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Introduction

In control problems like pole allocation and regulation with
stability the desired compensator is the solution of an equation
involving polynomial matrices, To solve these equations one can use
the coefficients of the polynomial entries of the matrices after
reducing them to some canonical form. Many times this is difficult
or even impossible. When one works with equations involving just
polynomials one can work either with the coefficients or with the
values obtained when certain values of the indeterminant s are
"plugged in'" ; the latter corresponds to polynomial representation
by a number of points (using interpolation the coefficients can be
determined). The motivation of this work is exactly this. To
establish the necessary theoretical background so that equations

involving polynomial matrices can be solved using '"plug in" values.

Note that the zeros of the determinant of a polynomial matrix
P(s) alone do not fully characterize P(s). Information about
the structure is also necessary. Characteristic vectors or latent
vectors or simply vectors a?’j are introduced to accommodate
this in Theorems 1 and 4. The relation between ai’j and the
Smith form of P(s) 1is established in Corollaries 3 and 5.
Theorem 6, Corollary 7 and Lemma 8 establish the relations between
two polynomial matrices when they both satify relations of certain

type involving ai’J . Actually, when the two matrices satisfy

exactly the same relations, then they are related by a unimodular
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premultiplication, which is the generalization of the case when
two polynomials of the same degree have the same roots; they

are equal within a constant multiplication. Finally the relation
between a?’j and the generalized eigenvectors of an equivalent
to {P,Q,R,W} system {A,B,C,E} is established. The Appendix

contains a detailed account of relations between several canonical

forms of A (and P(s)) as well as a number of definitions.

It should be noted that the results presented here are of
interest not only because of their relation to control applications
or their relation to the solution of equations involving polynomial
matrices. They are also of interest in their own right because
they rigorously establish the relation between P(s) and its
"characteristic" values and vectors and by doing so, they generalize
and combine results known from the eigenvalue-eigenvector theory of
real matrices (P(s) = sI-A) and the theory of polynomials

(B(s) =p(s)).
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Main Results

Let P(s) be an (mxm) nonsingular matrix and let P(k)(si) denote

the kth derivative of P(s) evaluated at s=s If s

is a
i

i

zero of [P(s)l repeated n, times, define n, to be the

algebraic multiplicity of s; 3 define also the geometric multiplicity

of s; as the quantity m-rank P(si) (see Appendix).

1 2 W
Theorem 1 There exist (mx1l) nonzeroc vectors ai’j, ai’J,...,ai1
j==1,2,..,f.i which satisfy
1, _
P(Si)ai = 0
2,5 _ _ o 1,3
P(s;)a] = P (s, )a) (1
C g ay, . KL 1wy
P(s.)a,. - [P (s.)a, + ...+ ——P (s.)a,’]
i i i’i | ' i"i
(ki-l).
. 1,1 1,2 lyﬁi
with ai’ R ai’ s eees By linearly independent if and only if

sS4 is a zero of IP(s)I with algebraic multiplicity

L.
1 .
n, 2 Z k3 and geometric multiplicity m-rank P(s,) >4£_ .
i j=1 i i i
Lemma 2 Theorem 1 is satisfied for P(s) and ai’j if and only

if it is satified for U(s)P(s) and a§°J where U(s) 1is any

unimodular matrix.

Proof First note that P and UP have exactly the same zeros

of determinant with the same algebraic and geometric multiplicities.
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Assume that P and ai’j satisfy (1). Then U(si)P(si)ai’j=
UP(si)ai’j =0, - (UP)(l)(si)ai’j = —EU(l)(si)P(si)-+U(si)P(l)(si)]ai’j
= = (s PP (spald = v s a2d = R a2 et

ks J

That is UP and a.’

1 also satisfy (1), The sufficiency proof is

similar since U-l(s) is also a unimodular matrix QED.

It is known [3] that given P(s) there exists a unimodular
matrix U(s) such that UP is column proper i.e. CCEUP(S)J s
the matrix with entries the coefficients of the highest power of
8 1in each column of UP is of full rank. It is therefore clear,
in view of Lemma 2, that without loss of generality we can assume

in the proof of Theorem 1 that P(s) is a column proper matrix.

