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Abstract. A brief introduction to the main ideas in Autonomous Con-
trol Systems is first given and certain important issues in modeling, anal-
ysis and design are discussed. Control systems with high degree of auton-
omy should perform well under significant uncertainties in the system and
environment for extended periods of time, and they must be able to com-
pensate for certain system failures without external intervention. Highly
autonomous control systems evolve from conventional control systems by
adding intelligent components, and their development requires interdis-
ciplinary research. A working characterization of intelligent controllers
is introduced and it is argued that the supervisory controller discussed
here, which can learn events, is indeed intelligent. There are problems
in Autonomous Control Hybrid control systems are of great importance
in the development of autonomous control and they are discussed ex-
tensively. An appropriate hybrid system model is first introduced and it
is used to develop a DES model for the hybrid control system. Logical
DES theory is then extended to include hybrid systems and a DES su-
pervisory controller is designed. To cope with changing complex systems,
learning must be introduced. Symbol/event bindings are discussed and
the framework for an intelligent supervisory controller is developed.

1 Introduction

In this introduction a brief outline of the main ideas of Autonomous Control
Systems is first given following mainly [Antsaklis 1993b]. The important role
hybrid control systems play in the design of Intelligent Autonomous Control
systems is then discussed and explained. A working characterization of intelligent
supervisory controllers is then introduced.

In the design of controllers for complex dynamical systems, there are needs to-
day that cannot be successfully addressed with the existing conventional control
theory. Heuristic methods may be needed to tune the parameters of an adaptive
control law. New control laws to perform novel control functions to meet new
objectives should be designed while the system is in operation. Learning from
past experience and planning control actions may be necessary. Failure detection
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and identification is needed. Such functions have been performed in the past by
human operators. To increase the speed of response, to relieve the operators
from mundane tasks, to protect them from hazards, a high degree of autonomy
is desired. To achieve this autonomy, high level decision making techniques for
reasoning under uncertainty must be utilized. These techniques, if used by hu-
mans, may be attributed to intelligence. Hence, one way to achieve high degree
of autonomy is to utilize high level decision making techniques, intelligent meth-
ods, in the autonomous controller. In our view, higher autonomy is the objective,
and intelligent controllers are one way to achieve it. The need for quantitative
methods to model and analyze the dynamical behavior of such autonomous sys-
tems presents significant challenges well beyond current capabilities. It is clear
that the development of autonomous controllers requires significant interdisci-
plinary research effort as it integrates concepts and methods from areas such as
Control, Identification, Estimation, Communication Theory, Computer Science,
Artificial Intelligence, and Operations Research. For more information on intelli-
gent control see [Albus 1981] [Antsaklis 1989] [Antsaklis 1991] [Antsaklis 1993b]
[Antsaklis 1993a] [Antsaklis 1990, 1992] IEEE Computer 1989] [Passino 1993]
[Saridis 1979] [Saridis 1985] [Saridis 1987] [Saridis 1989a] [Zeigler 1984].

Control systems have a long history. Mathematical modeling has played a
central role in 1ts development in the last century and today conventional control
theory is based on firm theoretical foundations. Designing control systems with
higher degrees of autonomy has been a strong driving force in the evolution of
control systems for a long time. What is new today is that with the advances
of computing machines we are closer to realizing highly autonomous control
systems than ever before. One of course should never ignore history but learn
from it. For this reason, a brief outline of conventional control system history
and methods is given below.

1.1 Conventional Control - Evolution and Quest for Autonomy

The first feedback device on record was the water clock invented by the Greek
Ktesibios in Alexandria Egypt around the 3rd century B.C. This was certainly
a successful device as water clocks of similar design were still being made in
Baghdad when the Mongols captured the city in 1258 A.D.! The first mathe-
matical model to describe plant behavior for control purposes is attributed to
J.C. Maxwell, of the Maxwell equations’ fame, who in 1868 used differential
equations to explain instability problems encountered with James Watt’s flyball
governor; the governor was introduced in the late 18th century to regulate the
speed of steam engine vehicles. Control theory made significant strides in the past
120 years, with the use of frequency domain methods and Laplace transforms in
the 1930s and 1940s and the development of optimal control methods and state
space analysis in the 1950s and 1960s. Optimal control in the 1950s and 1960s,
followed by progress in stochastic, robust and adaptive control methods in the
1960s to today, have made it possible to control more accurately significantly
more complex dynamical systems than the original flyball governor.
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When J.C Maxwell used mathematical modeling and methods to explain
instability problems encountered with James Watt’s flyball governor, he demon-
strated the importance and usefulness of mathematical models and methods in
understanding complex phenomena and signaled the beginning of mathematical
system and control theory. It also signaled the end of the era of intuitive inven-
tion. The performance of the flyball governor was sufficient to meet the control
needs of the day. As time progressed and more demands were put on the device
there came a point when better and deeper understanding of the governor was
necessary as it started exhibiting some undesirable and unexplained behavior, in
particular oscillations. This i1s quite typical of the situation in man made systems
even today where systems based on intuitive invention rather than quantitative
theory can be rather limited. To be able to control highly complex and uncertain
systems we need deeper understanding of the processes involved and systematic
design methods, we need quantitative models and design techniques. Such a need
is quite apparent in intelligent autonomous control systems and in particular in
hybrid control systems.

Conventional control design methods: Conventional control systems are de-
signed today using mathematical models of physical systems. A mathematical
model, which captures the dynamical behavior of interest, is chosen and then
control design techniques are applied, aided by Computer Aided Design (CAD)
packages, to design the mathematical model of an appropriate controller. The
controller is then realized via hardware or software and it is used to control the
physical system. The procedure may take several iterations. The mathematical
model of the system must be “simple enough” so that it can be analyzed with
available mathematical techniques, and “accurate enough” to describe the im-
portant aspects of the relevant dynamical behavior. It approximates the behavior
of a plant in the neighborhood of an operating point.

The control methods and the underlying mathematical theory were devel-
oped to meet the ever increasing control needs of our technology. The need to
achieve the demanding control specifications for increasingly complex dynamical
systems has been addressed by using more complex mathematical models and
by developing more sophisticated design algorithms. The use of highly complex
mathematical models however, can seriously inhibit our ability to develop con-
trol algorithms. Fortunately, simpler plant models, for example linear models,
can be used in the control design; this is possible because of the feedback used
in control which can tolerate significant model uncertainties. Controllers can for
example be designed to meet the specifications around an operating point, where
the linear model is valid and then via a scheduler a controller emerges which can
accomplish the control objectives over the whole operating range. This is in fact
the method typically used for aircraft flight control. When the uncertainties in
the plant and environment are large, the fixed feedback controllers may not be
adequate, and adaptive controllers are used. Note that adaptive control in con-
ventional control theory has a specific and rather narrow meaning. In particular
it typically refers to adapting to variations in the constant coefficients in the
equations describing the linear plant: these new coefficient values are identified
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and then used, directly or indirectly, to reassign the values of the constant co-
efficients in the equations describing the linear controller. Adaptive controllers
provide for wider operating ranges than fixed controllers and so conventional
adaptive control systems can be considered to have higher degrees of autonomy
than control systems employing fixed feedback controllers. There are many cases
however where conventional adaptive controllers are not adequate to meet the
needs and novel methods are necessary.

1.2 High Autonomy Control Systems

There are cases where we need to significantly increase the operating range of
control systems. We must be able to deal effectively with significant uncertainties
in models of increasingly complex dynamical systems in addition to increasing
the validity range of our control methods. We need to cope with significant un-
modeled and unanticipated changes in the plant, in the environment and in the
control objectives. This will involve the use of intelligent decision making pro-
cesses to generate control actions so that a certain performance level is main-
tained even though there are drastic changes in the operating conditions. It is
useful to keep in mind an example, the Houston Control example. It is an ex-
ample that sets goals for the future and it also teaches humility as it indicates
how difficult demanding and complex autonomous systems can be. Currently, if
there is a problem on the space shuttle, the problem is addressed by the large
number of engineers working in Houston Control, the ground station. When the
problem 1is solved the specific detailed instructions about how to deal with the
problem are sent to the shuttle. Imagine the time when we will need the tools
and expertise of all Houston Control engineers aboard the space shuttle, space
vehicle, for extended space travel.

In view of the above it is quite clear that in the control of systems there
are requirements today that cannot be successfully addressed with the existing
conventional control theory. They mainly pertain to the area of uncertainty,
present because of poor models due to lack of knowledge, or due to high level
models used to avoid excessive computational complexity.

The control design approach taken here is a bottom-up approach. One turns
to more sophisticated controllers only if simpler ones cannot meet the required
objectives. The need to use intelligent autonomous control stems from the need
for an increased level of autonomous decision making abilities in achieving com-
plex control tasks. Note that intelligent methods are not necessary to increase the
control system’s autonomy. It is possible to attain higher degrees of autonomy
by using methods that are not considered intelligent. It appears however that
to achieve the highest degrees of autonomy, intelligent methods are necessary

ndeed.



