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Abstract. Hybrid dynamical systems consist of two types of systems,
a continuous state system called the plant and a discrete event system
called the supervisor. Since the plant and supervisor are different types
of systems, an interface is required to facilitate communication. An im-
portant issue in the design of hybrid control systems is the determination
of this interface. Essentially, the interface associates logical symbols used
by the supervisor with nonsymbolic evenis representative of the plant's
behaviour. This chapter discusses a method for learning a hybrid sys-
tem interface where symbols and events are bound in a way which is
compatible with the goal of plant stabilization. The method is called
event identification and provides an on-line method for adapting hybrid
dynamical systems in the face of unforseen plant variations.

1 Imnitroduction

Hybrid dynamical systems provide a convenient tool for the analysis and design
of supervisory control systems. A supervisory control system arises when a dis-
crete event system is used to supervise the behaviour of a plant by the issuance
of logical control directives. The hybrid system framework shown below in figure
(1) clearly illustrates this architecture, The specific architecture illustrated below
is based on the model used in [Antsaklis 1993] which appears in this volume. The
notational conventions adopted in this chapter will be found in [Antsaklis 1993].

In figure (1), note that an interface is included to facilitate communication
between the two different types of systems. This interface consists of two subsys-
tems known as the generator and actuator. The generator transforms the plant’s
observation vector z € RP into a symbol Z which is drawn from an alphabet Z.
The actuator transforms control symbols # output by the supervisor into control
vectors r € R™ which are used by the plant. The control symbols are drawn
from an alphabet R.

In view of the preceding discussion, it is apparent that the supervisor is used
to control the plant. It is also apparent that the supervisor is a symbol manipu-
lation system whose logical symbols have “meanings” grounded in nonsymbolic
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Fig. 1. Hybrid Dynamical System Architecture

external “events”. In other words the supervisor’s symbols can be assigned in-
terpretations which are generally representative of important categories of plant
behaviour. A plant’s behaviour refers to its state trajectory, x(t). Behavioural
categories are therefore collections of trajectories with some “common” prop-
erty. State trajectories of autonomous systems, however, are determined by the
initial state. This observation suggests that a class or category of behavioural
trajectories can be adequately represented by a subset of the plant’s state space.
The term event is therefore used to denote a distinguished subset of the plant’s
state space. The term symbol is used to denote the logical label associated with
an event. The association of a symbol with an event will be referred to as a
symbol/event binding.

For example, a certain set of temperatures and pressure measurements may
be indicative of a potential system failure. In this case, we would like to associate
the “nonsymbolic” measurements with a “symbolic” label called “FAILURE”.
Therefore the supervisor's computations represent the manipulation of abstrac-
tions about the plant's current state. The use of such high-level abstractions
(representations) of system state to control the system is sometimes called “in-
telligent” control.

This notion of intelligence, however, is singularly unsatisfying. Note that
the action of the controller relies on the prior interpretation assigned to the
plant and control symbols. Therefore the “intelligence” of the system lies in the
interpretation of these symbols. The “intelligent” choices, however, were made
by the human designer, not by the machine. Therefore it is the designer, rather
than the machine which is intelligent. This same fundamental argument has
been previously leveled against production based inference as a model for human
cognition [Searle 1984). Essentially, it asserts that the “blind” manipulation of
symbols is not sufficient to render a system intelligent.
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The reduction of the plant to an effective DES plant model, represents one
way of designing so-called “intelligent” controllers. This approach to design was
discussed briefly in a companion chapter [Antsaklis 1993]). However, this design
approach represents the precise disembodiment of controller symbol and event,
which was immediately discussed above. In this regard, an approach to supervi-
sory control which assumes a priori symbol/event bindings cannot be considered
an “intelligent” control system. Intelligence will only arise when the system is
capable of determining its own event/symbol bindings. This requires that any
intelligent system solve what may be called the event identification problem. The
relationship between this “event identification” problem and more traditional is-
sues in artificial intelligence such as the symbol grounding problem [Harnad 1990]
is discussed in one of the closing sections of this chapter.

Whether or not the symbolic manipulations of a computational system con-
stitute intelligence can, no doubt, be argued endlessly. There is, however, a much
more pragmatic reason for considering such a system undesirable. If we consider
those applications for which supervisory control systems are intended, it is im-
mediately apparent that supervision is meant for complex and and unpredictable
systems. For such systems, prior plant knowledge or complete plant knowledge
may be impossible. This means that “events” which are defined with respect
to an assumed plant structure, may change unexpectedly. If this is the case,
then it is well within the realm of possiblity for our not-so intelligent supervisor
to happily chunk away and produce of stream of nonsensical control symbols.
The reason this occurs, of course, is because the supervisor really doesn’t un-
derstand the significance of the symbols it is manipulating. If we wish to call
this un-intelligent processing, that is fine. The end result is the same, however, a
system whose autonomy is limited by the designer’s initial assignment of symbol
bindings. Therefore, a more pragmatic reason for requiring event identification
of “intelligent” control systems is that it will undoubtably lead to increased
system autonomy. The issue of autonomy in intelligent control was discussed
thoroughly in the introduction. It is the need for such autonomy that really
motivates the requirement for event identification in hybrid systems. As will be
pointed out in one of the closing sections, this ability is also consistent with no-
tions of “intelligence” stemming the symbolic and subsymbolic AI communities
[Chalmers 1992].

The preceding discussion therefore indicates that an important problem in
hybrid system control is the identification of events. How does one choose events
which are consistent with the desired control objectives? Is it possible for the
system to identify its own set of “optimal” events. This chapter presents one
example of how such event identification can be accomplished. The problem of
event identification can be viewed in a variety of contexts. For example, consider
a system which has the general architecture shown in figure (1). Assume that the
plant uses a collection of control policies, so that the plant’s differential equation
has the form

k=3 r i) ()
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where x is the state space and r is an m-vector of “coordination” coefficients,
7i. The individual vector fields can be seen as “control policies” which are co-
ordinated through the specification of the vector r. In figure (1}, it can now be
seen that the binding of plant/control symbols with subsets of the state space
determines the behaviour of this system. One side of the problem, involves detes-
mining plant symbol and event bindings which allow a deterministic or quaside.
terministic plant DES (see [Antsaklis 1993]). The solution of this problem yields
a design for the interface’s event generator. A system which can learn a set of
bindings consistent with deterministic behaviour will have gone a long way in
learning to control itself. Another side of the problem focuses on learning the
symbol bindings between the control symbols, 7, and vectors r. The solution
to this problem yields a design for the interface’s actuator. System which are
capable of forming the event/symbol bindings consistent with with control ob-
jectives (i.e. determinism or controllability) will go a long way towards making
truly “intelligent” control systems exhibiting a high degree of autonomy.