Proof of Theorem 1 Let d.,d,,..,d denote the column degrees
1°72 m

of (the comumn proper matrix) P(s). Write

- ds
P(s) = Bml [diag (s 1) - A 8(s)]
di-l.t T .

where S(s) A diag ([1,s,..,s 17) and Am’Bm appropriate
real matrices and observe that

B P(s) = (S-AC)S(S) (2)
where Ac and B, are given by (A6); the column degrees d, are
the controllability indices of (Ac’Bc) while the above defined
A and B make up the "nontrivial" rows of Ac’Bc' Repeated
differentiations of (2) give

5 p(© )
C

() = (=45 (e) + &k s (k1) ©=1,2,.., (3).

+ B;l = CC[P(s)] ; without loss of generality it is assumed that

Cc[P(s)] is in upper triangular form with 1s

on the diagonal.
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Assume that vectors a?’J which satisfy (1) have been found,
Premultiply the relations in (1) by B, and use (2) and (3)

to substitute P(s) and its derivatives,

Then
_ 1,3 _
(si Ac)vi o
(s, - Avird = ol *)
i ¢’ i i
* k';!_gj ki_]-’j
(si - Ac)vi = -V
1,5 _ 1,3
where vy S(si)ai
2,j = 2,j (1) 1’j
\ [S(si)ai + 8 (si)ai ] (5)
i 3os il
ki,J ki,J 1 (ki 1 1,3
v,t o= [S(si)ai + .. +—— 8§ (Si)ai ]
(k3 -1)!
i
ki ki,j k‘}—l kJi,j
(4) implies that (si - Ac) A =0 and (si - Ac) vy
= v%’l = S(s.)a:!":| # 0 ; furthermore v%’l, ceiy v%’ﬂi are
i i’% E i
linearly independent since ai’l,_..., ai’ 1 are linearly independent.
5 kx,
In view of (A2) vi’J, cer s vil ] j=l,2,..,£.i are Ei chains

of generalized eigenvectors of Ac corresponding to an eigenvalue

8y » each chain of length ki j=1,2,..,ﬂi . Therefore |s-—Ac|

(igr IP(s)[ in view of (2) and the Appendix}has at least

i |,

Z ki zeros at  s; which implies that the algebraic multiplicity
3=1 :

n, = Z ki ; furthermore the geometric multiplicity of sy is
j=1

at least ﬂi which implies that ﬁi < n-rank(si-Ac) or, in view

of the Appendix that ﬂi < m-rank P(si) .
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Conversely, assume that s, is a zero of |P(s)| with
algebraic and geometric multiplicities n, and m-rank P(Si)
respectively. The matrix Ac defined in (2) has an eigenvalue
s with the same algebrailc and geometric multiplicities. Out
of the m~rank P(si) chains of generalized eigenvectors of Ac
which correspond to s; » one can always choose Ei { £ m~rank P(Si))
distinct chains each of some length ki (less than or equal t§ the
ky»J

actual lengths) with E ) < n, ; call them v%’J,...,v.
i i i

i
i=1
j=l,2,..,£.i . Note that these eigenvectors satisfy (4); furthermore,

because of the special structure of Ac and (2) it is straighg forward
J k-:!;j

to show that they are actually given by (5) where ai’ ,...,ail
satisfy (1). Q.E.D.
1,j kjsj
Corollary 3 There exist (mx1l) nonzero vectors ai’ ,...,ai1
1,1 1,2 1,2

j=1,2,..,£i which satisfy (1) with a 3, ,...,ai’ i 1linearly

i
independent if and only if the Smith form of P(s), EP(s), contains

the factors (s-s,) i j=1,2,..,£.i in £i separate locations on the

diagonal.

Proof In view of the proof of Theorem 1,(1) are satisfied iff

AC has a Jordan form of certain structure, or in view.of the Appendix,
k3
iff Ep(s) has the factors (s-—si) 1 j=l,2,..,ﬂi on the diagonal

(see (A5),(A9) and (All)). Q.E.D.