P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Learning to be Autonomous: Intelligent Supervisory
Control,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-
93-003, Univ of Notre Dame, April 1993. Also in | ntelligent C ontrol: T heory a nd P r actice , Chapter 2,
pp. 28-62, Gupta M.M., Sinha N.K., eds., IEEE Press, Piscataway, NJ, 1995.

1.3 An Autonomous Control System Architecture For Future Space
Vehicles

To illustrate the concepts and ideas involved and to provide a more concrete
framework to discuss the issues, a hierarchical functional architecture of a con-
troller that i1s used to attain high degrees of autonomy in future space vehicles
is briefly outlined; full details can be found in [Antsaklis 1989]. This hierarchi-
cal architecture has three levels, the Execution Level, the Coordination Level,
and the Management and Organization Level. The architecture exhibits certain
characteristics, which have been shown in the literature to be necessary and
desirable in autonomous intelligent systems.

It is important at this point to comment on the choice for a hierarchical archi-
tecture. Hierarchies offer very convenient ways to describe the operation of com-
plex systems and deal with computational complexity issues, and they are used
extensively in the modeling of intelligent autonomous control systems. Such a hi-
erarchical approach is taken here (and in [Antsaklis 1989] and [Antsaklis 1993b])
to study intelligent autonomous and hybrid control systems.

Architecture Quverview: The overall functional architecture for an autonomous
controller is given by the architectural schematic of the figure below. This is a
functional architecture rather than a hardware processing one; therefore, it does
not specify the arrangement and duties of the hardware used to implement the
functions described. Note that the processing architecture also depends on the
characteristics of the current processing technology; centralized or distributed
processing may be chosen for function implementation depending on available
computer technology.

The architecture in Figure 1 has three levels; this is rather typical in the
Intelligent Control literature. At the lowest level, the Execution Level, there is
the interface to the vehicle and its environment via the sensors and actuators.
At the highest level, the Management and Organization Level, there is the in-
terface to the pilot and crew, ground station, or onboard systems. The middle
level, called the Coordination Level, provides the link between the Execution
Level and the Management Level. Note that we follow the somewhat standard
viewpoint that there are three major levels in the hierarchy. It must be stressed
that the system may have more or fewer than three levels. Some characteristics
of the system which dictate the number of levels are the extent to which the
operator can intervene in the system’s operations, the degree of autonomy or
level of intelligence in the various subsystems, the hierarchical characteristics of
the plant. Note however that the three levels shown here in Figure 1 are ap-
plicable to most architectures of autonomous controllers, by grouping together
sublevels of the architecture if necessary. As it is indicated in the figure, the low-
est, Execution Level involves conventional control algorithms, while the highest,
Management and Organization Level involves only higher level, intelligent, de-
cision making methods. The Coordination Level is the level which provides the
interface between the actions of the other two levels and it uses a combination
of conventional and intelligent decision making methods. The sensors and actu-
ators are implemented mainly with hardware. Software and perhaps hardware
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Fig. 1. Intelligent Autonomous Controller Functional Architecture

are used to implement the Execution Level. Mainly software is used for both the
Coordination and Management Levels. There are multiple copies of the control
functions at each level, more at the lower and fewer at the higher levels. See
[Antsaklis 1989] and [Antsaklis 1993b] for an extended discussion of the issues
involved.

Hybrid control systems do appear in the intelligent autonomous control sys-
tem framework whenever one considers the Execution level together with con-
trol functions performed in the higher Coordination and Management levels.
Examples include expert systems supervising and tuning conventional controller
parameters, planning systems setting the set points of local control regulators,
sequential controllers deciding which from a number of conventional controllers
is to be used to control a system, to mention but a few. One obtains a hybrid
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control system of interest whenever one considers controlling a continuous-state
plant (in the Execution level) by a control algorithm that manipulates sym-
bols, that is by a discrete-state controller (in Coordination and/or Management
levels).

1.4 Intelligent Autonomous Control

The use of high-level symbolic abstractions to control complex dynamical sys-
tems has sometimes been referred to as “intelligent” control. The motivation for
this terminology is rooted in the conviction that cognition or “intelligence” has
a computational basis which can be captured by existing computational devices
(i.e. computers). Control systems which employ high level symbolic computation
to mimic the intelligence of human operators are therefore seen as being intelli-
gent systems. This interpretation of intelligence, however, is somewhat simplistic.
The actions of the alleged “intelligent” control system have an interpretation de-
termined by the system’s designers. The system plays no role in determining the
“meaning” or semantic content of the symbols it manipulates in supervising a
system (also called a plant). Since meaning is therefore derived externally to
the system, it can be reasonably argued that such systems are not intelligent.
Rather, it is the human designer who is the intelligent agent since it is he who
makes the “intelligent” choices for the symbol’s meanings.

The argument outlined above is identical in spirit, to objections leveled
against the ability of production based inference (symbolic AT) to model hu-
man cognition [Searle 1984]. These objections were voiced 10 years ago by J.
Searle in his famous Chinese room argument. At the heart of this criticism is the
notion of a symbol’s meaning. A symbol may acquire meaning in two different
ways. Meaning can be based on associations between symbolic and nonsymbolic
entities in a way which is derived external to the system itself. Meaning, how-
ever, can also be based on associations which arise from mechanisms internal to
the system. Searle asserts that such internal or intrinsic meaning is necessary
for an “intelligent” system. However, formal symbol systems (i.e. computers),
he asserts, have no such internal mechanism by which symbols can acquire se-
mantic content. On the basis of this assertion, it must then be concluded that
no control system which exclusively uses formal symbolic computation can be
seen as being “intelligent”.

Whether or not these criticisms imply Al based production systems are not
“intelligent” can be (and is) argued endlessly. Aside from these metaphysical
speculations, there are, from a control engineer’s perspective, other more practi-
cal and compelling reasons to question the “intelligence” of traditional symbolic
approaches to control. This reason concerns system autonomy [Antsaklis 1989].
To a great extent, one of the original motivations for attempting to develop
intelligent control systems was the need for systems which possess the same
degree of autonomy as human-operated systems. Conventional symbolic based
control, however, cannot provide this degree of autonomy. The reason lies with
the static assignment of meaning to controller symbols. If the plant changes
m a catastrophic manner, then the meaning of the symbols must change also.
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Conventional symbolic control, however, does not attempt to readjust bindings
between symbols and the events they are suppose to represent. It i1s therefore
well within the realm of possibility for the controller to happily chunk away af-
ter a catastrophic plant failure and produce a stream of control directives which
are nonsense with regard to the goals of plant supervision. Whether or not we
wish to call this “un-intelligent” control is immaterial. The end result is the
same, however, a system whose autonomy is severely circumscribed by the prior
interpretations assigned to the controller’s symbol system.

The key obstacle to high autonomy, identified in the above discussion, is the
mability of many production based systems to dynamically bind controller symbols
to nonsymbolic dynamic “events” in a way which does not require external su-
pervision by a human designer. This inability to dynamically determine internal
symbol/event bindings is precisely at the heart of Searle’s critique of intelligent
computational systems. Therefore Searle’s notion of an intelligent system is di-
rectly relevant to the issue of autonomy in control. On the basis of these remarks
it might then be concluded that the development of an autonomous control sys-
tem architecture with the capacity for dynamic internal binding of controller
symbols is “intelligent” in the sense proposed by Searle. In the remainder of this

chapter, a Discrete Event System (DES) model for hybrid control systems is
developed in Section 2. This modeling framework is used in Section 3 to develop
fixed supervisory controllers. Techniques for adaptive supervisory control will be
discussed in Section 4. The adaptation techniques discussed in Section 4 provide
a rationale for a working characterization of intelligence in supervisory control.

2 Hybrid Control System Modeling

Recently, attempts have been made to study hybrid control systems in a uni-
fied, analytical way and a number of results have been reported in the litera-
ture [Antsaklis 1993d] [Benveniste 1990] [Gollu 1989] [Grossman 1992] [Holloway
1992] [Kohn 1992] [Lemmon 1993b] [Nerode 1992] [Passino 1991b] [Peleties 1988]
[Peleties 1989] [Stiver 1991a] [Stiver 1991b] [Stiver 1991c] [Stiver 1992] [Stiver
1993].

The hybrid control systems considered here consist of three distinct levels; see
Figure 2. The controller is a discrete-state system, a sequential machine, seen
as a Discrete Event System (DES). The controller receives, manipulates and
outputs events represented by symbols. The plant is a continuous-state system
typically modeled by differential /difference equations and it is the system to
be controlled by the discrete-state controller. The plant receives, manipulates
and outputs signals represented by real variables that are typically (piecewise)
continuous. The controller and the plant communicate via the interface that
translates plant outputs into events for the controller to use, and controller
output events into command signals for the plant input. The interface can be
seen as consisting of two subsystems: the event generator that senses the plant
outputs and generates symbols representing plant events, and the actuator that
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translates the controller symbolic commands into piecewise constant plant input
signals.