The following sections provide a specific example of a hybrid system which
can automatically learn event/symbol bindings. The example system is a vari-
able structure system and the symbol bindings are learned with regard to in-
variant sets generated by the plant’s dynamics. Early work on this was done in
[Lemmon 1992] and refined in [Lemmon 1993a] with regard to the binding of
plant symbols. Considerations on the binding of control symbols were discussed
in [Lemmon 1993b]. In all of this work it was shown that bindings could be
learned in finite time with a sample complexity that scales in a polynomial man-
ner with plant complexity. The remainder of this section is organized as follows.
Section {2) discusses the example problem which is referred to in this section
as the invariant subspace identification (ISID} problem. Section (3) introduces
the learning algorithm. This algorithm consists of two procedures called the or-
acle and the update procedure. These procedures are derived in sections (4)
and (5). The convergence and complexity properties of this learning procedure
are discussed in section (6). An example of this algorithm’s use is illustrated
in section (7). The importance of the following example is that it provides a
concrete example of a hybrid system which learns to “identify” its own events
in a computationally efficient manner. Some issues and concerns associated with
this example are discussed in section (8). The presented algorithm also pro-
vides a novel perspective on the relationship between intelligence and control,
The central issue in this perspective is the so-called “symbol grounding” prob-
lem [Harnad 1990}. This novel perspective on “intelligence” will be discussed in
section (9).

2 Invariant Subspace Identification (ISID) Problem

The hybrid system under consideration is assumed to have a very special form.
Specifically, it will be assumed that the plant’s dynamics are represented by the
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following differential equations.

2
x =" rifi(x) 2)
f=1
where x € R™ is the state vector, f; and f, are smooth mappings from R"
onto R". 1t is also assumed that the vector r = (r1,r2)¢ takes on the values
of (0,0)%,(1,0)* or (0,1)!. The resulting plant is therefore a variable structure
gystem [Utkin 1977].
The interface generator for this hybrid system will be formed with respect to
two events, ¢t and ¢™.

et ={xeR":s'x > —[a|} (3)
¢ ={x€eR":s'x < [a}} @)

where o is a real number and s i3 an n-dimensional real vector. These two
events form overlapping linear halfspaces and will be called covering events.
The symbols ¢+ and ¢~ are bound with the events ¢t and ¢, respectively.
The covering generates three distinct plant events which are represented by the
gymbols, 21, 33, and Z3. The plant state either lies in the deadzone formed by the
intersection of ¢t and ¢~ or else it lies only in one of the halfspaces. Therefore the
plant symbols issued by the generator will be either z; = {¢+,&7}, 2 = {&t},
or 3 = {5—}

It will be assumed that the supervisor is an identity mapping which simply
passes on the plant symbol to the interface actuator. The actuator will then
associate each symbol with a control vector r as follows

(10) if {¢+)
r= {(0 0)t if {&*,&"} (5)
(01)* if {7}

These assumptions for the plant, actuator, generator, and supervisor yield a
hybrid system which is, essentially, a variable structure control system. The
dynamics of the plant under the supervisor’s control are represented by the
following set of switching differential equations

fi(x) if s'x < —|af
x= { 0 if |stx] < | (6)
fa(x) if stx > o

The nature of the system shown in equation (6) is such that the system'’s struc-
ture changes discontinuously as the state crosses over surfaces defined by the
equation s*x = +a. Such a surface is commonly called a switching surface.
One objective in variable structure control is to drive the plant state onto
the hyperplane, Hg, and keep it in the neighborhood of that surface. Define the
surface Hg as
Hg={xe®R":s'x=0} {7)
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This is a hyperplane passing through the origin, with normal vector s. The
neighborhood of this surface is represented by the set formed by intersecting the
two events ¢t and ¢~ . Since the control objective is to drive the system state into
ctnic™ and keep it there, it is important that this set be an attracting invariant
set with respect to the controlled plant’s dynamics as shown in equation (6).
The Hg which is invariant with respect to the plant’s dynamics will be referred
to as a sliding mode.

An invariant subset with respect to a transformation group {®;} is defined
as follows.

Definition 1. The set H C R™ will be a $-invariant of the transformation group
{&: : R = R"} if and only if for any x € H, $,(x) € H for all £ > 0.

Of more interest are sets which are attracting invariants of the flow.

Definition 2. The set H C R" will be an attracting $-invariant of the transfor-
mation group {$; : R™ = R™} if and only if for any x € H, there exists a finite
T > 0 such that $,(x) € H for all ¢t > T.

In our example, the transformation groups are the family of transition operators
generated by the differential equations (6). These transformations, $;, represent
a collection of automorphisms over the state space which are sometimes called
the “flow” of the dynamical system.

Unfortunately, not all choices of s will leave the target event, ct Me~, invari-
ant. Those hyperplanes which yield invariant target events can be determined
directly from the set of vector fields {fi, f2} representing the system’s control
policies. Examples of this computation can be found in nonlinear systems the-
ory [Olver 1986). However, this computation requires explicit equations for these
control policies and there are numerous applications where such prior knowledge
is unavailable. Uncertainty in the precise form of the control policies can arise
from unpredicted variations in the plant’s structure. Uncertainty can also arise
in highly complex systems where the state space’s high dimensionality precludes
complete prior knowledge of the distributions. In such situations, it is necessary
that the invariants be determined directly from the system’s observed behaviour.
Since the hybrid system’s event covering is defined with respect to these invari-
ants, we see that the problem of finding such invariants is essentially the problem
of event identification. In other words, we need to identify a collection of cov-
ering events which are invariant with respect to the available control policies
J1 and f;. This problem is referred to in this chapter as the invariant subspace
identification (ISID) problem. The algorithms discussed in the following sections
provide one way of solving the ISID problem by direct (active) experimentation.

3 Invariant Subspace Identification Algorithm

Inductive inference is & machine learning protocol in which a system learns by ex-
ample. It has found significant practical and theoretical uses in learning Boolean
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functions by example [Angluin 1983], proving poly-time complexity of linear pro-
gramming [Khachiyan 1979] and combinatorial optimization [Gtoet.sc.he.l 19§8]
algorithms, developing finite time procedures [Rosenblatt 1962] for training lin-

ear classifiers, and estimating sets bounding unknown parameters [Dasgupta 1987].

