics [Yoerger 1985]. In the following simulations,
a hierarchical variable structure controller with boundary layer was designed. The

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

(hbpt]

Fig.11. Autonomous Underwater Vehicle Diveplane Dynamics

controls, ug and u,, have the following form

1 if shx < —¢
Ug = S'Z’Txif—e<sgx<e, (91)
-1 ifslx>e¢
h(sstgxx) if slx < —¢
22 if—e<six<e, (92)
—h(six) ifsix>c¢

where € > 0 denotes the width of the boundary layer and x = (4, é, v)! is the state
vector. The function h : R — {0, 1} is assumed to have the following form

h(x):{01f|x|>e ’ (93)

1 otherwise

and i1s used to implement a control hierarchy in which the system nulls angle of
attack prior to nulling commanded velocity errors. The n-dimensional vectors sg
and s, represent hyperplanes called switching surfaces just as was originally shown
in equation 35 of the introduction.

The initial design of variable structure controllers can usually be partitioned into
two phases. The first phase consists of determining the switching surfaces on which
the system trajectories exhibit the desired transient response. The second phase de-
termines the control strategies (gain levels) which insure that the switching surfaces
are attracting invariant sets. Such switching surfaces are called sliding modes, since
the system state is eventually captured by and slides along the switching surface. The
need for adaptive identification of these surfaces arises when the system’s structure
changes in an unpredictable manner as when the vehicle retrieves a bulky package.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Fig.12. Simulated AUV dive with no active nulling of angle of attack, §. A: 3-d phase
space trajectory, B: angle of attack, ¢, time history, C: velocity, v, time history.

In order to preserve system autonomy, the two phase design procedure cannot be fol-
lowed, since the system’s control strategies were fixed at the system’s initial design.
Consequently, the only part of the controller which can be modified is the switching
surface and this modification must be done adaptively on the basis of the system’s
observed behaviour.

The simulation results shown in figure 13, 14, and 15 illustrate precisely how
the ISID algorithm can be used to “relearn” the system’s sliding modes. Figure 13
shows the AUV’s performance (same initial conditions as shown in figure 12) with the
hierarchical sliding mode controller after a system failure causes the initially chosen
switching surfaces to no longer be invariant sets. As can be seen, the sliding controller
is actually unstable with the system exhibiting large oscillations in 8. Figures 14
and 15 show the system’s behaviour during two “learning” sessions with the ISID
algorithm. A learning session involves starting the vehicle at the initial condition and
then commanding it over to the desired state. The first learning session is shown in
figure 14. This particular example exhibited four adjustments to the sliding surface.
On the last adjustment, the sliding condition is satisfied and the system slides easily
to the commanded state. Figure 15 shows the system’s response during the second
training session. In this case, it is clear that learning is complete. There are no
readjustments of the sliding surface and the system wastes little effort in bringing
the system to its commanded state.

Perhaps the most remarkable thing about this example is the apparent speed
with which the sliding surface is learned. In these simulations, only 4 failed invari-
ance tests were required before finding a sliding mode. This low number of failed

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

tests was observed in other simulation runs where the system’s initial conditions
were randomly varied. When compared with existing methods for learning nonlinear
controllers [Narendra 1990] [Barto 1983] [Jacobs 1991], this approach appears to be
exceptionally fast.

[h]

Fig.13. Simulated AUV dive with hierarchical sliding control in which sliding mode con-
straints are violated. A: 3-d phase space trajectory, B: angle of attack, #, time history, C:
velocity, v, time history.