Fig.2. Hybrid Control System

To develop a useful mathematical framework we keep the interface as simple
as possible; this is further discussed below. The interface determines the events
the controller sees and uses to decide the appropriate control action. If the plant
and the interface are taken together the resulting system is a DES, called the
DES Plant, that the controller sees and attempts to control. Another way of
expressing this is that the DES controller only sees a more abstract model of the
plant; a higher level less detailed plant model than the differential / difference
equation model. The complexity of this more abstract DES plant model depends
on the interface. It 1s therefore very important to understand the issues involved
in the interface design so that the appropriate DES model is simple enough so to
lead to a low complexity controller. It should be noted that this lower complexity
is essential for real time adaptation of hybrid control systems. All these issues
pointed out here are discussed in detail later in this chapter.

It is important to identify the important concepts and develop an appropriate
mathematical framework to describe hybrid control systems. Here the logical
DES theory and the theory of automata are used. The aim is to take advantage
as much as possible of the recent developments in the analysis and control design
of DES. These include results on controllability, observability, stability of DES
and algorithms for control design among others. We first present a flexible and
tractable way of modeling hybrid control systems. Our goal is to develop a model



P. J. Antsaklis, M. D. Lemmon and J. A. Stiver, "Learning to be Autonomous: Intelligent Supervisory
Control,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-
93-003, Univ of Notre Dame, April 1993. Also in | ntelligent C ontrol: T heory a nd P r actice , Chapter 2,
pp. 28-62, Gupta M.M., Sinha N.K., eds., IEEE Press, Piscataway, NJ, 1995.

which can adequately represent a wide variety of hybrid control systems, while
remaining simple enough to permit analysis. We then present methods which
can be used to analyze and aid in the design of hybrid control systems. These
methods relate to the design of the interface which is a necessary component of
a hybrid system and its particular structure reflects both the dynamics of the
plant and the aims of the controller.

Below, the plant, interface and controller are described first. The description
of the generator in the interface via covers is discussed. The assumptions made
and the generality of the models are discussed. Next the DES plant model is
derived. In the following section, connections to the Ramadge-Wonham model
are shown, the difficulties involved are indicated, and some recent results are
outlined. Simple examples are used throughout to illustrate and explain. Note
that many of these results can be found in [Stiver 1992] and in [Antsaklis 1993d].

A hybrid control system, can be divided into three parts as shown in Figure
2. The models we use for each of these three parts, as well as the way they
interact are now described.

2.1 Plant, Interface, and Controller Models

The system to be controlled, called the plant, is modeled as a time-invariant,
contin-uous-time system. This part of the hybrid control system contains the en-
tire continu-ous-time portion of the system, possibly including a continuous-time
controller. Mathematically, the plant 1s represented by the familiar equations

X = f(X,I‘) (1)
z = g(x) (2)

where x € R, r € R™, and z € RP are the state, input, and output vectors
respectively. f : 7 x R™ — R” and ¢ : R” — RP are functions. This is the
common plant model used in systems and control. Note that in our theory,
developed below, 1t is only necessary to have a mathematical description where
the state trajectories are uniquely determined by the initial state and the input
signals. For the purposes of this work we assume that z = x. Note that the plant
input and output are continuous-time vector valued signals. Bold face letters are
used to denote vectors and vector valued signals.

The controller is a discrete event system which is modeled as a determinis-
tic automaton. This automaton can be specified by a quintuple, {S Z R 6,0},
where S is the (possibly infinite) set of states, 7 is the set of plant symbols, R
is the set of controller symbols, § : Sx 7 — S is the state transition function,
and ¢ : S — R is the output function. The symbols in set R are called controller
symbols because they are generated by the controller. Likewise, the symbols in
set Z are called plant symbols and are generated by the occurrence of events in
the plant. The action of the controller can be described by the equations

s[n] = é(3[n — 1], 2[n]) (3)
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r[n] = ¢(3[n]) (4)

where 3[n] € S,%[n] € Z, and #[n] € R. The index n is analogous to a time
index in that it specifies the order of the symbols in a sequence. The input
and output signals associated with the controller are asynchronous sequences
of symbols, rather than continuous-time signals. Notice that there is no delay
in the controller. The state transition, from 5[n — 1] to 3[n], and the controller
symbol, 7[n], occur immediately when the plant symbol Z[n] occurs.

Tildes are used to indicate that the particular set or signal is made up of
symbols. For example, 7 is the set of plant symbols and Z 1s a sequence of plant
symbols. An argument in brackets, e.g. Z[n], represents the nth symbol in the
sequence z. A subscript, e.g. Z;, is used to denote a particular event from a set.

The controller and plant cannot communicate directly in a hybrid control
system because each utilizes a different type of signal. Thus an interface 1s re-
quired which can convert continuous- time signals to sequences of symbols and
vice versa. The interface consists of two memoryless maps, v and «. The first
map, called the actuating function or actuator, v : R — R™ converts a sequence
of controller symbols to a piecewise constant plant input as follows

r = 7(7) (5)
The plant input, r, can only take on certain constant values, where each value is
associated with a particular controller symbol. Thus the plant input is a piecewise
constant signal which may change only when a controller symbol occurs.
The second map, the plant symbol generating function or generator, « :
R — Z, is a function which maps the state space of the plant to the set of plant
symbols as follows

£ = a(x) (6)

It would appear from Equation 6 that, as x changes, z may continuously
change. That is, there could be a continuous generation of plant symbols by the
interface because each state is mapped to a symbol. This is not the case because
« 1s based upon a partition of the state space where each region of the partition
is associated with one plant symbol. These regions form the equivalence classes
of a. A plant symbol is generated only when the plant state, x, moves from one
of these regions to another.

Discussion: The model described above may appear at first to be too limited
but this is not the case. The simplicity of this model is its strength and it does
not reduce its flexibility when modeling a hybrid control system. It is tempting
to add complexity to the interface, however this typically leads to additional
mathematical difficulties that are not necessary. Consider first the function vy
which maps controller symbols to plant inputs. Our model features only constant
plant inputs, no ramps, sinusoids, or feedback strategies. The reasons for this
are two fold. First, in order for the interface to generate a nonconstant signal
or feedback signal it must contain components which can be more appropriately
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included in the continuous time plant, as is done in the model above. Second,
making the interface more complex will complicate the analysis of the overall
system. Keeping the function v as a simple mapping from each controller symbol
to a unique numeric value is the solution.

The interface could also be made more complex by generalizing the definition
of a plant symbol. A plant symbol is defined solely by the current plant state, but
this could be expanded by defining a plant symbol as being generated following
the occurrence of a specific series of conditions in the plant. For example, the
interface could be made capable of generating a symbol which is dependent upon
the current and previous values of the state. However, doing this entails including
dynamics in the interface which actually belong in the controller. The controller,
as a dynamic system, is capable of using its state as a memory to keep track of
previous plant symbols.

The key feature of this hybrid control system model is its simple and un-
ambiguous nature, especially with respect to the interface. To enable analysis,
hybrid control systems must be described in a consistent and complete manner.
Varying the nature of the interface from system to system in an ad hoc manner,
or leaving its mathematical description vague causes difficulties.

2.2 Examples

Fzample 1 - Thermostat/Furnace System: This example will show how an ac-
tual physical system can be modeled and how the parts of the physical system
correspond to the parts found in the model. The particular hybrid control sys-
tem in this example consists of a typical thermostat and furnace. Assuming the
thermostat is set at 70 degrees Fahrenheit, the system behaves as follows. If the
room temperature falls below 70 degrees the furnace starts and remains on until
the room temperature exceeds 75 degrees. At 75 degrees the furnace shuts off.
For simplicity, we will assume that when the furnace is on it produces a constant
amount of heat per unit time.

The plant in the thermostat/furnace hybrid control system is made up of the
furnace and room. It can be modeled with the following differential equation

x = .0042(Ty — x) + 2step(r) (7)

where the plant state, x, is the temperature of the room in degrees Fahrenheit,
the input, r, is the voltage on the furnace control circuit, and 7j is the outside
temperature. The units for time are minutes. This model of the furnace is a
simplification, but it is adequate for this example.

The remainder of the hybrid control system is found in the thermostat which
is pictured in Figure 3. As the temperature of the room varies; the two strips of
metal which form the bimetal band expand and contract at different rates thus
causing the band to bend. As the band bends, it brings the steel closer to one
side of the glass bulb. Inside the bulb, a magnet moves toward the nearest part
of the steel and opens or closes the control circuit in the process. The bimetal
band effectively partitions the state space of the plant, x, as follows
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Hif x<70
a(x) =4 HifT0<x <75, (8)
Zif x>75

where the three symbols correspond to 1) steel is moved against the left side of
the bulb, 2) band is relaxed, and 3) steel is moved against the right side of the
bulb.