Theorem 1 implies that given P(s) the maximum number of

k,j

nonzero vectors a; which satisfy (1) is n, o, the algebraic

multiplicity of Sy - If this maximum number of a?’J has been found,
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then it is clear from the proof of Theorem 1 that Ei will be

equal to the geometric multiplicity m-rank P(si) of s; 3 if it
were less,then Ac would have its generalized eigenvectors
corresponding to 84 distributed among less than m-rank P(si)

chains which is impossible. In this particular case, the numbers

ki j=l,2,..,£i are the lengths of the chains of the eigenvectors
and appear as the exponents of the (s-si) factors in Ei locations

in the Smith form of P(s) (Corollary 3).

Theorem 4 Let n be the degree of |P(§)| . There exist
. . K33
n{mx 1) nonzero vectors ai’l,ai’J,...,aii’J j=l,2,..,£i

g £
i=1,2,...,0 ¢ X Z ki=n‘)which satisfy (1) with ai’l,ai’z,..,ai’ i

i=l j=1
linearly independent if and only if the zeros of |P(s)| have o

distingct values Sy i=1,2,..,0 each with algebraic multiplicity

n, = z k) and geometric multiplicity m-rank P(s,) = £,

i i i i

j=1
Proof If (1) is satisfied for an Si . azfording to the necessity
proof of Theorem 1, there exist at least Z ki linearly independent
3=1
generalized eigenvectors of Ac corresponding to sy in at least

ﬂi distinct’éﬁains. Since (1) is satisfied for i=1,2,..,0 , there
5 .

exist ) } k)] =n linearly independent [1] generalized
i=1 j=1 * i
eigenvectors. This implies that Ac has exactly z ki elgenvectors
j=1

corresponding to 5y distributed in exactly ﬂi chains (if Ac had

more generalized ei%?nvectors corresponding to Sy then, since
i .
the total is n , z ki for some other {1 must have been larger
j=1

than the corresponding n, which is impossible by Theorem 1);
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therefore the algebraic and geometric multiplicities of s; are

i

exactly z ki and Ei respectively, Sufficiency can be easily
§=1

shown in manner analoguous to the sufficiency proof of Theorem 1.

Q.E.D.

Corollary 5 Let n be the degree of |P(s)| .. There exist

" K3sJ
n{mx 1) nonzero vectors ai’J,...,ail’ i=1,2,..,8; i=1,2,..,0

oot 1,1 1,8,
« 3y 1 ky = n ) which satisfy (1) with ai’ seneady L 1linearly
i=1 §=1
independent if and only if the Smith form of P(s), F,(s) ,
k]
consists of factors (s-si) 1 j=1,2,..,€.i in Ei locations

on the diagonal (i=1,2,..,0) .

Proof Clear in view of the proof of Theorem 4 and the Appendix

(see (A5), (A9) and (All)). Q.E.D.

Theorem 4 implies that given P{s) the maximum number of

k,]
nonzero vectors ai

which satisfy (1) for all possible g is
n, the degree of |P(s)| . If this maximum number of ai’j have
been found then the algebraic and geometric multiplicities are
determined as well as the distribution of the factors (s—-si) in
Ep(s) . In particular, in view of the divisibility property of the

invariant factors in the Smith form of P(s), EP(S)

is completely determined in this case as the following example shows.

s =1 2s o 2
Let P(s) = p(l)(s) = - p(2)
0 s 0 1 0
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P(3)(s) =0 . (1) implies (sl==0): P(O)al’j =0, al’l = [a] (o0)
1 1 ]

2,1 _ (1) 1,1 2,1 _ |8 .
P(O)al P (O)a1 > &’ = [0](3#0) ;

3,1 = _ (1) 2,1 _j; (2) l,l 3,1 _ Y
P(O)a1 = - [P (O)al + 51 P (O)al 1, al’t = |,

, 4,1 R 1 _

We stop here since ay etec. are zero 1i.,e. kl = 3 . Note
that 21 = 1 = m-rank P(0) ; this was also seen in the solution

u

of P(O)a}_’:I 0 where dim{Null space P(0){= 1 (=m-rank P(0))

which implies Epat there is only one vector ai’J i.e. ﬂl =1,
iLq .

Observe that Z ki =3=n; the algebraic multiplieity of sl=()
3=1

and that the total number of aE’J

is 3 =n the degree of
|P(s)| . The Smith form of P(s) is EP(S) = B 23] cince
(5-51) = g appears in ﬂl = 1 locations with exponent ki =3 .