4.7 Significant Issues

The final theorem of subsection 4.5 is significant for two reasons. First it shows that
the invariant subspaces can be located after a finite number of of failed queries.
In sliding mode control, such subspaces are used to stabilize the system as was
shown in the preceding example. Therefore, theorem 19 says that a system only
needs to perceive itself as “unstable” a finite number of times before system stabil-
ity is re-established. This result stands in stark contrast to other results [Barto 1983]
[Narendra 1990] [Jacobs 1991] where system stability can only be iteratively “learned”
after a prohibitively long training period. The second important aspect of the pre-
ceding results is that the theorem’s bound implies that the algorithm has polynomial
time complexity. This means that as systems become more and more complex (i.e.
larger state spaces), the time required to learn the system invariants will grow at a
modest rate. In other words, the proposed ISID algorithm may represent a practical
method for adaptive control and identification of highly complex nonlinear dynam-
ical systems.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

Fig. 14. Simulated AUV dive where ISID algorithm is used to relearn hierarchical sliding
mode controller (First Learning Session). A: 3-d phase space trajectory, B: angle of attack,
@, time history, C: velocity, v, time history.

[h]

Fig. 15. Simulated AUV dive where ISID algorithm is used to relearn hierarchical sliding
mode controller (Second Learning Session). A: 3-d phase space trajectory, B: angle of
attack, ¢, time history, C: velocity, v, time history.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

It should be noted, however, that these bounds are not with respect to system
time, but rather with respect to failed oracle time. This is an important distinction
for 1t 1s quite possible that there may be a long period of time between consecutive
oracle declarations of failure. Consequently, convergence of the ISID algorithm can
be extremely long in “system” time and may, in fact, never converge at all. At first
glance, this observation may seem to cast doubt upon the value of theorem 19. Upon
closer consideration, however, 1t provides further insight into the method. Recall
that the oracle will always declare failures if the system trajectory is diverging from
the current subspace, Hg. In other words, if the system is exhibiting “unstable”
behaviour, the switching surface is modified. For the times between failures, the
system appears to be stable and there 1s, therefore, no reason to change the switching
surfaces. From this viewpoint, it can be seen that the bound of theorem 19 is very
meaningful since it is measured with respect to the only quantity of physical interest
to the system; the number of times the system “stumbles”.

This point should be contrasted to parameter and set-membership identification
[Dasgupta 1987] [Deller 1989] algorithms. In these cases, the important measure of
parameter convergence is system time (i.e., the total number of experiments), since
we are interested in obtaining accurate estimates as quickly as possible. Obviously
for the parameter identification problem, the bounds computed by the preceding
theorem would be useless unless the time between consecutive failures could be
bounded also. That is not the situation, however, in the ISID problem which is
primarily an adaptive “control” problem. The fact that these oracle-time bounds are
meaningful for the ISID problem is an important point distinguishing this application
from other more traditional applications of inductive inference protocols.

Finally, it must be observed that the preceding theorem assumes a perfect in-
variance oracle. In practice, oracles will not be perfect and the question is then what
can be done to minimize the problems generated by an imperfect oracle. The answer
is also provided by the preceding theorem. Theorem 19 provides a hard bound on
the number of failed oracle queries. If the system generates more failures than im-
plied by the bound, then a failure must either have occured in the oracle or else in
the system itself. In either case, the theorem’s finite time bound provides a natural
criterion for failure detection and the subsequent reinitialization of the identification
process. If the rate of oracle failure is known to be small (i.e. failure probability is
small), then the natural course of action is to reinitialize the ISID algorithm and
try again. The preceding discussion therefore implies the existence of effective and
practical methods for dealing with the identification failures caused by imperfect
oracles. In particular, if we model an oracle’s imperfection as a probabilistic failure
rate, then it should be possible to discuss the ISID algorithm’s learning abilities
within the so-called “probably almost correct” (PAC) framework used by a variety
of researchers in the inductive inference community [Valiant 1984]. A full study of
techniques for optimally managing the failures introduced by an imperfect oracle is
well beyond the scope of the current chapter and represents an important topic for
further inquiry.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

4.8 Symbol Grounding and Event Identification

Formal computational systems are often interfaced to the external world. Such “hy-
brid” systems are used to control or interpret events within that external world.
The example discussed in the section i1s one example of such a hybrid system. Since
the supervisor uses high-level abstractions to control the plant, such controllers are
often referred to as “intelligent”.