Inside the glass bulb is a magnetic switch which is the DES controller. It has
two states because the switch has two positions, on and off. The DES controller
input, z, is a magnetic signal because the symbols generated by the generator
are conveyed magnetically. The state transition graph of this simple controller
is shown in Figure 4. The output function of the controller is essentially the
following

#(51) = 71 < close control circuit (9)

#(82) = 72 <> open control circuit (10)

Fig.3. Thermostat

The contacts on the switch which open and close the control circuit can be
thought of as the actuator, although there is no logical place to separate the
actuator from the DES controller. The commands from the controller to the
actuator are basically a formality here because the controller and actuator are
mechanically one piece. With this in mind, the actuator operates as
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Fig. 4. Controller for Thermostat/Furnace System

v(r1) =0 (11)
7(7:2) =24 (12)

Ezample 2 - Surge Tank: This is another example to illustrate how a simple
hybrid control system can be modeled. The system consists of a surge tank
which is draining through a fixed outlet valve, while the inlet valve is being
controlled by a discrete event system. The controller allows the tank to drain to
a minimum level and then opens the inlet valve to refill it. When the tank has
reached a maximum level, the inlet valve is closed. The surge tank is modeled
by a differential equation,

x=r—x!/? (13)

where x is the liquid level and r is the inlet flow. The interface partitions the
state space into three regions as follows

z 1f X > mazx
a(x) = < Z3if min < x < maz (14)

zz 1f X < min
Thus when the level exceeds maz, plant symbol z; is generated, and when
the level falls below min, plant symbol zs is generated. The interface provides
for two inputs corresponding to the two controller symbols 71 and 75 as follows

»y(f):{l?ff:fl , (15)

Since r = y(7), this means the inlet valve will be open following controller
symbol 71, and closed following controller symbol 75.

The controller for the surge tank is a two state automaton which moves
to state §; whenever Z3 is received, moves to state S5 whenever Z; 1s received
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and returns to the current state if Z3 is received. Furthermore ¢($1) = # and

B(82) = 7a.

2.3 DES Plant Model

If the plant and interface of a hybrid control system are viewed as a single com-
ponent, this component behaves like a discrete event system. It is advantageous
to view a hybrid control system this way because it allows it to be modeled as
two interacting discrete event systems, one being the controller described above
and the other being a DES model of the plant and interface. The discrete event
system which models the plant and interface is called the DES Plant Model and
is modeled as an automaton similar to the controller. The automaton is spec-
ified by a quintuple, {P Z R ¥, &}, where P is the set of states, Z and R are
the sets of plant symbols and controller symbols, ¢ : P x 7 — P is the state
transition function, and € : P x R — P(Z) is the enabling function. Notice that
there is a difference between the controller automaton and the DES plant model
automaton, namely the presence of an enabling function. The enabling function
specifies which plant symbols are enabled for a given state and input. When
a plant symbol is enabled this means it may be generated by the DES plant
model. Since there is generally more than one plant symbol enabled for a given
state and input, the DES plant model is nondeterministic. Nondeterministic, in
this case, means that the next state of the DES plant model is not uniquely
determined by the current state and the input. All this is in contrast to the
controller automaton, in which the controller symbols are uniquely determined
by the output function and the state transitions are also determined uniquely
by the current state and the input.

The state transition function defines the state which results following the
generation of a plant symbol. Thus the state transitions in both the controller
automaton and the DES plant model are governed by the plant symbols. The
state transition function, , is a partial function because some plant symbols
are never enabled from a given state. This model for the DES plant differs
in notation, though not in essence, from that used in [Antsaklis 1993d] and
[Stiver 1992]. The change is to facilitate the use of existing DES methods.

The behavior of the DES plant model is as follows

Z[n+1] € £(p[n], 7[n]) (16)
pln] = ¢ (pln — 1], 2[n]) (17)

where p[n] € P,#[n] € R, and Z[n] € Z. After an input from the controller, one
of the enabled events occurs and the state of the DES plant changes according
to the state transition function.

As described above, the DES plant model is an automaton described by the
quintuple, {P Z, R, f} To obtain the DES plant model it is necessary to find
the five elements of the quintuple. First, Z and R are already specified in the
hybrid system model. The set of states, ]5, is determined by the set of plant
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events. Specifically, for each plant event, z;, there is a DES plant state, p;, such
that whenever x € z;, the state of the DES plant will be p.
The state transition function, + is defined as follows

[ Dy if 3¢x O 2y € £(pa, ¢k

V(Par 20) = { undfﬁned if othervfi(s]; ) (18)

This leaves the enabling function, &. The enabling function maps a state and

an input to a set of states. We can find £ by a test which determines whether

a given event is in the set of events which are enabled for a certain state and

input. Z; is enabled from state p, by input ¢ (i.e. Z5 € £(Pq,¢x)) if @ # b and
there exists x such that

a=b=0 — hZ(X)ZO
. aG=b=1 — hZ(X)<0
vi a; = 0,b; =1 — hl(x) = O,Vhi(x) : fk(X) <0 (19)
a; = 1,b; =0 — hl(X) = O,Vhi(x) . fk(X) >0
where fi(x) = f(x,v(ck)).

Frample: The plant is a double integrator (this example has appeared before in

[Stiver 1992] and [Antsaklis 1993d])

. 01 0
x:[oo]x—l—[l]r (20)
where r € {—1,0, 1} which yields

[0 1] [0
fix) = 00 x + __1] (21)
017
fa(x) = 00] x (22)
[0 1] [0
f3(x) = 00] x + _1] (23)
The events are formed by the following two hypersurfaces
hl(X) = (24)
hz(X) = T (25)
Thus, there are two covering events
cr ={x: 21 <0} (26)
ey ={x 2y < 0} (27)

and 22 plant events
zoo = {x:21 > 0,29 > 0}
201 = {x:x1 > 0,25 < 0}
z10 = {x 121 < 0,29 > 0}
z11 = {x 121 < 0,29 < 0}
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Now that the hybrid system has been described, the DES plant model can
be obtained. There are four plant symbols which represent the four plant events.

7 = {Z00, 201, %10, 211 } (32)
There are three controller symbols,
R = {F1,72,75)} (33)

which provide the three possible plant inputs described above. There are four
DES plant states,

P = {Poo, Po1, P10, P11} (34)

which correspond to the four events.

To find the enabling function, we must look at each state and input. For
example, consider &(pP1g,71). Zoo is enabled because there exists x = [0 1)’ which
satisfies the conditions of equation 19. Also, z1; 1s enabled because there exists
x = [—1 0] which satisfies equation 19. Z1y is not enabled because it has the
same index, 10, as the current state and Zg; is not enabled either because there
i1s no x which satisfies equation 19. Thus we have:

&(pro, 71) = {Z00, 211} (35)

Once the enabling function has been derived, the state transition function is
obvious from equation 18. For example,

¥(P10, Z00) = Poo (36)
Y(P1o, £11) = P11 (37)

3 Supervisory Control via DES Plant Models

3.1 Controllability and Supervisor Design

In this section, we use the language of the DES plant model to examine the
controllability of the hybrid control system. This work builds upon the work
done by Ramadge and Wonham on the controllability of discrete event systems
[Ramadge 1985], [Ramadge 1987], [Ramadge 1989], [Wonham 1983], [Wonham 1987].
Previous work on the controllability of DES used the Ramadge-Wonham frame-
work. Here we generalize several of those results to apply them to the DES plant
model obtained from a hybrid control system (we refer to this DES as an HDES).
Before existing DES techniques developed in the Ramadge-Wonham frame-
work can be extended, certain differences must be dealt with. The Ramadge-
Wonham model (RWM) consists of two interacting DES’s called the RWM gen-
erator and RWM supervisor. The RWM generator is analogous to the DES plant
model and the RWM supervisor is analogous to the DES controller. The RWM
generator shares its name with the generator found in the hybrid control system
interface but the two should not be confused. In the RWM, the plant symbols
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are usually referred to as “events”, but we will continue to call them plant sym-
bols to avoid confusion when an event is defined later in this chapter. The plant
symbols in the RWM are divided into two sets, those which are controllable and
those which are uncontrollable: Z = Z. U Z,. A plant symbol being controllable
means that the supervisor can prevent it from being issued by the RWM gen-
erator. When the supervisor prevents a controllable plant symbol from being
issued, the plant symbol is said to be disabled. The plant symbols in Z. can be
individually disabled, at any time and in any combination, by a command from
the RWM supervisor, while the plant symbols in Z, can never be disabled. This
is in contrast to our DES plant model where each command (controller symbol)
from the DES controller disables a particular subset of 7 determined by the
complement of the set given by the enabling function, £. Furthermore, this set
of disable plant symbols depends not only on the controller symbol but also the
present state of the DES plant model. In addition, there is no guarantee that
any arbitrary subset of Z can be disabled while the other plant symbols remain
enabled.

The general inability to disable plant symbols individually and the enabling
function’s dependence upon the state of the DES plant model, are what differ-
entiate the DES models used to represent a hybrid system from the DES models
of the Ramadge-Wonham framework. In fact, the RWM represents a special case
of the other, in which the enabling function is independent of the plant state
and it is possible to disable only certain plant symbols albeit in any combination
desired.

The behavior of a DES can be characterized by the set of possible sequences
of symbols which i1t can generate. This set is referred to as the language of the
DES, denoted L, and defined (using the notation of the DES plant model) as

L={w:we Z" (py,w) is defined} (38)

where pg € P is the initial state and Z* is the set of all possible sequences of
symbols from Z.