Finally note that the generalized eigenvectors of the corresponding

0 1 0
.0 0 1 1,1 _ T 2,1 _ T
A =10 0 o (see (2)) are vi’" = [a,0,01" , V] [B,a, 0]
and vi’l = [YSBBG]T (see (5))

In view of the above, given two polynomial matrices, (1) can be
used to find the relation between their Smith forms. Note that the
relations between polynomial matrices which satisfy (1) are examined

in detail in the following.

Assume that P(s) is a given (mxm) polynomial matrix and
let n be the degree of |P(s)|. |P(s)}| has o distinct zevos s,

g
with algebraic and geometric multiplicities n, { z n, = n) and
i=1
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zi(==m—rank P(si)) respectively. In.view of Theorem &4, there exist

. xd,]
1.j : . .
n (mx1) nonzero vectors ai’ ,..,ail J=1,2,..,£i i=1,2,..,0
1,2,

which satisfy (1) with ai’l,..,ai’ 1 linearly independent

Ly

J o

( ’Z ki ni).

j=1
Theorem 6 P(s) is a right divisor (rd) of a (rxm) polynomial

matrix M(s) if and only if M(s) satisfies (1) with the same
s, and aF’J .
i i
Proof P(s) is a rd of M(s) iff P(s) is a greatest common
right divisor (gcrd) of P(s}) and M(s) or iff there exists a

unimodular matrix U such that U[;] = [g] [3] .

Assume that such U exists i.e. P is a rd of M . Since P
satisfies (1), U[E] also satisfies (1) which implies that Eﬂ
satisfies (1) bec;use a premultiplication by a unimodular mat;ix
does not affect these relations (see Lemma 2). Therefore M satisfies

(1) with the same 85 and ai’J .

Assume now that M satisfies (1). Let G be a gerd of M

0

a P i g P
an: = M

[G] with 0 a unimodular matrix. This
implies that G satisfies the same n relations as M ; the

degree of |G| is therefore at least n in view of Theorems 1 and 4.
Note however that since G is a rd of P, P = PG which implies
that P is a unimodular matrix. Therefore M=MG-= (ﬂf’-l)P and

Pis ard of M. Q.E.D.
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If M(s) is a square matrix, the above proof can be used to

show the following.

Corollary 7 M(s) = U(s)P(s} with U(s) unimodular if and only

if the degree of |M(s)] is n and M(s) satisfies (1) with the
k,j

same s, and a,
i i
An extension of Corollary 7, which gives insight into the

relation between the vectors ai’J and the structure of P(s),

is the follwing lemma.

Consider the matrix P(s) of Theorem 6 together with the

corresponding s, and aE’J which satisfy (1). Then

i
Lemma 8 Given an (mxm) polynomial matrix E(s) , there exist
unimodular matrices Ul(s), Uz(s) such that

P(s) = Uj(s)P(s)U,(s)
if and only if the degree of |§(s)| is n and there exist n (mx1)
nonzero vectors Eik’j which satisfy together with i(s) and s

the same relations (1) satisfied by a?’J » P(s) and s; . Further-

more if such U1 » U, exist

2

- lsj — 19j
ay = UZ(Si)ai
- 2,7 2,73 1 1,3
a; S Uz(si)ai’J + Ué )(si)ai’:l (6)

R i 1 ad - 1)

k> k<,
EJI,J = U (s.)a.1’ + .00+ — U 1 (S.)al’j
i 2771774 ad - 1) 2 i’71
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Proof Assume that there exist U,,U, such that P=T.F U2 with

1772 1
P, sy and aE’J satisfying (1). Substitute P by fl%z in the
relations since Ul cancels out (see Lemma 2). Straight calculations
show that vectors éik’J given by (6) together with P and s

satisfy the same relations (1).

- - ks,
Assume now that the degree of |P| is n and P , a; and
s; satisfy the same n relations (1), P, a?’J and 84 satisfy.

In view of Corollary 5 and the remark following the corcllary, P
and P have exactly the same Smith forms; therefore, there exist

unimodular matrices U, ,T Q.E.D.