In this section, an inductive protocol for learning an n — 1-dimensional invariant
subspace of a variable structure system is formally stated. o
The inductive protocol developed in this chapter can be seen as consisting of

three fundamental components;

— an experiment for generating examples,
— a query to an algorithm called the membership oracle, _
- and an update algorithm for modifying the system’s current controller (i.e.

switching surface).
These components are used to iteratively adjust the gystem’s curret.lt estimate
for the invariant subspace Hs. Figure (2) illustrates the relationship between
these three algorithm components.

initialize
hypothesis

¥

perform
experiment

Update
hypothesis

Fig. 2. Flow chart for an inductive inference protocol solving the ISID problem

The algorithm begins by forming an initial hypothesis about the system’s
sliding mode. This hypothesis takes the form of an n-dimensional vector s and an
n by n symmetric matrix, Q. The vector represents a unit normal to a switching
surface, Hg, which is hypothesized to be a sliding mode. The matrix represents
a convex cone which is known to contain those vectors normal to a sliding modes
of the system. Because the matrix, Q, is associated with a convex cone in ®*,
it will have one negative eigenvalue and n — 1 positive eigenvalues. For the
purposes of this section it will therefore be convenient to make the following
notational conventions. Let e; be the ith eigenvector of Q and let A; be its
associated eigenvalue. Assume that the eigenvalues and eigenvectors are ordered
so that A; > A4 for all i. Define an n by n — 1 matrix, E, whose columns are
the eigenvectors of Q with positive eigenvalues. This matrix will be called Q's
positive eigenvector matrix. Also form an n—1 by n—1 diagonal matrix, L, from
the positive eigenvalues of Q. This matrix will be called the positive eigenvalue
matrix. Both matrices are shown below.

MO--- 0
0 M-+ O

E=(e1ez“'en—-l):L= . .2... . ' )
00 "'/\n-—-l

The normalized eigenvalue matrix will be defined as R = L/|A,|.

After forming the initial hypothesis, the algorithm’s first component, the ex-
periment, is performed. This component involves the active measurement of the
system’s state and state velocity. The second algorithm component uses these
experimental measurements to make a declaration on the validity of the hypoth-
esis that the switching surface Hg is indeed a sliding mode. The declaration is
made by a Boolean functional called the invariance oracle. The oracle’s response
is either 0 or 1 with a semantic interpretation which depends on the precise form
of the Boolean functional. In the applications considered below, a response of
0 has a semantic meaning of TRUE, thereby indicating that the hypothesis is
consistent with the measured data. A response of 1 has a semantic meaning of
MAYBE, thereby indicating that the hypothesis may not be consistent with the
measured data. If the answer is TRUE then nothing is done. If the answer is
MAYBE, however, then the current hypothesis is modified using the algorithm'’s
third component, the update algorithm.

The update algorithm uses a modification of-the central-cut ellipsoid method
[Shor 1977] to recompute the symmetric matrix Q and the vector s. In modify-
ing the hypothesis after the oracle’s FALSE declaration, the update procedure
attempts to generate a new hypothesis which is consistent with prior experimen-
tal data. This basic cycle of experiment, query, and update continues until an
attracting invariant subspace is found.

The ISID algorithm can now be formally stated.

Invariant Subspace Identification (ISID) Algorithm

1. Initialize: Initialize an n by n symmetric matrix, Q, which has n~1 positive
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eigenvalues and 1 negative eigenvalue such that if Hg is a sliding mode, then
2:!Qz < 0. Compute the eigendecomposition of Q.

2. Form Hypothesis: Set the system’s current switching surface, s, equal to
the negative eigenvector, e,, of Q.

3. Experiment: Measure the system’s state and state velocity, x and x.

4. Query: Compute the invariance oracle’s response,

. 0 if (s'x) (s'%) < O
hx,x,s) = { 1 otherwise ©)

5. Update Hypothesis: If the oracle returns 1 (MAYBE), then recompute Q
using the following equations,

c = sgn(el, x)E'x, (10)
__Rle 11
b - f—""—'c',R_lc! ( )
a= —-:-l-b, (12)
n , \

H-1_ _(n-1) 1 _ 2 0
R = m (R nbb ) , (13)
x, = Ea + e,, (14)
Q = (I - e.xt)EREY(I — x,e}), (15)

Set Q equal to Q and recompute the eigendecomposition of Q.
6. If the oracle returns 0 (TRUE}, then do nothing.
7. Loop: go to step 2.

4 Invariance Oracles

This section derives the oracle used by the ISID algorithm and formally stated
in equation {(9). The oracle is a Boolean functional which evaluates a sufficient
condition for the set Hg to be attracting and invariant.

Consider a set X called the sample set and let M be a measurable subset of
X. The membership oracle is defined as follows.

Definition 3. Given a sample set X and a measurable set M C X, the mem-
bership orecle for M is a mapping, O : X — {0,1}, such that for any x € X,

_JOifandonlyifxe M 16
O(x)_{lifa.ndonlyifxéM' (16)

The membership or M-oracle can be thought of as a decision machine determin-
ing whether or not an example is a member of set M. An example which is an
element of M will be called a positive M-example. If M® is the complement of
M, then a positive M°-example will sometimes be called a negative example.

In this regard, the M-oracle’s response 0 or 1 can be interpreted as a TRUE or
FALSE declaration, respectively, concerning the membership of the example.

In certain cases, complete membership information may not be practical. I
is therefore desirable to consider a weaker form of the M-oracle.

Definition 4. Given a sample set X and a measurable set M C X, the map-
ping, O : X — {0,1}, is called an incomplete M-oracie if there exists another
measurable set N such that M C N and the mapping, O, is an N-oracle.

The incomplete M-oracle is a weaker version of the M-oracle since it only de-
clares that the example is not an element of M. It does not make any declaration
about an example's membership in M. In this regard, an incomplete oracle’s
response of 0 or 1 can be interpreted as a response of MAYBE or FALSE decla-
ration, respectively, on the example’s membership in M.

An invariance oracle will be a Boolean functional which declares whether
or not a given subspace, Hg, is attracting and &-invariant. Therefore the first
step in defining an “invariance” oracle is to determine a test by which invariance
can be determined. Sufficient conditions for attracting &-invariant sets form the
basis of these tests. The following theorem provides a specific example of such a
test.

Theorem 5. Let 8 be a given n-dimensional real vector and let x be given by
equation (2). If the following condition

(s"x) (s*x) < 0, (1N

is satisfied for all x ¢ Hs, then the subspace, Hg, is an attracting $-invarient
set.

Proof: Define the functional V(x) = 1 (sx)®. Clearly, V > 0 for all x. By
the theorem’s assumption, V < 0, for all x ¢ Hg. Therefore by theorem 8
in [Utkin 1977], Hs must be a sliding mode and is therefore an attracting &-
invariant set of the flow. e

It should be apparent that equation (17) can be recast as a logical function
making 2 declaration about the consistency of the measured state and state
velocity with the hypothesis that Hg is a sliding mode. This, then motivates the
following definition for an “invariance” oracle.

Definition 6. The Boolean functional, I; : ®3" — {0,1}, defined by equation
(9) will be called an énvariance oracle.

Let A denote a subset of R" consisting of those n-dimensional vectors s for
which Hg is attracting and $-invariant. This set, A4, will be referred to as the
set of attracting and invariant subspaces. The following theorem states that the
invariance oracle, I}, is an incomplete A¢-oracle where A° is the complement of
set A.