A DES is controlled by having various symbols disabled by the controller
based upon the sequence of symbols which the DES has already generated. When
one DES is controlled by another system such as a RWM supervisor or a DES
controller, the DES will generate a set of symbol sequences which lie in a subset
of its language. If we denote this language of the DES under control as L; then
Ly C L.

Using the RWM, it is possible to determine whether a given RWM generator
can be controlled to a desired language [Ramadge 1985]. That is, whether it is
possible to design a controller such that the RWM generator will be restricted
to some target language K. A theorem by Ramadge and Wonham states that
such a controller can be designed if K is prefix closed and

KZ,NLCK (39)

where K represents the set of all prefixes of K. A prefix of K is a sequence of
symbols, to which another sequence can be concatenated to obtain a sequence
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found in K. A language is said to be prefix closed if all the prefixes of that
language are found in the language.

When the conditions of the above theorem are met for a given RWM gen-
erator of language L, the desired language K is said to be controllable, and a
controller can be designed which will restrict the generator to the language K.
This condition requires that if an uncontrollable symbol occurs after the gener-
ator has produced a prefix of K| the resulting string must still be a prefix of K
because the uncontrollable symbol cannot be prevented.

Since the DES plant model belongs to a more general class of automata than
the RWM, we present another definition for controllable language which applies
to the DES plant model.

Definition1. A language, K, is controllable with respect to a given DES plant
if

Vw € K 37 € R 3 wé((po, w),7) C K. (40)

This definition requires that for every prefix of the desired language, K, there
exists a control, 7, which will enable only symbols which will cause string to
remain in K.

Theorem 2. If the language K is prefiz closed and controllable according to
(40), then a controller can be designed which will restrict the given DES plant
model to the language K.

(K)}. f(w) is guaranteed to be non-empty by (40). We can now show by induc-
tion that w e Ly = w € K.

1. Vw € L; such that |w| = 0 we have w € K. This is trivial because the only
such w is the null string € and ¢ € K because K is prefix closed.

2. LetL;' = {w : w € Ly, |w| = i}, that is L;" is the set of all sequences of
length ¢ found in L. Given Lfi, LfH'l ={v:v = w&(Y(Po,w), f(w)),w €
L;"}. Now with the definition of f(w) and (40) we have L;* € K = L't ¢
K.

Sowé€ Ly =wéeK. 0O

Since the DES plant model can be seen as a generalization of the RWM,
the conditions in (40) should reduce to those of (39) under the appropriate
restrictions. This is indeed the case.

If the desired language is not attainable for a given DES| it may be possible
to find a more restricted language which is. If so, the least restricted behavior is
desirable. [Ramadge 1985] and [Wonham 1983] describe and provide a method
for finding this behavior which is referred to as the supremal controllable sub-
language, K1, of the desired language. The supremal controllable sublanguage is
the largest subset of KX which can be attained by a controller. KT can be found
via the following iterative procedure developed by Ramadge and Wonham.

Proof: Let the controller be given by f : Z* — R where flw) € {7 : wé(Y(po, w), ) C
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Ko=K (41)
Kipn={w:we K, ©Z,NL CK;} (42)
K' = lim K; (43)

Once again, this procedure applies to the RWM. For hybrid control systems,
the supremal controllable sublanguage of the DES plant model can be found by
a similar but more general iterative scheme.

Ko=K (44)
Kiy1 ={w:w € K,Yv € w37 € R such that vE(Y(Po,v),7) C K;) (45)
K' = lim K; (46)

This result yields the following theorem.

Theorem 3. For a DES plant model and language K, K1 is controllable and
contains all controllable sublanguages of K .

Proof: From (45) we have
K'={w:we K,Yvo €w3#e Rsuch that vé(y(fo,v),7) C K1)  (47)
which implies
K'={w:we K,3% € R such that v&(¢(fo, v),7) C KT} (48)

From (48) it is clear that KT is controllable. To show that every controllable
subset of K isin K1 we assume there exists M C K such that M is prefix closed
and controllable but M ¢ KT.

IM st. M CK,M ¢ K!

= Jwst.we M wgK!

= Jist.we K;,w¢ Kiyq

= Jv € w s.t. Vi € R, vE((fo,v), 7) ¢ K;
vEM=3F€Rst. v = v€(¢Y(po,v),7) € M

W K= 3j<ist.w € Kjw ¢ Kjp

If the sequence is repeated with 1 = j and w = w’ we eventually arrive at the
conclusion that v’ € M but w’ ¢ Ky which violates the assumption that M C K
and precludes the existence of such an M. a
Ezample 1 - Double Integrator We use the double integrator example

again because the DES plant model was found earlier. This DES is represented
by the automaton in figure 5, and explicitly by the following sets and functions.
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Fig.5. DES Plant Model for Double Integrator

P = {f1, pa, Ps, Pa’} (55
7 = {a,b¢ d) (56)
R = {#, 7,73} (57
V(p1,d) = pa (3, b) = po (58
Y(p2,a) = p1 Y(Pa, @) = p1 (59
Y(p2,¢) = p3 (P4, €) = p3 (60

Epr, i) = {d
E(fa, ™) = {@, ¢
E(pa, 7 a

7 a

(

(

(
g(ﬁ?a (
The values, for which ¢ has not been stated, are undefined, and the values for
which £ has not been stated are the empty set.

The language generated by this automaton is I = (da + deb(cb)*a)*. If
we want to drive the plant in clockwise circles, then the desired language is
K = (dcha)*. Tt can be shown that this K satisfies Equation (40) and therefore
according to theorem 2, a controller can be designed to achieve the stated control
goal.

Ezample 2 - A More Complex DES Plant Model This example has a
richer behavior and will illustrate the generation of a supremal controllable sub-
language. We start immediately with the DES plant model shown in figure 6.
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Fig. 6. DES Plant Model for Example 2

The enabling function, &, is given by the following table.

Ell 71 7 3 Ty
pf 0 {63 {8} b
p2||{at {a,d} {c} {a,c d}
a0 {a ) (65)
pal{at {f} {a f}{a € d}
ps|| 0 {d} {d} {d}
ps|[{e} {e} {e} {é}

The language generated by this DES is L = L,, where

Ly = (bla+do*a+ c(a+ fedo*a)))* (66)

where o = ((e+fe)d). Suppose we want to control the DES so that it never enters
state ps and can always return to state p;. The desired language is therefore

K=(a+b+ec+d+ f)a (67)

In this example, the language K is not controllable. This can be seen by
considering the string bef € K, for which there exists no 7 € R which will
prevent the DES from deviating from K by generating e and entering state ps.

Since K is not controllable; we find the supremal controllable sublanguage
of K as defined in equation (46). The supremal controllable sublanguage is

K'=Ki=(a+b+c+d+ f)*a— (befedo*a)” (68)

Obtaining a DES controller once the supremal controllable sublanguage has
been found is straight forward. The controller is a DES whose language is given
by K1 and the output of the controller in each state, ¢(5), is the controller symbol
which enables only transitions which are found in the controller. The existence
of such a controller symbol is guaranteed by the fact that KT is controllable. For
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Example 2, the controller is shown in Figure 7 and it’s output function, ¢, is as
follows:

Fig.7. DES Controller for Example 2

4 Symbol/Event Bindings

The supervisor issues control directives on the basis of symbolic computations.
The symbols used in this computation are associated with categories of plant
behaviour known as events. These associations are called symbol/event bindings.
A symbol for which such an association exists will be said to be grounded. The
problem of determining ”relevant” or ”significant” bindings will be called the
symbol grounding problem [Harnad 1990].

The precise nature of these bindings will clearly play an important role
in establishing an explanatory interpretation of the supervisor’s computations.
Such explanations have been viewed as one attribute of intelligent systems
[Pylyshyn 1984]. On a more pragmatic level, however, these bindings identify
events within the plant’s dynamics which are significant from the standpoint of
an implicitly assumed control objective. A number of significant issues there-
fore arise in the discussion of symbol/event bindings. How can such bindings
be made consistent or “relevant” with regard to the control or supervision ob-
jectives? How can such associations be determined in an on-line manner by
the system? Is it plausible to recognize an ”uncontrollable” set of events? How
does the choice of symbol/event bindings affect the space and time complexity
of the supervisor’s computations? The following subsections address several of
these questions. Section 3.1 introduces a basis for symbol grounding and sec-
tion 3.2 discusses the controllability of events by a supervised plant. Section 3.3
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then introduces a technique for identifying ”supervisable” events using a finite
oracle-time inductive inference protocol.

4.1 Complete and Well-Posed Bindings

Interpretations assigned to supervisor symbols are generally representative of
important categories of plant behaviour. A plant’s behaviour refers to its state
trajectory, x(¢). Behavioural categories therefore refer to a collection of trajec-
tories with some ”common” property. State trajectories of autonomous systems,
however, are determined by the initial state. This observation suggests that a
class or category of behavioural trajectories can be adequately represented by a
subset of the state space. In this chapter, therefore, an event will be defined as
any subset of the plant’s state space.