As noted in the section’s introduction, this notion of intelligence is somewhat
limited. If high-level decision making is to constitute intelligence, then this would
imply that many symbol systems would be intelligent systems. This notion is, of
course, at the heart of symbolic Artificial Intelligence research and it has its de-
tractors. John Searle [Searle 1984] disputed the AT notion of intelligent machines
with his now famous Chinese room argument. In this thought experiment it was
noted that a prerequisite for “intelligence” is semantic content and that such con-
tent is unavailable to a purely symbolic system. For this reason, a computer can
never be intelligent thereby debunking the traditional Al assumptions concerning
the computational basis of human cognition.

At the heart of Searle’s complaint is the notion of a symbol’s meaning. This
problem is also referred to as the symbol grounding problem [Harnad 1990]. Symbol
grounding refers to methods by which symbols of a formal system acquire seman-
tic content or “meaning”. Such meaning generally has two interpretations. Meaning
can be acquired through the association of symbols with nonsymbolic items in the
external world. This acquired meaning is referred to as a symbol’s extrinsic mean-
ing. However, symbols also acquire content through internal associations with other
symbols. This form of content might be referred to as intrinsic meaning.

An example of extrinsic meaning is seen in the association of the symbolic to-
ken “ELEPHANT” with those sensory inputs produced by seeing an elephant. The
association of these sensory experiences with the symbolic token is determined by
experience. The “meaning” of the symbol is determined by its nonsymbolic associ-
ations and is therefore external to the symbol system, itself. Consequently, we refer
to such meaning as “extrinsic”.

A symbol system, as Searle asserts, is not sufficient for an intelligent machine.
Extrinsic meaning simply replaces the symbolic token with nonsymbolic tokens. The
system has no real “understanding” of what those tokens signify so that the result-
ing computation is “meaningless”. A good example of this type of “unintelligent”
association is seen in superivsory control systems which make extensive use of DES
models. In these cases, the “meaning” of the logical constructs is determined in an a
priori way by the DES modeler. These intelligent choices for symbol/event bindings
therefore imply that it is the modeler, rather than the system, which is intelligent.

In order for a system to be intelligent it must not only use high level abstractions,
it must be able to generate them from internally generated construction principles.
Symbols which arise in this manner may be grounded in nonsymbolic entities, but the
meaning of these entities is determined internally, i.e. with respect to some intrinsic
systems principle. In this regard, the symbols of such a system are intrinsically
grounded. Tt is this form of “intrinsic” semantically meaning, which Searle asserted
as a prerequisite for intelligence.

Clearly, conventional symbolic AT does not intrinsically ground its symbols. It

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

has been argued that the more recent connectionist or subsymbolic AT concepts does
embody some form of internal grounding[Chalmers 1992]. In view of these preceding
remarks concerning symbol grounding and intelligence, it might now be appropriate
to discuss the preceding ISID algorithm in light of the symbol grounding problem.
Does the ISID algorithm produce event/symbol bindings which are “intrinsically”
or “extrinsically” grounded. If the bindings are wholly external, then the resulting
control system cannot be “intelligent” in the sense proposed by Searle.

In reviewing the modeling framework used in this paper, it is apparent that all
plant events, &, are grounded with respect to a specific subset of the state space. At
first glance, one might conclude then that this is an external grounding. However, the
true test of external grounding is to see what happens if the event/symbol bindings
change. In other words, if we shuffle the associations between symbols and nonsym-
bolic entities, does the operation of the supervisor change? If the ISID algorithm is
not used, then clearly the bindings are unchanged. However, the ISID algorithm uses
a computational algorithm (i.e. the invariance oracle) to decide whether or not the
current event/symbol bindings satisfy or are consistent with the “internal” principle
of control invariance. Therefore, if the initial event/symbol bindings change so that
the resulting symbol groundings are inconsistent with the invariance oracle, then the
supervisor changes the symbol bindings by redefining the “events”. In other words,
there 1s an internally coded principle guiding the symbol grounding process. Under
this viewpoint, we can then assert that the ISID algorithm produces symbols with
intrinsic semantic content.