1 [2] such that P=TP

2 2

Note that Lemma 8 applies to nonsquare matrices as well if
n is taken to be the degree of the greatest common divisor of all
highest order minors; e.g. given R,Q, RU3= fR,01 , QU4='[6,0] H
then R = UléU2 (Lemma 8 applies here) and

. U2 0 U2 0

RU3 = Ul[Q,Ol o 1 = UlQ U4 0 I (Ui unimodular).

:’J, s; and P, 5?’3,

relations (1) where, in addition, ai’J and Ei’j satisfy (6) for

Remark If P, a s satisfy the same n

some unimodular matrix Uz(s), then P and P not only have the

same Smith form, as it was shown in the sufficiency proof of

Lemma 8, but they are related by: P=TU,PU This is shown as

g -
follows: Assume that P==ﬁ15 ﬁz where ﬁz # U2 . Lemma 8 implies

that a?’J, ﬁi’j and 62 will also satisfy relations similar to (6).

Equating EE’J in the relations involving U, and ﬁz , we derive

2
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n relations of type (1) satisfied by a?’J > Sy and the polynomial

matrix U2-ﬁ2 . According to Theorem 4, [UZ - U

at least degree n which is false. Therefore U2 = 52 . Note

2] must be of

that this result agrees with Corellary 7 since if U2 =1 1i.e.

ak’j = aksj

By 1 » P and P are related by P=1 P .

Assume that for an (mxm) polynomial matrix P(s) yet to
be chosen, we have decided upon the degree of [P(s)| as well as
its zeros i.e. n,s, and the algebraic multiplicities n; .
Clearly there are many matrices which satisfy these requirements
e.g. diagonal matrices. If we specify the gecometric multiplicities
ﬂi » our matrix has more structure e.g. the factors (s-—si) are
appropriately distributed in our diagonal matrix., If kg are
also chosen, then, the Smith form of P(s) is completely defined
(see Appendix) i.e. P(s) is defined within pre and post unimodular
multiplication. This is equivalent to imposing the restriction that
P(s) has to specify n relations of type (1) ( P(s) of Theorem 6)
without though restricting a?’j (other than being nonzerc and
ai’l,...,ai’ﬂi being linearly independent). TIf as’j are also

specified then P(s) is determined within a unimodular premultiplication

(Corollary 7) .

If an (rxm) polynomial matrix M(s) satisfies n relations
of type (1) ( M(s) of Theorem 6) then, there exists an (mxm)
polynomial matrix P(s) with specified structure which is a rd of
M(s) i.e. M=M P . This is because in view of the above, there

exists amatrix P(s) with degree of |P(s)| equal to n which
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satisfies exactly the same n relations with the same a?’J and

s, (this P(s) 1is specified within a unimodular premultiplication);
in view of Theorem 6 this P(s) is a rd of M(s) . If in the

n relations which are satisfied by M(s) , the vectors aE’J are

1]
not specified, then the Smith form of M(s) has factors (s-si) 1
in Ei locations on the diagonal. In other words a rd P(s) is not
gspecified in this case, but it is only known that there exists a rd

of the form EPU2 where E is a completely specified Smith form

P
k3
(it consists of the (s - Si) L) and U2 an arbitrary unimodular

matrix.

In view of the above, if it is known that an (mxm)

polynomial matrix P(s) satisfies n relations of type (1)
k,j

( P(s) of Theorem 6) i.e. n,si,ni,ki,ﬂi,ai are given, then
P(s) 1is specified within a unimodular premultiplication. In the
following, some methods are outlined which can be used to determine

an appropriate P(s) matrix. ¥

(a) Let [ao,al,...,ar ] I = P(s) where a, are mxm

matrices to be determined. If the n given relatioms (1) are

written in terms of a;s a linear system of equations is obtained

t These methods can be used to arbitrarily assign the poles of a
system via feedback compensation; a detailed account of these
techniques will be given in a future publication. Note that
special cases have already appeared in [5] and [6] .
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with ai as the unknowns. In order to have more unknowns than

sl

equations m(r+l) 2n i.e, r 2 e l e.,g. For s all
R - 1 1,1 ,
dlstlnct’solve [ao,...,ar] Im . ai’ =0 i=1,2,..,n .
I s,
m i
I SF

d, dy-1 ¢
(b) Let diag(s 1) - A S(s) = P(s) where S(s) = diag [(1,s,..,s )]

and Am an mxn matrix to be determined. di are the column
degrees of the (column proper) P(s) ( Zdif=n). The n relations (1)
are written in terms of Am and a linear system of equations is
obtained with Am as unknown. Note however that di are not

completely free; they must satisfy certain inequalities involving

(c) One can also use the Smith form of P(s) (specified by

n,si,ni,ki and -ﬁi) and the relations (6) of Lemma 8.