The collection of observation events, for example, can be represented by a
family of [ subsets of the state space, ®”. This collection is denoted as

Z:{z1z2~~~zl} (71)

where z; C R®" for i = 1,...,l. The symbol/event binding associates a symbol,
Z, from the observation alphabet, Z, with each one of these event sets z € Z.
Therefore, if x € R™ is the plant state, the observation symbol is denoted as
Z = v(g(x)). From this perspective, it can be said that event z is the inverse
image of the composed function y o g : " — Z, for the ith symbol % € Z.
Bindings for observation events will generally be required to satisfy certain
regularity properties. The properties are that the symbolic representation should
be complete and well-posed. The observation event ensemble, Z, is said to be

complete if and only if the inverse image of y o ¢ for all z € Z is the entire state
space. Specifically this means that every state has at least one symbol out of Z
associated to it. We can therefore write " = Ui’:1 z;, which implies that Z is a
finite cover for R".

In addition to completeness, it is desirable that the event ensemble be well-
posed. A well-posed ensemble is one where the symbolic representation of a state
trajectory is invariant under infinitesimal perturbations of the symbol/event
bindings. This property of the ensemble can be guaranteed if the events are
open subsets of the state space. The complete and well-posed collection of events
therefore becomes a finite open cover for the state space. This notion has also
been discussed in [Nerode 1992] with regard to the structural stability of the
hybrid dynamical systems.

The preceding discussion indicated how observation symbols might be bound
to subsets of the plant’s state space. Similar bindings can be obtained for the
other symbol alphabets, S and R. Assume that the supervisor always starts in
state Sp. A string of input symbols will transition the supervisor state to another
symbol in S. Let w[$; 5] denote the shortest string of observation symbols which
transition the supervisor o to § for the first time. The observation events bound
to the sequence w[$; 5] represent a finite collection of open sets in ®” which can
be associated with the supervisor symbols, 5. The union of these observation
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events therefore form an open subset of R” which can be used to bind §. Similarly,
since control symbols 7 € R are associated with supervisory states s though the
memoryless output mapping ¢, : S — R, the supervisory events can be used to
help bind the control symbols.

”Events” are often formulated by the control system designer with regard to
a conjunction of state or observational inequalities. For example, there may be
performance requirements that a given process operate within a certain tempera-
ture and pressure range. These ranges identify an open subset of the plant’s state
space which are representative of the events labeled ”NOMINAL” behaviour.
Similar ranges can also be used to indicate ”FAILURE” events. It is important
to know whether or not such externally defined events will give rise to complete
and well-posed ensembles of observation events. The following discussion shows
how a priori ”design” events are used to construct a complete and well-posed ob-
servation ensemble. As noted before, since the supervisors other symbols can be
grounded with respect to the observation symbol/event bindings, the following
construction of observation symbol bindings will be sufficient to allow binding
of all symbols used by the hybrid system. The remainder of this chapter makes
extensive use of the construction introduced below.

Consider a collection of [ open subsets of ;&" which form an open cover for
R™. Let this collection of sets be denoted as

C:{clcz...cl} (72)

Each element of C is called a covering event and the collection C will be called
the covering collection for the hybrid system. Let ¢; be associated with a unique
covering symbol ¢;. The alphabet of covering symbols is denoted as C.

The observation symbols Z € Z are defined in terms of these covering events

and symbols. Specifically, we let
z=7(g(x)) = {52' el :x¢ ci} (73)

where ¢; € C. Note that the observation symbol is now associated with a col-
lection of ”covering” symbols. The observation event is then a set z; which is a
preimage of v for the ¢th input symbol z;

= {x €N 1 9(g(x)) = &} (74)

where Z; € Z. In light of the preceding definition, it is clear that the observation
event can also be represented by a finite intersection of covering events.

Z; = ﬂ Cj (75)

Jel;

where ¢; € C. The set I; is a set of integers called the index set for the observation
event z;.

In the following discussion, it will be convenient to consider connected events.
Two observations events, z; and zo, will be said to be connected if and only if
I, C I or Is C I;. Note that since each z € Z is formed by a finite intersection
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of open sets, then all elements of Z are also open which clearly cover the state
space. In this regard, the representations generated with respect to Z will also
be complete and well-posed.

The approach to event binding introduced above is consistent with the con-
ventional useage of the term ”event” in modern probability theory. In the intelli-
gent control and hybrid systems community, however, there is still no universally
accepted notion of what precisely constitutes an event. Other definitions of an
event can be found in [Peleties 1989] [Zeigler 1989] [Benveniste 1990]. In many
of these alternative definitions an event is defined in terms of a change in the
system state. Specifically, these definitions focus on the semantic intepretation
of an event as "something that happens”. In general, that ”something” is deter-
mined by the human designer who decides what is and i1s not ”eventful”. The
notion of event developed in this chapter is therefore significantly different from
other uses of the term. The primary difference 1s in what constitutes and who
decides what is ”eventful”. Specifically, the definition of an event as a subset
contains no implicit notion of eventfulness which needs to be specified by the
human designer. In this context, the system may be designed to make its own
choices with, as will be argued later, a clear impact on the ”intelligence” of the
resulting system.

4.2 Supervisable Events

The preceding construction of the observation events provides a method by which
a priori performance requirements can be integrated into the design process. The
covering events used in this construction bind observation symbols; z, to plant
behaviours (i.e. covering events, ¢ € C) which have explicit meaning to the system
designer. These events, however, while meaningful from a designer’s perspective,
may not yield a collection of events which can be effectively supervised by the
control policies available to the system. Therefore in order to be useful any
symbol/event binding must also be ”supervisable” in some appropriate sense.

Supervisability is closely related to conventional system theoretic concepts of
controllability. A system is said to be controllable to a state, x, if for all xo there
exists a control which transitions the state to the final state x. The following
definition extends this concept to hybrid systems.

Definition4. A hybrid system starting in event zy will be said to be supervis-
able to event z if and only if for any initial event zg, there exists a finite string
of control symbols

w[Z; 20] = 7Zi1 7Zi2 e 7~Qiq (76)
such that after the issuance of 7;,, the system’s generator outputs observation
symbol Z.

An event which the hybrid system can be supervised to, will be referred to
as a supervisable event. If all observations of a hybrid system are supervisable,
the system is said to be completely supervisable. In general, however, the im-
age of the actuator mapping will be a closed and proper subset of the control
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space, R™. The consequence of this restriction is that it may be impossible to

find a control sequence such that all observation events are supervisable. Conse-
quently, a system level intepretation of supervisability has to be adopted which 1s
”weaker” than complete supervisability. The following definition formally states

this weaker concept.

Definition 5. A hybrid system will be said to be supervisable if and only if the

set of supervisable observation events is non-empty and connected.

The preceding definition indicates that any non-empty subset of connected su-

pervisable events will yield a supervisable system.

In reviewing the above definition, it should be apparent that a supervisable

event 1s a subset of the state space which is invariant with respect to the flow

generated by a fixed control vector r. This means that supervisable observation

events can be characterized using the LaSalle invariance principle. The following

theorem summarizes this insight.

Theorem 6. An observation event, z; € Z, for a hybrid system will be super-
visable if there exists a C' functional V; : % x R™ — R and a control vector

r € 1™ such that

— Vi(x,x) > 0, for allx € R"
— along any state trajectory, x(1), the following inequality holds

PO < i) <0

where Wi (x) > 0 for all x € R,
— and the set

M; ={x e R" : W;(x) =0}

15 a proper subset of event z;.

The construction of a functional which satisfies the above theorem will also

lead to an equation for a constant control vector r which leaves the event Z;

supervisable. The following corollary shows how the functional V; can be con-

structed from a family of positive definite functionals Vi(j) which are defined

with respect to the covering design events in C.

Corollary 7. Consider a hybrid system H whose observation events are con-
structed from a collection, C, of covering events as discussed in section 3.2.
An observation event z; with index set I; will be supervisable if there exists
an € > 0, a vector v € R™ and a family of positive definite C' functionals

{Vi(j) (R x R™ — R} such that for all j € I;,

_ ‘/i(j)(x’r) >e>0 forallx € 2,
— v /dt =0 forx such that VV(x]r) < /2,
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— and along any trajectory x(t) generated by the plant using control vector r,
the following inequality holds for all j € I;,

av)
L <
L= <0 (79)

The preceding corollary is a direct consequence of the above theorem. In this
case, the functional, V;, is constructed by the sum of the individual VZ»(]).