The intrinsic content embodied by the invariance oracle is, of course, hardwired
into the system. The choice of what this oracle 1s, represents a choice by the system
designer. There can be other oracle structures used, in which different internal event
principles are used. Therefore, in some sense, it is still through the ingenuity of the
designer that this system appears to have “intelligent” processing. However, the fact
remains that this system is endowing its symbols with a meaning which 1s derived
by the system internally. This fact is still true regardless of where that “internally”
coded principle came from. In this regard, we could consider the use of the ISID
algorithm as resulting in an “intelligent” control system in the sense proposed by J.
Searle.

These notions also provide some additional perspective on what is “intelligent”
control. Intelligent control is often a vaguely defined concept referring to the use of
high-level decision making processes in control. In the preceding section, it has been
argued that this is not sufficient. Intelligence is not a behaviour, but a property of a
system. For intelligence, a system must not only use symbolic abstractions, it must
formulate its own symbol bindings with regard to specific internal principles. The
ISID algorithm provides a way by which traditional hybrid systems might accomplish
this intelligence through event identification.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

5 Concluding Remarks

This chapter has introduced a model for hybrid systems which has focused on the role
of the interface between the continuous-state plant and discrete-event supervisor. An
especially simple form of the interface was introduced in which symbolic events and
nonsymbolic state/control vectors are related to each other via memoryless trans-
formations. It was seen that this particular choice dichotomizes the symbolic and
nonsymbolic parts of the hybrid system into two cleanly separated dynamical sys-
tems which clearly expose the relationship between plant and supervisor. With the
use of the proposed interface, quasi-determinism can be used to extend controllabil-
ity concepts to hybrid systems. The clear separation of symbolic and nonsymbolic
domains allows the formulation of hybrid controller methodologies which are directly
based on equivalent DES control methods. Finally, the acknowledgement of the dif-
ferent roles played by symbolic and nonsymbolic processing in hybrid systems allows
the proper formulation of the hybrid system’s identification problem known as event
identification. The solution of the identification problem sheds considerable insight
into the meaning of intelligence in control.

The work outlined in the preceding sections is indicative of the breadth of work
currently being pursued in the area of hybrid systems as a means of modeling and
designing supervisory and intelligent control systems. In spite of the great strides
being made in this area, there are significant issues which remain to be addressed
in future work. These issues include a more rigorous examination of the traditional
control concepts of controllability, observability, and stability with regard to hybrid
systems. To some extent, the notions of quasi-determinism and the event identi-
fication problems are preliminary efforts to codify these extensions. Future work,
however, remains before these extensions are fully understood. Another area of im-
portant future study lies in the formulation of control and identification algorithms
with bounded computational complexity. Since the hybrid system explicitly con-
tains a computational system, the importance of computational complexity as it
scales with plant complexity can no longer be ignored. The ISID algorithm for the
event identification problem indicates that such complexity issues can be addressed
realistically using simple existing algorithmic approaches. Future work, clearly needs
to be done in order to extend these ideas.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

References

[Acar 1990] L. Acar, U. Ozguner, “Design of Knowledge-Rich Hierarchical Controllers for
Large Functional Systems”, TEFE Trans. on Systems, Man, and Cybernetics, Vol. 20,
No. 4, pp. 791-803, July/Aug. 1990.

[Angluin 1983] D. Angluin, C.H. Smith, “Inductive Inference: Theory and Methods.” Com-
puting Surveys, 15(3):237-269, September 1983.

[Albus 1981] J. Albus, et al, “Theory and Practice of Intelligent Control”, Proc. 23rd IEEE
COMPCON, pp 19-39, 1981.

[Antsaklis 1989] P. J. Antsaklis, K. M. Passino S. J. and Wang, “Towards Intelligent Au-
tonomous Control Systems: Architecture and Fundamental Issues”, Journal of Intell:-
gent and Robotic Systems, Vol.1, pp. 315-342, 1989.