Theorem 7. Let A be the set of atiracting invarient subspaces. If the function
I : R% — {0,1)} is an invariance oracle, then it is an incomplete A°-oracle.
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Proof: Let A; be a set of n-dimensional vectors s such that [, = 0 for any x and
% given by equation (2). By definition (3), J; must be an Af-oracle. By theorem 1,
any element of A; must also be an attracting $-invariant set. Therefore A; C 4,
which implies A° C Af. This therefore establishes I; as an incomplete A°-oracle
according to definition (4). »

The set A; defined in the above proof will be referred to as the set, of attract-
ing invariant subspaces which are declarable by the invariance oracle, I;. Note
that this set is smaller than A, the set of all attracting invariant subspaces. For
this reason, the oracle is incomplete and its response of 0 or 1 is a declaration
of TRUE or MAYBE, respectively, concerning the membership of s in A.

In the remainder of this chapter, the data collection gathered by an exper-
iment will be denoted as X = {x,x}. It is assumed, that these measurements
have no measurement noise, so that the oracle’s declarations are always correct.
An invariance oracle which always makes the correct declaration for a given data
collection, X, will be called a perfect oracle. In practical oracle realizations, the
assumption that the invariance oracle is perfect may be too optimistic due to
measurement uncertainty. This realization prompts the definition of an imperfect
oracle as an oracle whose declarations are incorrect with a given probability. The
distinction between petfect and imperfect oracles is critical, because inductive
protocols based on oracle queries can fail disasterously with imperfect oracles.
The convergence results of section (6) only apply to perfect invariance oracles.
Precisely how to manage failures due to imperfect oracles is an important issue
for future study. A preliminary indication of how to handle this problem will be
discussed in section (8).

5 Ellipsoidal Update Method

‘The ISID algorithm uses an update procedure which recursively adjusts an esti-
mate for the set A, of attracting invariant subspaces declarable by I1. The pro-
posed updating procedure is therefore a set-estimation algorithm which is closely
related to set-membership identification algorithms [Dasgupta 1987] [Deller 1989].
It is also related to analytical techniques used in proving polynomial oracle-time
complexity for certain optimization algorithms [Groetschel 1988] [Khachiyan 1979).
The common thread between both of these related areas is the use of the ellip-
soid method [Shor 1977] [Bland 1981, which the following discussion also uses
to great advantage.

An important property of A (the set of declarable subspaces) is provided in
the following lemma.

Lemma 8. A; is o convez cone centered at the origin.
Proof: Consider a specific collection of measurements as X' = {x,Xx}. Define

Cy as
Cx={sc®":I(X,s8) =0}. (18)
A; will therefore be given by

AL =(Cx. (19)
X

PO3.
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Since the oracle’s response for a given s is independent of the vector's magnitude,
Cx must be a cone centered at the origin. Since Cy is formed by the intersection
of two halfspaces (see inequality (17)), it must also be convex. A; is therefore
the intersection of a collection of convex cones centered at the origin and must
therefore be one itself. o

The significance of the preceding lemma is that it suggests A; may be well
approximated by sets which are themselves convex cones centered at the ori-
gin. A particularly convenient selection of approximating cones are the so-called
ellipsoidal cones.

An “ellipsoidal cone™ cone is defined as follows,

Definition 9. The ellipsoidal cone, C.(Q), is
C.(Q) ={s e ®":5'Qs < 0}, {(20)

where Q is an n by n symmetric matrix with n — 1 positive eigenvalues and one
negative eigenvalue.

In the update procedure to be derived below, an ellipsoidal cone, C.(Q),
will be used as an initial estimate for 4;. The current hypothesis is that the
subspace normal to the negative eigenvector of Q is an attracting invariant set.
If any data collection, X, results in the oracle, I, declaring 1 (MAYBE), the
query is said to have failed. The information from that failed query can be used
to identify a set of subspaces which cannot possibly lie in A;. This set will be
referred to as the “inconsistent” set of subspaces generated by X'. The following
lemma provides one characterization of these sets.

Lemmal0. Let C.(Q) be an ellipsoidal cone with negative eigenvector, e,,. Let
A be a data collection for which a perfect invariance oracle, I, declares a failure,
Ii(X,e.) =1. If Ay C C.(Q), then A; C C.(Q)NH(X,e,) where

H(X,e,) = {s € " : s'x < sgn(el,x)e’,x}. (21)
The set H(X,e,) will be called the inconsistent set generated by X',

Proof: If a perfect invariance oracle I; returns 1 for X given the subspace
represented by e,, then the following inequality holds.

(et %) (et%) > 0. (22)

Note that for all z such that z*% > elx, it can be inferred by the compari-

son principle that z‘x > efx. Similar arguments apply if the inequalities are
reversed. Therefore any subspace, Hz, such that

z'x > sgn(e! x)e! %, (23)

cannot possibly be an attracting invariant set. The collection of such subspaces
form the complement of the halfspace H(X,e,) defined in the theorem. Since

A, is assumed to lie in C,(Q), it must therefore lie in the intersection of C,(Q)
with H(X,e,). ¢ )
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The significance of the preceding lemma is that the inconsistent set is an n-
dimensional halfspace in ®". To discuss this more fully, we first need to introduce
the linear varieties of n — 1-dimensional subspaces.

Definition 11. Let S be an n — 1-dimensional subspace of ®" and let x be an
n-dimensional real vector. The linear variety of S generated by x is the set

V(S,x})={s+x:8€ S} (24)

The following lemma shows that the inconsistent set forms a halfspace in the
linear variety, V(sp(E), e,), where sp(E) is the span of the n — 1 positive eigen-
vectors of Q.

Lemma12. Let C.(Q) be an ellipsoidal cone with negative eigevector, e,. Let
V(sp(E),en) be a linear variety of the subspace spanned by the positive eigen-
vectors of Q. If the inconsistent set H (X,e,) is as defined in lemma (10), then
the set H(X,ea} NV (sp(E),en) isann—1 dimensional halfspace.

Proof: Any vector s which lies in V(sp(E),e,) can be written as
s=Ew+e, (25)

where w is an n — 1 dimensional real vector. If sgn(e},x) > 0 then inserting s
into equation (21) yields

wiE'x + el x < efl% (26)
which implies that w'E*x < 0. This, of course, determines a halfspace in the
linear variety. A similar equation can be obtained if sgn(ef,x) < 0. These con-
giderations lead to the following,

w! [sgn(elx)E'%] <0 (27)

which is an equation for the halfspace in the linear variety generated by the
inconsistent set. ®

The geometry implied by the preceding lemmas is illustrated in figure (3).
The characterization of the ellipsoidal cone and inconsistent sets provided by
these lemmas forms the basis for the following theorem. This theorem states
the equations used in obtaining a bounding ellipsoidal cone for A; from a prior
bounding cone and the inconsistent set generated by X. The proof of this theorem
is a straightforward application of the central-cut ellipsoid method [Shor 1977].