Assume that P(s) is associated with a polynomial matrix
description of a linear, time-invariant system; that is
P(D)z(t) = QM)ult) , vy() = RMD)z(t) + W(D)u(t) where
u,y and =z are the input,output and partial state respectively.
Clearly in this case the roots S5 of IP(s)[ are the poles of

the system; it will be shown that the nonzero vectors a?’J

are
closely related to the eigenvectors of an equivalent to {P,Q,R,W}

state-space description {A,B,C,E} of the given system.
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Def [4]1 {P;,Q,Ry,W;} and {PZ’QZ’RZ’WZ} are equivalent iff
there exist Ml’MZ’XZ’Yl polynomial matrices such that

M, © 1o Q| P oMY

L = (7)

X2 I ---Rl Wl —R2 W2 ) I

with (MZ’PZ) left prime and (Pl,Ml) right prime.
From (7), M2Pl = P2M1 .. If Pl =g -A, P2=P

then Mz(s)(s —-A) = P(S)Ml(s) (8a)
with (MZ’P) left prime and (s -A,Ml) right prime.
If Py=P, Py=s -A, then

MZ(S)P(S) = (s -A)Ml(s) (8b)

with (ﬁz, s =-4A) left prime and (P,ﬁl) right prime. Note that

a special case of (8b) is (2) where M. = B

2 g —A

c ]

ﬁl = S(s) .

Assume that P(s) satisfies (1) together with
Then MZP also satisfies (1) with the same Sy and

can be shown as follows: P(si)ai’J = implies that

= g -Ac,

s, and aF’J
i i

ai’J This

et 1,5 _ .
MZP(Si)ai 0;

[ﬂzp(si)]a;i’j - u{b (s )P(s ;S + My (s )P M) (s )a] )
ﬁz(si)P(l)(Si)ai,j - ﬁz(si)P(si)ai’j = ~[ﬁ2P(si)]ai’j etc.
Substitute now in all the relations (1) ﬁzP by (s -A)ﬂl
(see (8b)). Then

(si = A) vi’J = 0

(si - A) vi’J = o vi’j

(si - A) ng,j = - v:i-l’j (9b)
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where

L3 _ 1,3
v Ml(si)ai

i
2,3 _ & 2,j . (L 1,j
vy = [Ml(si)ai + Ml (Si)ai ] {10b)
1;3 i = i, ! - (ki_l) 1,
e SRRy O € J P U A S — (s,)a;’7]
i 1*'7i7°74 (ki"l)! 1 i’i

k,J

i are the generalized eigenvectors of A

which implies that v

corresponding to the eigenvalue sy (compare with (4) and (5)).

That is, the vectors aE’J which satisfy (1) with P(s) and
S5 s determine the generalized eigenvectors v?’j of A of the
equivalent state-~space description wia (10b).

Assume that V?’J are the generalized eigenvectors of A

corresponding to the eigenvalue s i.e. they satisfy relations

i
(9b). Then relation (8a) implies that there exist aE’J such that

a?’j, s, together with P(s) satisfy (1) where a?’J are given by
1,7 _ 1,3
ay Ml(si) vy
2,3 _ 2,3 (1) 1,j
ay [Ml(Si) vl A My (Si) vy 1 (10a)
K, g W 1 -1 .
i’y 127 i 1,j
a,” = [Ml(si) A e — M, (Si)vi ]

h| '
(ki-—l).