[Antsaklis 1990, 1992] P. J. Antsaklis, Special Issues on ‘Neural Networks in Control Sys-
tems’ of the IEEE Control Systems Magazine, April 1990 and April 1992.

[Antsaklis 1991] P. J. Antsaklis, K. M. Passino and S. J. Wang, “An Introduction to Au-
tonomous Control Systems”, IFEFE Control Systems Magazine, Vol. 11, No. 4, pp.5-13,
June 1991.

[Antsaklis 1993a] P. J. Antsaklis and K. M. Passino, Eds., An Introduction to Intelligent
and Autonomous Control, 448 p., Kluwer Academic Publishers, 1993.

[Antsaklis 1993b] P. J. Antsaklis and K. M. Passino, “Introduction to Intelligent Con-
trol Systems with High Degree of Autonomy”, An Introduction to Intelligent and Au-
tonomous Control, P. J. Antsaklis and K. M. Passino, Eds., Chapter 1, pp. 1-26, Kluwer
Academic Publishers,1993.

[Antsaklis 1993c] P. J. Antsaklis, “Neural Networks for the Intelligent Control of High Au-
tonomy Systems”, Mathematical Studies of Neural Networks, J.G. Taylor, Ed., Elsevier,
1993. To appear.

[Astrom 1986] K. J. Astrom, et al, “Expert Control”, Automatica, Vol. 22, No. 3, pp. 277-
286, 1986.

[Barto 1983] A.G. Barto, R. S. Sutton, and C. W. Anderson), “Neuronlike Elements that
can Solve Difficult Learning Control Problems”, IEFE Trans. on Systems, Man, and
Cybernetics, Vol 13:835-846.

[Benveniste 1990] A. Benveniste, P. Le Guernic, “Hybrid Dynamical Systems and the SIG-
NAL Language”, IFEF Transactions on Automatic Control, Vol. 35, No. 5, pp. 535-546,
May 1990.

[Bland 1981] R.G. Bland, D. Goldfarb, M.J. Todd, “The Ellipsoid Method: a Survey”,
Operations Research, 29:1039-1091, 1981.

[Cassandras 1990] C. Cassandras, P. Ramadge, “Toward a Control Theory for Discrete
Event Systems”, IEEFE Control Systems Magazine, pp. 66-68, June 1990.

[Chalmers 1992] D. J. Chalmers, “Subsymbolic Computation and the Chinese Room”,
in The Symbolic and Connectionist Paradigms: closing the gap, ed: John Dinsmore,
Lawrence Erlbaum Associates, pp. 25-48, 1992.

[Dasgupta 1987] Dasgupta and Huang, “Asymptotically Convergent Modified Recrusive
Least-Squares with Data-Dependent Updating and Forgetting Factor for Systems with
Bounded Noise”, IEEE Trans. on Information Theory, I'T-33(3):383-392.

[DeCarlo 1988] R. A. DeCarlo, S. H. Zak, and GP Matthews (1988), “Variable Structure
Control of Nonlinear Multivariable Systems: a Tutorial”, Proceedings of the IEEFE, Vol.
76(3):212-232.

[Deller 1989] J. R. Deller, “Set Membership Identification in Digital Signal Processing”,
IFEE ASSP Magazine, Vol. 6:4-20, 1989.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

[Fishwick 1991] P. Fishwick, B. Zeigler, “Creating Qualitative and Combined Models with
Discrete Events”, Proceedings of The 2nd Annual Conference on Al Simulation and
Planning in High Autonomy Systems, pp. 306-315, Cocoa Beach, FL, April 1991.

[Fukunaga 1990] K. Fukunaga), Introduction to Statistical Pattern Recognition, 2nd edi-
tion, Academic Press, Boston.

[Gollu 1989] A. Gollu, P. Varaiya, “Hybrid Dynamical Systems”, Proceedings of the 28th
Conference on Decision and Control, pp. 2708-2712, Tampa, FL, December 1989.
[Golub 1983] G. Golub, C. Van Loan, Matriz Computation, Johns Hopkins University

Press, Baltimore, Maryland, 1983

[Groetschel 1988] Groetshel, Lovasz, and Schrijver, Geometric Algorithms and Combina-
torial Optimization, Springer-Verlag, 1988.