Theorem 18. Let C.(Q) be an ellipsoidal cone with negative eigenvector en
such that A; C C.(Q). Let X be a data collection for which Li(X,en) = L.
There exist ellipsoidal cones, C.(Q) and C.(Q), such that

C.(Q) C H(X,e.) NCe(Q) € Ce(Q). (28)

Furthermore if R = L/jA,| where L is the positive eigenvalue matriz and if B i3
the positive eigenvector matriz of Q, then Q is given by equations (10) through
(15) and Q is given by equations (10) through (15) where R =R"/(n-1)y
is used in place of R in equation (10).

993.
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Fig. 3. The set of subspaces, Apy, declarable by a perfect invariance oracle, Ias, forms
a convex cone centered at the origin. The intersection of Ay with a linear variety of
an n — 1-dimensional subspace will be a bounded n — 1-dimensional convex body, K.

Proof: From lemma 2, the intersection of cone C.(Q) with V(sp(E), e,) is
an ellipsoid of the following form

ERL,0)={weR" ' :w'Rw < 1}. (29)

F‘l:om lemma 4, the intersection of the inconsistent set, H{X,e,) and V(sp(E), e,,)
will be an n — I-dimensional halfspace, H, given by

H={we®" ! wic<0}, (30)

where ¢ = sgn(e!, x)Etx%. Therefore the intersection of C,(Q), V(sp(E}, e,), and
H(X,e,) will be an n — 1-dimensional convex body, K.

It is well known that any bounded convex body can be contained within a
unique ellipsoid of minimal volume called the Lowner-John ellipsoid [John 1934].
For convex bodies formed by single cuts of an ellipse, however, the Lowner-
John ellipse can be computed in closed form [Groetschel 1988] [Bland 1981]. In
particular, let K be the convex body formed by the intersection of an ellipse

E(A,a) = {x ER":(x—a)A~l (x-a) < 1} (31)
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with a halfspace, {x : ¢'x < c*a}, then the Lowner-John ellipse, E(A,3) is given
by

n?

a==a— — 32
A=A T lb' (32)
_ n® 2

= - bbt ), 33
A n?—1 (A n+1 ) (33)

Ac
b= ——. (34)
VvctAe

Computing the Lowner-John ellipsoid for K = E(R™',0) N H will yield
the ellipsoid E(R ', a) where T and a are as given in the theorem. Figure (4)
illustrates the geometry implied by the central-cut ellipsoid method.

The n — 1-dimensional Lowner-John ellipsoid generates an n-dimensional
ellipsoidal cone. Let s be any point in the cone generated by the ellipsoid
E(ﬁ'—l ,a). There exists an a € R such that as is in the linear variety, V (sp(E), en)-

The a for which this is true must satisfy the orthogonality condition,
0=¢l (as—e,) (35)
= qels—1, (36)

which implies that a = 1/els. .
Since, 8 = Ew + e, the ellipsoid equation for E(R ', a) is

1> (w—a)R(w—a) (a7
> (S - xc)tEtﬁﬁE(s - xa)1 (38)
where x, = Ea+e,. The vector s in this equation must, of course, lie in the linear
variety generated by e,, V(sp(E), e,). From our preceding discussion, any vector

in the cone can be pulled back to the variety by appropriate renormalization with
«. This then implies that if s is any vector in the cone, then

(stse - xa)tE"ﬁ.E (—:—s - x,) <1. (39)
n en

Multiplying through by js‘es|?, we obtain

s [(I - enx) E'RE (I-x,e},) —eqe}]s <0. (40)

This inequality determines an ellipsoidal cone and the term within the square
brackets is Q. .

Q is obtained by noting that if E(R™,a) is a Lowner-John ellipsoid for K,
then E('I_l_l /(n - 1)2,a) is an ellipsoid contained within K. By repeating the
preceding construction with this smaller ellipsoid, the equation for Q is obtained.
L ]
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g

’
7 fe't
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Fig. 4. Lowner-John ellipsoid for convex body formed by a central cut ellipsoid.

6 Convergence and Complexity

This section shows that the ISID algorithm generates a sequence of ellipsoidal
cones whose negative eigenvectors must eventually lie in A;. In particular, it is
shown that if A; is non-empty then the ISID algorithm must converge after a
finite number of MAYBE (1) declarations by the invariance oracle. It is further
shown that under certain conditions the convergence time scales as o(n%-*) where
n is the plant's state space dimension. The section therefore proves that the
ISID algorithm has finite oracle-time convergence and polynomial oracle-time
complexity where oracle-time is measured by the number of MAYBE declarations
made by the invariance oracle.

To prove the convergence of the ISID algorithm requires that there be some
measure of the ellipsoidal cone’s size or “volume” . The set function used to define
this volume is given below.

Definition 14. Let C,(Q) be an ellipsoidal cone and let the eigenvalues of Q
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be ordered as A; > Aj41 (i = 1,...,n). The volume of cone C.(Q) is defined to

be
n—1 Il\nl
volC.(Q) = ,| II = (41)
i=1

The volume of an ellipscid, E(A,a), will be proportional to the square root
of the determinant of A. Since the determinant of A is simply the product of its
eigenvalues, it should be clear that the preceding definition is using the volume
of the i — 1-dimensional ellipsoid contained in the linear variety V(sp(E),e,) as
the “volume” of the cone.

The following theorem shows that the ISID algorithm must locate an at-
tracting invariant subspace after a finite number of failed queries to a perfect
invariance oracle.

Theorem 15. Initialize the ISID algorithm with an ellipsoidal cone whose vol-
ume is unity and which is known to contain A;. Let ¢ denote the volume of the
smallest ellipsoidal cone containing Ay. If n is the state space dimension, then
the ISID algorithm will determine an aftracting invariani subspace after no more
than 2(n — 1) Ine~! failed queries to a perfect invariance oracle.

Proof: Consider the ellipsoidal cone C.(Q;) after the ith failed invariance test.
Let E and L be the positive eigenvector and eigenvalue matrices of Q;, respec-
tively. The volume of this ellipsoid will be given by

volC.(Q:) = | ) H?__lllf-\-j(T)’ (42)
J=

where A;(R) is the jth positive eigenvalue of R and R = L/|As]. Consider the
ellipsoidal cone obtained using equations (10) through (15) of section (3). The
symmetric matrix characterizing this cone is Q = X*YX where

¢F — t
X = (E (I ?e,e")) , (43)
eI‘l
_{R O
Y= ( 0 —-l) . (44)
where 8 = {|xal|.- Applying the orthogonal transformation,
P=(Ee.), (45)
to X, yields
tyt 1 o
P*X _(—ﬂe:El (46)

where 8 = ||xa]| and Be, = X,. Recall that x, is the center of the updated
elipsoid in the linear variety V (sp(E), e,). For convenience, let vi=—pelE.
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Since the eigenvalues of Q are unchanged by an orthogonal transformation,
the eigenvalues of P*X*YXP can be used to compute the volume of Q. This
transformed matrix has the form

P'GP = P*X'YXP @7
R Rv
- (v‘ﬁ vRv — 1) ’ (48)

Note that R is an n — 1 by n — 1 leading principal submatrix of PtQP, so
the eigenvalues of the two matrices satisfy the following interlacing property
[Golub 1983].