This can be shown as follows:

_ 1,5 _ . . 1,5 _ .
(Si A) vyt = 0 implies that P(si)Ml(si) vyt = 0 ; let

ai’J = Ml(si) Vi’J. Differentiate (8a) and postmultiply by vi,J :
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Mél)(si)(si - A) vi’j + MZ(Si) vi’j = M2(Si) vi’j = - MZ(Sixsi - A) vi’j

= - P, (s) vi’j = p (s, M, (s,) vi’j + P(si)ml(l)(si) v;'_’j

from which P(sy) D (s v + D vl iy = - 2 Wyt (591097

2,3 _ 2,3 (L) 1,3
let ay Ml(si)vi + Ml (si)vi etc.

That is, the generalized eigenvectors vi’J of A which

satisfy (9b) determine vectors ai’J via (10a) which satisfy (1)

with si

(see (8a)) of an equivalent polynomial matrix description.

and P(s) where P(s) is the corresponding to A matrix

Remark The above analysis can be used in the feedback compensation
of systems described by polynomial matrices, not only to assign the

closed loop poles but also the closed loop eigenvectors.

Finally note that all the results in this paper reduce to
well known results when special cases are considered e.g. P(s) = p(s)

a polynomial (m=1) and P(s) = sI - A (m=n) .

Conclusion
In this report several basic theorems were given, which establish the

relations between a polynomial matrix P(s) and its "characteristic"

k,j

vectors a; and "characteristic'" values s This account is by

i L]
no means complete. Extensions together with applications to control

problems will be given in a future publication.
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APPENDIX

Canonical Forms (Jordan, Smith and Controllable companion forms).

Let (nxn)A have ¢ distinct eigenvalues S, each repeated n,

ol
times ( Z ni==n); n, is the algebraic multiplicity of sy -
i=1
The geometric multiplicity of S/s £i , 15 defined as £i==n—rank(si—A)

i.e. the reduction in rank in s-A when s=s; -

There exists a similarity transformation matrix @ such that
AQ = QJ

where J is the Jordan canonical form of A .

A 0 A 0
J = A , A, = A (Al)

where Ai i=l,...0 1is an (niitni) matrix with eigenvalues S: 3

Ai is a block diagonal matrix with 'ei (niz ﬂi) matrices

A, j=l,..,£. on the diagonal, of the form

ij i N
s, 1 0...0 L,
IO | = i_
(k; x k) Ayl 0 s 1:..? ) ky=n;) .
: Lo J=
0O 0.... s,
1

The structure of the Jordan canonical form of A is determined

by the generalized eigenvalues of A (they are used to construct Q).

To each eigenvalue s correspond Ei chains of generalized ,

J
. . . ke

. . J 1,5 _2,] 1’
eigenvectors each chain of length ki i.e. VTV sy

j=1,...,ﬂi a total of n, linearly independent generalized

i .
J
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eigenvectors. The eigenvectors of a particular chain can be

determined from

_ 1,5 _

(si A)vi = 0
_ 2, _ _ 1,3

(si A)vi vy (A2)

ki,; ki-l,j
(si - A)vi =-v;
ki ki,j ki-l kg,j
where (si-A) vi® = 0 and (si-A) i £ 0., [1] .

if Ei A max ki (the dimension of the largest block associated
]
with si) then

n.
(s-s.} ' while the
1 i

Minimal Polynomial Am(s) =

1 3aq

1
.
(s=s) = (= [s-a] ) .

1

Characteristic Polynomial Afs) =
i

(= R

Note that A is cyclic iff there exists a vector b such that

rank [b,Ab,...,An-lb] =n

= A(s) = Am(s) o, = Ei i=l,...,0 i.e. only one block

is associated with each distinct eigenvalue

(A3)
= ﬂi =1 1i=1,...,0 1i.e. only one chain of generalized
eigenvectors is associated with each distinct egenvalue.