[Grossman 1992] R. Grossman, R. Larson, “Viewing Hybrid Systems as Products of Con-
trol Systems and Automata”, Proceedings of the 31st Conference on Decision and Con-
trol, pp. 2953-2955, Tucson AZ, December 1992.

[Harnad 1990] S. Harnad, “The Symbol Grounding Problem”, Physica D, vol. 42, pp. 335-
446, 1990.

[Ho-Kashyap 1965] Y. C. Ho and R. L. Kashyap (1965), “An Algorithm for Linear Inequal-
ities and its Applications”, IFFE Trans. Electronic Computers, EC-14:683-688.

[Holloway 1992] L. Holloway, B. Krogh, “Properties of Behavioral Models for a Class of Hy-
brid Dynamical Systems”, Proceedings of the 31st Conference on Decision and Control,
pp. 3752-3757, Tucson AZ, December 1992.

[TEEE Computer 1989] Special Issue on Autonomous Intelligent Machines, IEEE Com-
puter, Vol. 22, No. 6, June
1989.

[Tsidori 1989] A. Isidori, Nonlinear Control Systems, 2nd Edition, Springer-Verlag, Berlin,
1989

[Jacobs 1991] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
Mixtures of Local Experts”, Neural Computation, Vol 3(1):79-87.

[John 1984] John, Fritz John: Collected Papers (1948), Birkhauser, 1984.

[Khachiyan 1979] L. G. Khachiyan, “A Polynomial Algorithm in Learn Program”, (english
translation), Soviet Mathematics Doklady, 20:191-194, 1979.

[Kohn 1992] W. Kohn, A. Nerode, “Multiple Agent Autonomous Hybrid Control Systems”,
Proceedings of the 31st Conference on Decision and Control, pp. 2956-2966, Tucson AZ,
December 1992.

[Lemmon 1992] M. D. Lemmon, “Ellipsoidal Methods for the Estimation of Sliding Mode
Domains of Variable Structure Systems”, Proc. of 26th Annual Conference on Infor-
mation Sciences and Systems, Princeton N.J., March 18-20, 1992.

[Lemmon 1993a] M. D. Lemmon, “Inductive Inference of Invariant Subspaces”, Proceedings
of the American Control Conference, San Francisco, California, June 2-4, 1993.

[Lemmon 1993b] M. D. Lemmon, J. A. Stiver, P. J. Antsaklis, “Learning to Coordinate
Control Policies of Hybrid Systems”, Proceedings of the American Control Conference,
San Francisco, California, June 2-4, 1993.

[Mendel 1968] J. Mendel and J. Zapalac, “The Application of Techniques of Artificial In-
telligence to Control System Design”, in Advances in Control Systems, C.T. Leondes,
ed., Academic Press, NY, 1968.

[Mesarovic 1970] M. Mesarovic, D. Macko and Y. Takahara, Theory of Hierarchical, Mul-
tilevel, Systems, Academic Press, 1970.

[Narendra 1990] K. S. Narendra and K. Parthsarathy, “Identification and Control of Dy-
namical Systems Using Neural Networks”, IEEE Trans. Neural Networks, Vol 1(1):4-27.

[Nerode 1992] A. Nerode, W. Kohn, “Models for Hybrid Systems: Automata, Topologies,
Stability”, Private Communication, November 1992.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

[Olver 1986] P. J. Olver (1986), Applications of Lie Groups to Differential Equations,
Springer-Verlag, New York, 1986

[Ozveren 1991] C. M. Ozveren, A. S. Willsky and P. J. Antsaklis, “Stability and Stabiliz-
abilty of Discrete Event Dynamic Systems”, Journal of the Association of Computing
Machinery, Vol 38, No 3, pp 730-752, 1991.