MA@ €A (@) €At @ < 0@ s u®) S XQ).  (49)

Since it is known that A,(Q) is negative (by the definition of an ellipsoidal
cone}, it can be shown that

M(PEXPYXP) < o2(PEXH)Aa(Y), (50)

where o, (P*X?) is the smallest singular value of P*X* and A, (Y} is the negative
eigenvalue of Y [Golub 1983]. Note that this eigenvalue must be negative one (by
construction of Y). Also note that the singular value must satisfy the following
inequality for any x € R"™,

X PXXPx

oh(P'X) < —— 4=

(51)
In particular, if we let x = (0---01)%, then the smallest singular value must be
less than unity. It can therefore be concluded that |A.{(Q)] < 1.

With the preceding results, it can be concluded that

= |7 A@
volC,(Q) = \ ;I_;_[l Aj(a) (52)
n—1 1
< =
U@ (53)
< & T volC,(Q). (54)

Inequality (54) is a consequence of the bound on the absolute value of the neg-
ative eigenvalue as well as the interlacing property (Eq. (49)). This inequality
is simply the volume of an ellipsoid E(R ", a). Recall, however, that R is ob-
tained from R using the central-cut eilipsoid method. The relationship between
the volumes of these ellipsoids is given by the last line of the inequality. This
last inequality [Groetschel 1988] is

vlEA,8) _ 120

volE(A,a) ~ (58)
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which bounds the rate at which ellipsoid volumes decrease when the central-cut
ellipsoid method is used.

Since the initial ellipsoidal cone's volume is unity, then the ellipsoidal cone's
volume after the Lth failed query must be bounded as follows,

volC.(Qy) < e 5T, (56)

However, C.(QL) cannot be smaller than ¢ by assumption, therefore the number
of failed queries, L, must satisfy

€< e~ TRET (57)

Rearranging this inequality to extract L shows that the number of failed invari-
ance queries can be no larger than the bound stated by the theorem. o

The following corollary for the preceding theorem establishes the polynomial
oracle-time complexity of the ISID algorithm.

Corollary 16. Assume that A, is a set which is contained within an ellipsoidel
cone characterized by o matriz, Q, whose normalized positive eigenvalues satisfy
the inequality

Aa|

L1} 58

o> (s8)

for1>y>0andi=1,...;n— 1. Under the assumptions of theorem (15), the
ISID algorithm will determine an atiracting fnveriant subspace after no more
than 2(n— 1)?In(n— 1) + (n — 1)2Iny~! MAYBE declarations by the invariance
oracle.

Proof: Because of the constraints on Q, the volume of the smallest bounding
ellipsoid will be no greater than 4("~1/3(n — 1)~"*1. Inserting this into the
bound of theorem (15) yields the asserted resuit. o

The significance of the preceding corollary is apparent when we consider how
such restrictions on the eigenvalues of Q might arise. In particular, if the ISID
algorithm is realized in finite precision arithmetic, then v is proportional to
the least significant bit of the realization. In this regard, the result shows that
for finite precision implementations, there is an upper bound on the number of
queries which the system can fail before exceeding the realization’s precision.
In particular, this result then shows that the bound scales as o(r%°) where n
is the number of plant states. This result thereby establishes the polynomial
oracle-time complexity of the algorithm.

7 Example: AUV Stabilization

This section discusses an application of the ISID algorithm to the stabilization
of an autonomous underwater vehicle’s (AUV) dive plane dynamics. This prob-
lem represents an example of the ISID algorithm's use as an adaptive variable
structure control algorithm.

AUV dynatnics are highly nonlinear and highly uncertain systems. Nonlin-
earities arise from hydrodynamic forces, uncompensated buoyancy effects, as
well as cross-state dynamical coupling. Uncertainties arise due to environmental
effects such as changing current and water conditions as well as poorly known
mass and hydrodynamic properties. When an AUV retrieves a Jarge object, for
example, the drag and mass of this object may substantially modify the vehicle’s
buoyancy and drag coefficients. Such changes cannot be accurately modeled be-
forehand and can therefore have a disasterous effect on the success of the AUV’s
mission. In these situations, it would be highly desirable to develop an algorithm
which can quickly and efficiently relearn the stabilizing controller for the system.
The ISID algorithm represents one method for achieving this goal.

The following simulation results illustrate how the ISID algorithm can quickly
stabilize an AUV’s dive plane dynamics. The simplified equations of motion for
vehicle {pitch) angle of attack, 6, in the dive plane as a function of velocity, v,
may be written as

6 = K16 + K29|0] + K38)v| + us, (59)
1} = —U+K‘IOIv+uuu (60)

where K, K2, K3, and K, are hydrodynamic force coefficients. u, and uy rep-
resent control forces applied in the velocity and angle of attack channels, re-
spectively. These equations clearly. show how nonlinearities enter the dynamics
through the hydrodynamic cross coupling between & and v. Uncertainty arises
from the simple fact that the hydrodynamic coefficients may be poorly known. In
general, these coefficients will be complex functions of vehicle geometry, speed,
orientation, and water conditions. Consequently, they can never be completely
characterized because there are too many degrees of freedom. Figure (5} illus-
trates the geometry implied by the equations of motion.

Figure (6) illustrates the behaviour of an AUV without active attitude con-
trol. The figure shows the 3-d state space trajectory for a vehicle with initial
condition # = 1 and v = 1. The commanded state is # = 0 and v = 2. Without
active attitude control, us = 0, and u, = —v -+ 2. In this example, the sys-
tem is hydrodynamically stable so that natural system damping can be used to
eventually null the angle of attack. The figure shows that by using this control
strategy, the vehicle exhibits large oscillations in & and v before settling to the
commanded state. For this particular system, the results therefore indicate that
the angle of attack should be actively nulled to improve trajectory tracking.

Variable structure control {VSC) has emerged as a powerful technique for
controlling AUV’s with uncertain dynamics [Yoerger 1985]. In the following sim-
ulations, a hierarchical variable structure controller [DeCarlo 1988] with bound-
ary layer was designed. The controls, us and u,, have the following form

1 ifsix < —¢
up = { X t 61
g =4 2= if —e<gx<e, (61)
-1 ifskx>¢
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Fig. 5. Autonomous Underwater Vehicle Diveplane Dynamics
hisix) ifsix < —¢
Uy = §:;35 if —e<slx<e, (62)
—h{stx) ifstx>e

where ¢ > 0 denotes the width of the boundary layer and x = (9,9,0)‘ is the
state vector. The function h: R — {0,1} is assumed to have the following form

o= {2k

and is used to implement a control hierarchy in which the system nulls angle of
attack prior to nulling commanded velocity errors. The n-dimensional vectors
sy and s, represent hyperplanes called switching surfaces just as was originally
shown in equation (2) of the introduction.