<> rank(si-A) = n-1 ,

There exist unimodular matrices Ul(s), Uz(s) such that

Ul(S) (s-A)Uz(s) = EA(S)
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are the dimensions of the matrices Aij j=1,..,£i of the
Jordan canonical form or equivalently, they are the lengths of
the chains of the generalized eigenvectors corresponding to sy -

In view of the divisibility property of si(s) it is
therefore clear that if s and the dimensions of the submatrices
of J are known, the Smith form of s-A is uniquely determined.
Furthermore note that the characteristic polynomial of s-A ,is
A(s) = el(s) sz(s) . sn(s), the minimal polynomial is

Am(s) = en(s) and A is cyeclic if (s-si) is a factor only of

en(s)
-EE.- - -
' A i 3 1 © o
A 11 i "
Let J - —l-l-—— - Alz: = 0 3 O : O
A ———e =R o 0o 3lo
2 oy | | T T
: ' 00 o0'1
s, = =3 ’ n, =3 ) 2 = 2
that is g i ; 1 L f
l kl =2 , k=1 and s, = -1, n2=£2=k =1
Then the Smith form is
- -
el(s) 0 0 0
Eg(s) = |© gp(8) 0 0
0 0 53(5) 0
] 0 0 0 54(5)-
where El(s) = sz(s) =1
63(8) = (s-3)

84(5) = (s~ 3)2(5- 1)

Clearly A(s) = (5-3)3(5-1) and Am(s) = (3-3)2(5-1).
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Assume. that (A,B), where (nxm)B has full rank m(sn) is
a controllable pair. There exists an equivalence transformation
matrix Q such that

AQ = QAC s B = QBc

with (Ac’Bc) in controllable companion form,

- -
() for i
A =TA.. . X ¥ .o. X
¢ = [Ay5] (dixdj)Aij i i
i and j=1,2,...m _ - (46)
O Tay4
. for i=j
)
LX X o00 X |
Bc =L Bi ] i=1,2,..,m (dizcm)Bi = ()
0 ..01lx...x
X

ith column

di i=1,2,..,m are the controllability indices of (A,B). The

m nontrivial ( i d)th j=1,2,..,m 7rows of A and B_ define
k=1 k c ¢
the matrices (m:cn)Am and (mz{m)Bm respectively where Bm is in

upper triangular form with 1ls on the diagonal {3] .

The structure of Ac implies that rank(si-—A)==rank(si-Ac) > n-m
for any S which in turn implies that the geometric multiplicity
£; of s, satisfies

Eng n-rank(si-A)) <m . i=1,2,..,0 . (A7)
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There exist two polynomial matrices (nxm)S(s) and

(mxm)P(s), closely related to the controllable pair (AC,BC),

which satisfy the identity

BcP(s) = (s-—AC)S(s) (A8)

These matrices are defined by:

-1 T _1 a1
S(s) = diag([1l,s,..,5 1), P(s) A - [diag(s )- AmS(s)1[3]

It can be known that the system matrices

and

I 0 0 N
are unimodularly equivalent [2] ;
0 P(s) I
m
0 -8(s) 0

this implies that the Smith forms EA(S) EP(S) of s-Ac(or s —A)

and P(s) respectively satisfy the relation:

EA(S) = (49)

+  therefore the system representations X = Acx + Bcu, ¥ =X

and Pz = u, v = 8z are equivalent.
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It is now clear that |[s-A| = |P(s)| which implies that [P(s)]

has ¢ distinct roots s, each repeated n, times (ni is the

algebraic multiplicity of Si)' Furthermore the geometric multi-
plicity of 8y» ﬁi, is given by £i==mrrank P(si)T since

£i==n-rank EA(Si) = n- [ {n~m) + rank EP(si)] = m-rank EP(si) .

I1f
El(s)
EP(S) = t. (A10)
Em(S)

where €, divides k=1,2,..,m=1 then

k SR+l

assuming that

Kcrd <., s kzi(-' ) h
i = i = e = i -ni we ave
£y

£.-1
- k., T X
Em_l(s) (S-si) i ( . 3} (All)
. 1
€ (s)=(s-38.) « . )
m- (£, -1) *

which are completely analoguous to (A5).

The characteristic polynomial of P{(s) is
g

n
A(s) = |B(s)| = T (s- Si) 1 while the minimal polynomial is
i=1
a Ei
Am(s) = 0 (s-—si)
i=1

+ It has been shown that ﬁi <m .
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P(s) 1is cyclic (or simple) iff there exists a vector g

so that P(s),g are relatively left prime

&= A(s) = Am(s) (ni=ﬁ i=1,2,..,0) (A12)

1

<> 'P’i = m-rank P(si) =1 i=1,2,..,0 .