[Passino 1989a] K. Passino, “Analysis and Synthesis of Discrete Event Regulator Systems”,
Ph. D. Dissertation, Dept. of Electrical and Computer Engineering, Univ. of Notre
Dame, Notre Dame, IN, April 1989.

[Passino 1989b] K. M. Passino and P. J. Antsaklis, “On the Optimal Control of Discrete
Event Systems” , Proc. of the 28th IEFE Conf. on Deciston and Control, pp. 2713-2718,
Tampa, FL, Dec. 13-15, 1989.

[Passino 1991a] K. M. Passino, A. N. Michel, P. J. Antsaklis, “Lyapunov Stability of a
Class of Discrete Event Systems”, Proceedings of the American Control Conference,
Boston MA, June 1991.

[Passino 1991b] K. M. Passino, U. Ozguner, ‘Modeling and Analysis of Hybrid Systems:
Examples”, Proc. of the 1991 IEEE Int. Symp. on Intelligent Control, pp. 251-256,
Arlington, VA, Aug. 1991.

[Passino 1992a] K. M. Passino, A. N. Michel and P. J. Antsaklis, “Ustojchivost’ po
Ljapunovu klassa sistem diskretnyx sobytij”, Avtomatika ¢ Telemekhanika, No.8, pp.
3-18, 1992. “Lyapunov Stability of a Class of Discrete Event Systems”, Journal of
Automation and Remote Control, No.8, pp. 3-18, 1992. In Russian.

[Passino 1992b] K. M. Passino and P. J. Antsaklis, “Event Rates and Aggregation in Hier-
archical Discrete Event Systems”, Journal of Discrete Fvent Dynamic Systems, Vol.1,
No.3, pp. 271-288, January 1992.

[Passino 1993] K. M. Passino and P. J. Antsaklis, “”Modeling and Analysis of Artificially
Intelligent Planning Systems”, Introduction to Intelligent and Autonomous Control,
P.J.Antsaklis and K.M.Passino, Eds., Chapter 8, pp. 191-214, Kluwer, 1993.

[Peleties 1988] P. Peleties, R. DeCarlo, “Modeling of Interacting Continuous Time and
Discrete Event Systems : An Example”, Proceedings of the 26th Annual Allerton Con-
ference on Communication, Control, and Computing, pp. 1150-1159, Univ. of Illinois
at Urbana-Champaign, October 1988.

[Peleties 1989] P. Peleties, R. DeCarlo, “A Modeling Strategy with Event Structures for
Hybrid Systems”, Proceedings of the 28th Conference on Decision and Control, pp.1308-
1313, Tampa FL, December 1989.

[Peterson 1981] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[Ramadge 1987] P. Ramadge, W. M. Wonham, “Supervisory Control of a Class of Discrete
Event Processes”, SIAM Journal of Control and Optimization, vol. 25, no. 1, pp. 206-
230, Jan 1987.

[Ramadge 1989] P. Ramadge, W. M. Wonham, “The Control of Discrete Event Systems”,
Proceedings of the IEEF, Vol. 77, No. 1, pp. 81 - 98, January 1989.

[Rosenblatt 1962] F. Rosenblatt), Principles of Neurodynamics, Spartan books, Washing-
ton D.C.

[Saridis 1979] G. N. Saridis, “Toward the Realization of Intelligent Controls”, Proc. of the
IFEFE, Vol. 67, No. 8, pp. 1115-1133, August 1979.

[Saridis 1983] G. N. Saridis, “Intelligent Robot Control”, IEEE Trans. on Automatic Con-
trol, Vol. AC-28, No. 5, pp. 547-556, May 1983.

[Saridis 1985] G. N. Saridis, “Foundations of the Theory of Intelligent Controls”, Proc.
IEEE Workshop on Intelligent Control, pp 23-28, 1985.

[Saridis 1987] G. N. Saridis, “Knowledge Implementation: Structures of Intelligent Control
Systems”, Proc. IEFE International Symposium on Intelligent Control, pp. 9-17, 1987.

P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Hybrid System Modeling and Event Identification,”
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. I1SIS-93-002,
Univ of Notre Dame, January 1993.