The initial design of variable structure controllers can usually be partitioned
into two phases. The first phase consists of determining the switching surfaces
on which the system trajectories exhibit the desired transient response. The
second phase determines the control strategies (gain levels) which insure that the
switching surfaces are attracting invariant sets. Such switching surfaces are called
sliding modes, since the system state is eventually captured by and slides along
the switching surface, The need for adaptive identification of these surfaces arises
when the system’s structure changes in an unpredictable manner as when the
vehicle retrieves a bulky package. In order to preserve system autonotny, the two
phase design procedure cannot be followed, since the system’s control strategies
were fixed at the system’s initial design. Consequently, the only part of the
controller which can be modified is the switching surface and this modification
must be done adaptively on the basis of the system’s observed behaviour.
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Fig. 8. Simulated AUV dive with no active nulling of angle of attack, 8. A: 3-d phase
space trajectory, B: angle of attack, #, time history, C: velocity, v, time history.

The simulation results shown in figures (7), (8), and (9} illustrate precisely
how the ISID algorithm can be used to “relearn” the system’s sliding modes.
Figure (7) shows the AUV's performance (same initial conditions as shown in
figure (6)) with the hierarchical sliding mode controller after a system failure
cauges the initially chosen switching surfaces to no longer be invariant sets. As
can be seen, the sliding controller is actually unstable with the system exhibiting
large oscillations in #. Figures (8) and (9) show the system’s behaviour during two
“learning” sessions with the ISID algorithm. A learning session involves starting
the vehicle at the initial condition and then commanding it over to the desired
state. The first learning session is shown in figure (8). This particular example
exhibited four adjustments to the sliding surface. On the last adjustment, the
sliding condition is satisfied and the system slides easily to the commanded
state. Figure (9) shows the system’s response during the second training session.
In this case, it is clear that learning is complete. There are no readjustments of
the sliding surface and the system wastes little effort in bringing the system to
its commanded state.

Perhaps the most remarkable thing about this example is the apparent speed
with which the sliding surface is learned. In these simulations, only 4 failed
invariance tests were required before finding a sliding mode. This low number
of failed tests was observed in other simulation runs where the system’s initial
conditions were randomly varied. When compared with existing methods for
learning nonlinear controllers [Narendra 1990] [Barto 1983] [Jacobs 1991], this
approach appears to be exceptionally fast.
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Fig. 7. Simulated AUV dive with hierarchical eliding control in which sliding mode
constraints are violated. A: 3-d phase space trajectory, B: angle of attack, 8, time
history, C: velocity, v, time history.

FIRST TRAINING SESSION RESULTS

4

: B |
J/\V j

2 T

angle o; attack

-4 -2

D 50 100 150 200 250 300 350 400 450 500
time

valocily

T T

1 -

“0 50 100 150 700 £50 300 350 400 450 500
~ time

Fig. 8. Simulated AUV dive where ISID algorithm is used to relearn hietarchical sliding
mode controller {First Learning Session). A: 3-d phase space trajectory, B: angle of
attack, 8, time history, C: velocity, v, time history.
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Fig. 8. Simulated AUV dive where ISID algorithm is used to relearn hierarchical sliding
mode controller (Second Learning Session). A: 3-d phase space trajectory, B: angle of
attack, #, time history, C: velocity, v, time history.

8 Significant Issues

The final theorem of section (6) is significant for two reasons. First it shows that
the invariant subspaces can be located after a finife number of failed queries.
In sliding mode control, such subspaces are used to stabilize the system as was
shown in the preceding example. Therefore, theorem (15) says that a system
only needs to perceive itself as “unstable” a finite number of times before sys-
tem stability is re-established. This result stands in stark contrast to other results
[Barto 1983] {Narendra 1990] [Jacobs 1991] where system stability can only be
iteratively “learned” after a prohibitively long training period. The second im-
portant aspect of the preceding results is that the theorem’s bound implies that
the algorithm has polynomial time complexity. This means that as systems be-
come more and more complex (i.e. larger state spaces), the time required to
learn the system invariants will grow at a modest rate. In other words, the pro-
posed ISID algorithm may represent a practical method for adaptive control and
identification of highly complex nonlinear dynamical systems.

It should be noted, however, that these bounds are net with respect to system
time, but rather with respect to failed oracle time. This is an important distinc-
tion for it is quite possible that there may be a long period of time between
consecutive oracle declarations of failure. Consequently, convergence of the ISID
algorithm can be extremely long in “system” time and may, in fact, never con-
verge at all. At first glance, this observation may seem to cast doubt upon the
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value of theorem (15). Upon closer consideration, however, it provides further
insight info the method. Recall that the oracle will always declare failures if the
system trajectory is diverging from the current subspace, Hg. In other words, if
the system is exhibiting “unstable” behaviour, the switching surface is modified.
For the times between failures, the system appears to be stable and there is,
therefore, no reason to change the switching surfaces. From this viewpoint, it
can be seen that the bound of theorem (15) is very meaningful since it is mea-
sured with respect to the only quantity of physical interest to the system; the
number of times the system “stumbles”.

This point should be contrasted to parameter and set-membership identifi-
cation [Dasgupta 1987] [Deller 1989] algorithms. In these cases, the important
measure of parameter convergence is system time (i.e., the total number of ex-
periments), since we are interested in obtaining accurate estimates as quickly as
possible. Obviously for the parameter identification problem, the bounds com-
puted by the preceding theorem would be useless unless the time between con-
secutive failures could be bounded also. That is not the situation, however, in the
ISID problem which is primarily an adaptive “control” problem. The fact that
these oracle-time bounds are meaningful for the ISID problem is an important
point distinguishing this application from other more traditional applications of
inductive inference protocols.

Finally, it must be observed that the preceding theorem assumes a perfect
invariance oracle. In practice, oracles will not be perfect and the question is then
what can be done to minimize the problems generated by an imperfect oracle.
The answer is also provided by the preceding theorem. Theorem (15) provides a
hard bound on the number of failed oracle queries. If the system generates more
failures than implied by the bound, then a failure must either have occured
in the oracle or else in the system itself. In either case, the theoremn's finite
time bound provides a natural criterion for failure detection and the subsequent
reinitialization of the identification process. If the rate of oracle failure is known
to be small (i.e. failure probability is small), then the natura! course of action
is to reinitialize the ISID algorithm and try again. The preceding discussion
therefore implies the existence of effective and practical methods for dealing
with the identification failures caused by imperfect oracles. In particular, if we
model an oracle’s imperfection as a probabilistic failure rate, then it should be
possible to discuss the ISID algorithm’s learning abilities within the so-called
“probably almost correct” (PAC) framework used by a variety of researchers in
the inductive inference community [Valiant 1984]. A full study of techniques for
optimally managing the failures introduced by an imperfect oracle is well beyond
the scope of the current chapter and represents an important topic for further
inquiry.