Vi) = 3V k) (80)

The resulting C! functional is clearly positive definite and will be decreasing
over any trajectory. The only thing to do is show that the set M; is a closed
subset of z;. By assumption, dVZ»(])/dt is zero over the closed sets

MY = {x exn v < 6/2} (81)

Since all dl/i(j)/dt are not positive, it can be concluded that dV;/dt will only be

zero if x € ﬂj MZ»(]). There will always exist an ¢ such that this intersection is
nonempty which therefore implies that M; C ﬂj MZ»(]) C z; and the corollary is
proven. e

The following example applies the corollary to derive a set of sufficient tests
for an observation event’s supervisability. In this example, it 1s assumed that the
plant 1s affine in the controls. The plant’s differential equations can therefore be
written as

x = fo(x) + Z 7 fi(x) (82)

z = g(x) (83)

Consider the covering event

Z; = ﬂ Cj (84)

JeT;
Assume that the covering event in C separates the state space into two n-
dimensional sets so that a functional ¢;(x) : R — R can be defined such that

Ci(x){<0 if x € ¢ (85)

> 0 otherwise

For the observation event z; with index set I;, define a functional Vi(j) for
each j € I; as follows.

0 otherwise

K/Z»(j)(x,r) _ { 2(ej(x) + €)% if ¢j(x) > —¢ (86)
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This functional is clearly C* and is positive definite. The set ﬂj Mi(j) is clearly

contained within z;. Therefore the only thing left to do is guarantee that Vi(j)
for all j1/; is decreasing along any state trajectory.

The time derivative of VZ»(]) along any trajectory is given by

v

()
o VxV, (xr x (87)

= c]( VxC] (fo + i mfZ(X)) (88)

1
= i (x) [Vxe; () (fo fr - ) | (89)
rm
1
= (8?8 el ) | (90)
rm
<0 (91)
for all j € I; and where
5eP) = ¢ (%) [Vxe; ()] fi(x) (92)

for k = 1,...,n. The terms, 66( ), represent the observed changed in the func-
tion (cj(x))? as a consequence of applying the kth control policy, f. The last
inequality indicated above provides a set of sufficient conditions that a control
vector r must satisfy if the event z; 1s be supervisable. Specifically, these condi-
tions are linear in r, which implies that the required r be a feasible point for a
system of linear inequalities. Therefore, the problem of determining whether or
not an observation event is supervisable and the problem of determining the con-
trol vector which supervises the system to z; can be solved by solving a system
of linear inequalities. There are, of course, well defined methods for approach-
ing this problem. In the following section, one technique known as the ellipsoid
method will be examined in more detail.

It should also be noted that the preceding corollary only provides a sufficient
test for supervisability. In fact, that test is somewhat restrictive for it insists on
determining a single constant control vector r which leaves M; inside z;. It is
quite possible that no such single r exists. In this case the event z; would not be
supervisable by a single constant control vector. It is, however, possible that the
event is supervisable by a switched control vector. It is quite possible to extend
the methods used above to determine a switching sequence of control vectors
for event supervision. The price to be paid for enlarging the set of supervisable
events, however, is additional computational complexity required to define those
switching strategies. This represents an important area of future research and is
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closely related to earlier work on the decentralized control of large scale aggregate
systems. Early work in decentralized control has tended to use the Bellman-
Matrosov vector Lyapunov functions [Bellman 1962]. In fact, the VZ»(]) introduced
above form the components of a vector Lyapunov functional. An interesting
area of future work would investigate points of tangency between earlier work
in decentralized control and current interests in event identification.

4.3 Event Identification

The preceding section derived sufficient conditions for a control vector to super-
vise the plant (which is affine in controls) to event z;. The control was determined
to be a feasible point of a system of linear inequalities. The problem of ”learn-
ing” such a control vector and ”identifying” which events are supervisable will be
called the ”event identification” problem. In this section, we show how recursive
algorithms such as the ellipsoid method can be used to perform event identifica-
tion. The proposed algorithm is essentially a direct adaptive control algorithm
which uses an on-line learning protocol known as inductive inference. Related
versions of this work have been applied to policy coordination in hybrid system
[Lemmon 1993b] and adaptive variable structure control [Lemmon 1993a]. The
interesting aspect of the proposed adaptation algorithm is that it can be shown
to converge after a finite number of updates.

Inductive inference [Angluin 1983] is a machine learning protocol in which a
system learns by example. It has found significant and practical applications in
computational learning theory, adaptive control, parameter estimation, combi-
natorial optimization, linear programming, and pattern classification. The basic
structure of all inductive inference protocols is illustrated in figure 4.3. The pro-
tocol begins with an initial hypothesis about the system’s current status. The
protocol then gathers ”data” about the system’s current state as part of a mea-
surement experiment. The gathered data is then given to a special algorithm
commonly referred to as the oracle. An oracle is a Boolean functional which de-
clares whether or not the gathered data is ”consistent” with the current system
hypothesis. The output of the oracle is a binary declaration indicating that the
data is either consistent or inconsistent with the gathered data. If the oracle de-
clares that the data is consistent, then nothing is done to the current hypothesis.
If the oracle declares that the data is inconsistent, then an update algorithm is
invoked to modify the current hypothesis so it is consistent with all prior data.
This basic cycle of experiment, oracle query, and update 1s then repeated until
no more inconsistencies are detected.

The problem of searching for a feasible point of a set of linear inequalities
can be framed as an inductive inference protocol. Specifically, we see that the
resulting algorithm must consist of four distinct components. These components
and how they work for the event identification problem are itemized below.

— Hypothesis: The hypothesis assumes that an assumed control vector, r;, will
supervise the plant to event z;. This hypothesis is represented by an m
by m positive definite symmetric matrix, Q; and a vector r;. The specific
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Fig. 8. Flowchart for Event Identification Algorithm

hypothesis consists of two related assertions. The first assertion is that r;
will supervise the plant to z; and the second assertion is that the set of all
constant control vectors which supervise the plant to z; will lie within the
ellipsoid

FQir)={reR” :(r—1r;)Qi(r—1r;) < 1} (93)

The set S; C R™ will denote the set of all constant control vectors supervising
the plant to z;.

— Experiment: The algorithm’s next major component is an experiment for
measuring those quantities need to evaluate the system of linear inequalities
(Eq. 90). Note that the required quantities are the variations which indi-
vidual control policies, f;, induce over the functionals (¢;j(x))? defined by
the covering events c;. These quantities were denoted as 6c§k> (Eq. 92). The
experiment measures or estimates these variations on (c;(x))?.

— Oracle Query: The third component of the algorithm is an algorithm called
the supervision oracle. This component uses the experimentally determined
6c§k> for j € I; and k = 0,...,m. The supervision oracle is a Boolean
functional, Oy : ™+ x ™ — {0, 1} which outputs 0 if the experimental
data and the current control vector r; satisfy the system of linear inequalities
in equation 90 for all j € I;. The oracle outputs 1 otherwise. Because the
inequalities (90) are only sufficient conditions, the semantic interpretation of
the oracle’s response (0/1) is MAYBE/FALSE. In other words, the oracle is
only able to declare authoritatively if the current control vector r; is unable
to supervise the plant to z;.
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— Update: If the oracle’s response is MAYBE, then nothing is done. If the oracle

declares FALSE, then the current data is inconsistent with the hypothesis
that r; will supervise the plant to event z;. This means that the hypothesis
has to be changed. The update algorithm which is used to effect this change
is the central cut ellipsoid method [Shor 1977].
The fundamental problem to be solve by the update procedure is developed
as follows. Assume that £(Q;,r;) contains S, the set of all constant controls
which supervise the plant to z;. Assume that the experiment provides a data
collection represented by vectors

4 = (5(;;1) . 5c§.’”>) (94)

where j € I; or for which the oracle gives a FALSE declaration. This means
that the following inequality holds

" (0)
dir; > éc; (95)
where v = (r1,---,rm)". From the above inequality, it is clear that any
r € R™ such that
/ /
djr > d;r; (96)

can not be in S7. Therefore the convex body formed by intersection the
halfplane complementing the above inequality and the ellipsoid will con-
tain S7. There exists a unique minimal volume ellipsoid which contains this
convex body. This ellipsoid 1s computed by the following set of equations

[Groetschel 1988]

Q.d;
b= (97)
/4 Qid;
2
m
ri:ri_m—l—l (98)
m? 2 ,
=y (@ ) (99)

The update algorithm used above has seen a great deal of use in proving
polynomial complexity of certain optimization procedures. The following result
[Groetschel 1988] has proven useful in establishing the complexity results.

Theorem 8. Let F(Q,T) be an ellipsoid computed from an ellipsoid E(Q,r) us-
wng the above algorithm in equation 97, 98, and 99. Then the quotient of ellipsoid
volumes is bounded as

volE(Q,T)

< —1/2m 1
volE(Q,r) — ‘ (100)

The significance of this result when applied to the event identification algo-
rithm proposed above is stated in the following corollary
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Corollary 9. Let z; be a supervisable event and assume that the set 51 of con-
trol vectors supervising z1 is enclosed in an ellipsoid of unit volume. The event
wdentification algorithm will determine a control vector v; supervising the system
to z; after no more than 2mlIn e~ updates where ¢ is the volume of an ellipsoid
contained completely within the set, S7.