[Saridis 1989a] G.N. Saridis, “Analytic Formulation of the Principle of Increasing Precision
with Decreasing Intelligence for Intelligent Machines”, Automatica, Vol.25, No.3, pp.
461-467, 1989.

[Searle 1984] J. R. Searle, Minds, brains, and science, Cambridge, MA: Harvard University
Press, 1984.

[Shor 1977] N. Z. Shor, “Cut-off Method with Space Extension in Convex Programming
Problems”, (english translation), Cybernetics, 13:94-96, 1977.

[Slotine 1988] Slotine and Li, JEEE Trans. on Automatic Control, Vol. AC-33:995-1003

[Stengel 1984] R. F. Stengel, “Al Theory and Reconfigurable Flight Control Systems”,
Princeton University Report 1664-MAE, June 1984.

[Stiver 1991a] J. A. Stiver, “Modeling of Hybrid Control Systems Using Discrete Event
System Models”, M.S. Thesis, Dept. of Electrical Engineering, Univ. of Notre Dame,
Notre Dame, IN, May 1991.

[Stiver 1991b] J. A. Stiver, P. J. Antsaklis, “A Novel Discrete Event System Approach to
Modeling and Analysis of Hybrid Control Systems”, Control Systems Technical Report
#71, Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, IN, June
1991.

[Stiver 1991c] J. A. Stiver, P. J. Antsaklis, “A Novel Discrete Event System Approach to
Modeling and Analysis of Hybrid Control Systems”, Proceedings of the Twenty-Ninth
Annual Allerton Conference on Communication, Control, and Computing, University
of Illinois at Urbana-Champaign, Oct. 2-4, 1991.

[Stiver 1992] J. A. Stiver, P. J. Antsaklis, “Modeling and Analysis of Hybrid Control Sys-
tems”, Proceedins of the 81st Conference on Decision and Control, pp. 3748-3751, Tuc-
son AZ, December 1992.

[Stiver 1993] J. A. Stiver, P. J. Antsaklis, “State Space Partitioning for Hybrid Control
Systems”, Proceedings of the American Control Conference, San Francisco, California,
June 2-4, 1993.

[Turner 1984] P. R. Turner, et al, “Autonomous Systems: Architecture and Implementa-
tion”, Jet Propulsion Laboratories, Report No. JPL D- 1656, August 1984.

[Utkin 1977] V.I. Utkin, “Variable Structure Systems with Sliding Modes”, IEEE Trans-
actions on Automatic Control, Vol. AC-22:212-222.

[Valavanis 1986] K. P. Valavanis, “A Mathematical Formulation For The Analytical De-
sign of Intelligent Machines”, PhD Dissertation, Electrical and Computer Engineering
Dept., Rensselaer Polytechnic Institute, Troy NY, Nov. 1986.

[Valiant 1984] L. Valiant, “A Theory of the Learnable”, Comm. of ACM, Vol 27(11):1134-
1142

[Wonham 1987] W. M. Wonham, P. J. Wonham, “On the Supremal Controllable Sublan-
guage of a Given Language”, SIAM Journal of Control and Optimization, vol. 25, no.
3, pp. 637-659, May 1987.

[Yoerger 1985] D. R. Yoerger and J. J. E. Slotine, “Robust Trajectory Control of Under-
water Vehicles”, IEEE Journal of Oceanic Engineering, Vol OE-10(4):462-470.

[Zeigler 1984] B. P. Zeigler, “Multifacetted Modelling and Discrete Event Simulation”, Ace-
demic Press, NY, 1984.

[Zeigler 1987] B. P. Zeigler, ‘Knowledge Representation from Newton to Minsky and Be-
yond”, Journal of Applied Artificial Intelligence, 1:87-107, 1987.

[Zeigler 1989] B. P. Zeigler, “DEVS Representation of Dynamical Systems: Event Based
Intelligent Control”, Proc. of the IEEFE, Vol. 77, No. 1, pp. 72-80, 1989.