9 Symbol Grounding and Event Identification

Formal computational systems are often interfaced to the external world. Such
“hybrid” systems are used to control or interpret events with that external world.

|
|

The example discussed in this chapter is one example of such a hybrid system.
Since the supervisor uses high-level abstractions to control the plant, such con-
trollers are often referred to as “intelligent”.

Ag noted in the section’s introduction, this notion of intelligence is somewhat
limited. If high-level decision making is to constitute intelligence, then this would
imply that many symbol systems would be intelligent systems. This notion is,
of course, at the heart of symbolic Artificial Intelligence research and it has its
detractors. John Searle [Searle 1984] disputed the Al notion of intelligent ma-
chines with his now famous Chinese room argument. In this thought experiment
it was noted that a prerequisite for “intelligence” is semantic content and that
such content is unavailable to a purely symbolic system. For this reason, a com-
puter can never be intelligent thereby debunking the traditional AT assumptions
concerning the computational basis of human cognition.

At the heart of Searle’s complaint is the notion of a symbol’s meaning. This
problem is also referred to as the symbol grounding problem [Harnad 1990]. Sym-
bol grounding refers to methods by which symbols of a formal system acquire
semnantic content or “meaning”. Such meaning generally has two interpretations.
Meaning can be acquired through the association of symbols with nonsymbolic
items in the external world. This acquired meaning is referred to as a symbol’s
extrinsic meaning. However, symbols also acquire content through internal asso-
ciations with other symbols. This form of content might be referred to as intrinsic
meaning.

An example of extrinsic meaning is seen in the association of the symbolic
token “ELEPHANT" with those sensory inputs produced by seeing an elephant.
The association of these sensory experiences with the symbolic token is deter-
mined by experience. The “meaning” of the symbol is determined by its non-
symbolic associations and is therefore external to the symbol system, itself. Con-
sequently, we refer to such meaning as “extrinsic”.

A symbol system, as Searle asserts, is not sufficient for an intelligent ma-
chine. Extrinsic meaning simply replaces the symbolic token with nonsymbolic
tokens. The system has no real “understanding” of what those tokens signify so
that the resulting computation is “meaningless”. A good example of this type
of “unintelligent” association is seen in intelligent control systems which make
extensive use of DES models. In these cases, the “meaning” of the logical con-
structs is determined in an a priori way by the DES modeler. These intelligent
choices for symbol/event bindings therefore imply that it is the modeler, rather
than the system, which is intelligent.

In order for a system to be intelligent it must not only use high level abstrac-
tions, it must be able to generate them from internally generated construction
principles. Symbols which arise in this manner may be grounded in nonsymbolic
entities, but the meaning of these entities is determined internally, i.e. with re-
spect to some intrinsic systems principle. In this regard, the symbols of such
a system are intrinsically grounded. It is this form of “intrinsic” semantically
meaning, which Searle asserted as a prerequisite for intelligence.

Clearly, conventional symbolic Al does not intrinsically ground its symbols.
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It has been argued that the more recent connectionist or subsymbolic Al con-
cepts embody some form of internal grounding[Chalmers 1992]. In view of these
preceding remarks concerning symbol grounding and intelligence, it might now
be appropriate to discuss the preceding ISID algorithm in light of the symbol
grounding problem. Does the ISID algorithm produce event/symbol bindings
which are “intrinsically” or “extrinsically” grounded. If the bindings are wholly
external, then the resulting control system cannot be “intelligent™ in the sense
proposed by Searle.

In reviewing the modeling framework used in this paper, it is apparent that
all plant symnbols, Z, are grounded with respect to a specific subset of the state
space. At first glance, one might conclude then that this is an external ground-
ing. However, the true test of external grounding is to see what happens if the
event/symbol bindings change. In other words, if we shuffle the associations
between symbols and nonsymbolic entities, does the operation of the supervi-
sor change? If the ISID algorithm is not used, then clearly the bindings are
unchanged. However, the ISID algorithm uses a computational algorithm (i.e.
the invariance oracle) to decide whether or not the current event/symbol bind-
ings satisfy or are consistent with the “internal” principle of control invariance.
Therefore, if the initial event/symbol bindings change so that the resulting sym-
bol groundings are inconsistent with the invariance oracle, then the supervisor
changes the symbol bindings by redefining the “events”. In other words, there is
an internally coded principle guiding the symbol grounding process. Under this
viewpoint, we can then assert that the ISID algorithm produces symbols with
intringsic semantic content.

The intrinsic content embodied by the invariance oracle is, of course, hard-
wired into the system. The choice of what this oracle i3, represents a choice by
the system designer. There can be other oracle structures used, in which different
internal event principles are used. Therefore, in some sense, it is still through
the ingenuity of the designer that this system appears to have “intelligent” pro-
cessing. However, the fact remains that this system is endowing its symbols with
a meaning which is derived by the system internally. This fact is still true re-
gardless of where that “internally” coded principle came from. In this regard,
we could consider the use of the ISID algorithm as resulting in an “intelligent”
control system in the sense proposed by J. Searle.

These notions also provide some additional perspective on what is “intelli-
gent” control. Intelligence is often a vaguely defined concept referring to the use
of high-level decision making processes in control. In the preceding section, it
has been argued that this is not sufficient. Intelligence is not a behaviour, but
a property of a system. For intelligence, a system must not only use symbolic
abstractions, it must formulate its own symbol bindings with regard to spe-
cific internal principles. The ISID algorithm provides a way by which traditional
hybrid systems might accomplish this intelligence through event identification.
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10 Concluding Remarks

This chapter has shown how hybrid dynamical systems can be used to di-
chotomize the symbolic and nonsymbolic parts of a supervisory control system.
The significance of this dichotomy is that it clearly identifies one of the key
challenges facing hybrid supervisory control. This challenge concerns the way in
which symbols used by the supervisor are associated with meaningful events oc-
curing in the plant. The problem of relating symbols and events has been called
event identification, the associations are referred to as symbol/event bindings.
This chapter has presented a method for learning event bindings in a way which
insures the stabilizability of the plant. This method represents a novel approach
to adaptive control in which inductive inference of controller structure is em-
phasized over statistical inference of coniroller parameters. In this regard, the
proposed method provides a radical departure from conventional model refer-
ence adaptive control. The advantage of this new approach is that is allows the
formulation of learning algorithms which converge to a stabilizing set of bindings
after a finite number of updates. Another significant aspect is that this conver-
gence time is bounded in a polynomial manner by plant complexity, thereby
recommending this approach as a practical method for the adaptive stabiliza-
tion of large scale plants. Finally, this new learning algorithm sheds light on the
meaning of intelligent control. Specifically, the notions developed in this chap-
ter allow the development of a working characterization of intelligent control
which is consistent with current viewpoints held by the cognitive psychology
and subsymbolic AI communities concerning the computational basis of human
cognition.
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