The proof of this corollary is a direct consequence of the above theorem. After
L updates (oracle declarations of failure), the volume of the bounding ellipsoid
will be given by e~/2"_ Since this cannot be smaller than e, the upper bound
shown above results immediately. o

The preceding corollary is only useful if there exists a bound on the volume
€. One way of obtaining such a bound is to consider what happens when we com-
pute these ellipsoids using finite precision arithmetic. In this case, the minimal
ellipsoid is determined by the numerical precision with which we can specify any
ellipsoid. This result is stated in the following corollary to the above theorem,
which states that the event identification algorithm has a sample complexity

which is bounded above by O(m?).

Corollary 10. Under the hypothesis of corollary 9, assume that the smallest
ellipsoid which can be specified has a radius of \/y. Then the event identifi-
cation algorithm will decide the supervisability of event z; after no more than
m?(2In(m) + Iny~1) failed oracle queries.

The proof of this corollary is obtained by recognizing that the volume of an
m-dimensional ellispoid of radius /7 is bounded below by A2 m=™  Inserting
this into the bound implied by corollary 9 yields the desired result. o

The preceding results are significant for two reasons. First, they show that
supervisable events can be located after a finite number of failed queries. There-
fore the system has only to perceive the unsupervisability of event z; a finite
number of times before the event’s supervisability is decided upon. The second
important aspect of the preceding results is that they bound the algorithm’s
scale complexity in a way which is bounded above by O(m?®). This means that
as systems become more and more complex,the time required to learn the su-
pervisable events will grow at a modest rate. In other words, with regard to
oracle-time, the event identification algorithm has polynomial sample complex-
ity. In this regard, the proposed procedure represents a truly practical method
for on-line learning of complex nonlinear systems.

On a more sober note, however, it should be noted that these bounds are
not with respect to system time, but rather with respect to failed oracle-time.
This is an important distinction for it is quite possible that there may be a long
period of time between consecutive oracle declarations of failure. Consequently,
convergence of the algorithm can be extremely long in ”system” time and may,
in fact, never converge at all. At first glance, this observation may seem to cast
doubt upon the value of the method. Upon closer considertaion, however, it
provides further insight into the method. Recall that the oracle declares failures
if the system trajectory is diverging from the current boundaries of the event.
In other words, if the system exhibits unsupervisable behaviour, the controls are
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modified. For the times between failures, the system appears to be supervisable
and there is no reason to change the control. From this viewpoint, it can be
seen that the bound is very meaningful since it is measured with respect to the
only quantity of physical interest to the system; the number of times the system
perceives itself to be ”out of control”.

Finally, it must be observed that the preceding theorem assumes a perfect
oracle. In practice, oracles will not be perfect and the question i1s then what
can be done to minimize the problems generated by an imperfect oracle. The
answer is also provided by the preceding theorem. The preceding results pro-
vide a bound on the number of failed oracle queries. If the system generates
more failures than implied by the bound, then a failure must either have oc-
curred in the oracle or the system itself. In either case, the finite time bound
provides a natural criterion for failure detection and the subsequent reinitial-
ization of the identification process. If the rate of oracle failure is known to be
small (i.e. failure probability is small) then the natural course of action is to
reinitialize the identification algorithm and try again. The preceding discussion
therefore implies the existence of effective and practical methods for dealing with
the identification failures caused by imperfect oracles. In particular, if we model
an oracle’s imperfection as a probabilistic failure rate, then it should be possi-
ble to discuss the supervision algorithm’s learning abilities within the so-called
probably-almost correct (PAC) framework [Valiant 1984] used by a variety of
researchers in the inductive inference community. This represents an important
application of PAC learning which has, up to this time, received relatively little
attention in the research community.

4.4 TIs this Intelligent?

The previous subsection introduced a supervisory control system which was ca-
pable of determining symbol/event bindings using an unsupervised on-line algo-
rithm. Is this system “intelligent”? To answer this question a closer examination
of the arguments behind Searle’s famous Chinese Room argument is required. At
the heart of Searle’s complaint is the notion of a symbol’s meaning. This prob-
lem is also referred to as the symbol grounding problem [Harnad 1990]. Symbol
grounding refers to methods by which symbols of a formal system acquire se-
mantic content or “meaning”. Such meaning generally has two interpretations.
Meaning can be acquired through the association of symbols with nonsymbolic
items in the external world. This acquired meaning is referred to as a symbol’s
extrinsic meaning. Symbols, however, also acquire content through internal asso-
ciations with other symbols. This form of content might be referred to as intrinsic
meaning.

An example of extrinsic meaning is seen in the association of the symbolic
token “ELEPHANT” with those sensory inputs produced by seeing an elephant.
The association of these sensory experiences with the symbolic token is deter-
mined by experience. The “meaning” of the symbol is determined by its non-
symbolic associations and is therefore external to the symbol system, itself. Con-
sequently, we refer to such meaning as “extrinsic”.
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An extrinsically grounded symbol system, as Searle asserts, is not sufficient
for an intelligent machine. Extrinsic meaning simply replaces the symbolic to-
kens with nonsymbolic tokens. The system has no real “understanding” of what
those tokens signify so that the resulting computation 1s “meaningless”. A good
example of this type of “unintelligent” association is seen in the intelligent con-
trol systems which make extensive use of static (nonadaptive) DES models. In
these cases, the “meaning” of the logical constructs is determined in an a priori
way by the system designer. When the system changes, the interpretations do
not change and so it can be realistically questioned whether or not the system
“understands” the significance of the symbolic manipulations it’s performing.

If we are to follow Searle’s recipe for intelligence then in order for a system to
be intelligent it must not only use high level abstractions; it must be able to gen-
erate them from internally implemented construction principles. Symbols which
arise in this manner may be grounded in nonsymbolic entities, but the meaning
of these entities is determined internally, 1.e. with respect to some intrinsic sys-
tem level principle. In this regard, the symbols of such a system are intrinsically
grounded. It is this form of intrinsic semantic meaning, which Searle asserted
as a prerequisite for intelligence.

Clearly, conventional symbolic Al does not intrinsically ground its symbols.
It has been argued that the more recent connectionist or subsymbolic Al con-
cepts embody some form of internal grounding[Chalmers 1992]. In view of these
preceding remarks concerning symbol grounding and intelligence, it is appro-
priate to discuss the inductive inference algorithm (outlined in the preceding
section) in light of the symbol grounding problem. Can this algorithm produce
event/symbol bindings which are “intrinsically” or “extrinsically” grounded. If
the bindings are wholly external, then the resulting control system cannot be
“intelligent” in the sense proposed by Searle.

In reviewing the modeling framework used in this paper, it is apparent that all
input events, z, are grounded with respect to a specific subset of the state space.
At first glance, one might conclude that this is an external grounding. However,
the true test of external grounding is to see what happens if the event/symbol
bindings change. In other words, if we shuffle the associations between symbols
and nonsymbolic entities, does the operation of the supervisor change? If the
proposed algorithm is not used, then clearly the bindings are unchanged. The
proposed protocol, however, uses a computational algorithm (i.e. the oracle) to
decide whether or not the current event/symbol bindings satisfy or are consis-
tent with the “internal” principle of supervisable events. Therefore, if the initial
event/symbol bindings change so that the resulting symbol groundings are in-
consistent with the supervision oracle, then the supervisor changes the symbol
bindings by redefining the control “events”. In other words, there is an internally
coded principle guiding the symbol grounding process. Under this viewpoint, we
can then assert that the proposed algorithm produces symbols with intrinsic
semantic content.

The intrinsic content embodied by the oracle is, of course, hardwired into
the system. The choice of what this oracle is, represents a choice by the system
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designer. There can be other oracle structures used, in which different internal
event principles are used. Therefore, in some sense, it is still through the inge-
nuity of the designer that this system appears to have “intelligent” processing.
However, the fact remains that this system is endowing its symbols with a mean-
ing which is derived by the system internally. This fact is still true regardless of
where that “internally” coded principle came from. In biological systems, such
internal coding may be a result of evolutionary development. For “artificial”
systems such internal coding is a consequence of the designer’s careful insight
into the problem. In both cases, the fact that such principles are hardwired into
the system need not preclude our labeling of such system’s as intelligent. In this
regard, the use of the inductive algorithm for identifying event/symbol bind-
ings can be indeed seen as yielding an “intelligent” control system in the sense
proposed by J. Searle.

5 Summary

In this chapter several important results were presented concerning intelligent
autonomous control systems. The main objective is to design autonomous control
systems. For control systems with limited autonomy, intelligent methods are not
necessary. However, for highly autonomous control systems, the ability for the
system to learn is essential. It is only via intelligent learning methods that a
control system can become truly autonomous. Autonomy can only be learned.
Hybrid supervisory control is essential in the autonomous control of continuous-

time systems and its role was discussed in this chapter. A rigorous mathematical
framework to model hybrid systems was introduced and used to design fixed and
adaptive supervisory controllers. In the first approach the theory of logical DES
was extended to include DES plant models of hybrid control systems and then
used to obtain fixed supervisory controllers for hybrid systems. In the second
approach, techniques for adaptive supervisory control were introduced; and pro-
vided a rationale for a working characterization of intelligence in supervisory
control.
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