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Abstract 
A very large number of potential applications 

for feedforward neural networks in the field of 
control theory have been proposed in recent 
years. The main method used for training such 
networks is gradient descent, such as the back- 
propagation algorithm, which is slow and often 
impractical for real time applications. In this 
paper a new learning algorithm is introduced 
and used to identify nonlinear functions. Its dis- 
tinctive features are that it transforms the prob- 
lem to a quadratic optimization problem that 
is solved by a number of linear equations and 
it constructs the appropriate network that will 
meet the specifications. The architecture and 
network weights produced by the algorithm are 
suitable for further on-line training by backprop- 
agation since the initial conditions produced by 
the algorithm provide a small initial error. The 
quadratic optimizationfdependence identifica- 
tion algorithm extends the results of quadratic 
optimization single layer network training and 
significantly speeds up learning in feedforward 
multilayer neural networks compared to  stan- 
dard backpropagation. 

1 Introduction 
In recent years, multilayer feedforward neu- 

ral networks have been the subject of a great 
amount of research by control engineers. The 
ability to  learn arbitrary nonlinear functions 
through neural learning, as well as the poten- 
tial for extremely fast parallel computations, 
brought about numerous application ideas in the 
fields of nonlinear, adaptive and intelligent con- 
trol. 

The type of neural network most commonly 
used in control systems is the feedforward multi- 
layer neural network, where no information is 

fed back during operation. There is however 
feedback information available during training. 
Supervised learning methods, where the neural 
network is trained to  learn a sequence of in- 
put/output patterns, are typicaly used. 

One property of multilayer neural networks 
central to  most applications in control is that of 
function approximation. It has been shown [5] 
that these networks can approximate, arbitrar- 
ily well, any continuous function. To model the 
input/output behavior of a dynamical system, 
the neural network is trained using input/output 
data and the weights of the neural network are 
adjusted using some training algorithm, most of- 
ten gradient descent. Modeling system behav- 
ior via multilayer sigmoidal neural networks has 
been studied by a number of researchers; see 
among others Bhat et al. [3], Hou and Antsaklis 
[8], and Narendra and Parthasarathy [lo]. 

In general there are potential applications of 
neural networks at all levels of hierarchical intel- 
ligent controllers that provide higher degrees of 
autonomy to systems. Neural networks are use- 
ful at the lowest execution level where the con- 
ventional control algorithms are implemented 
via hardware and software, through the coor- 
dination level, to  the highest organization level, 
where decisions are being made based on pos- 
sibly uncertain and/or incomplete information. 
An extended discussion of these issues can be 
found in 111. 

The main tool for training multilayer neural 
networks is gradient descent, such as the back- 
propagation algorithm developed by Rumelhart 
[ll]. Gradient descent algorithms are suscepti- 
ble to local minima, sensitive to initial condi- 
tions, and slow to converge. Gradient descent 
can work quite well with the appropriate set of 
of initial conditions and with a proper network 
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architecture, but using random initial conditions 
and guessing at the network architecture usu- 
ally leads to  a slow and ponderous training pro- 
cess. Backpropagation requires that the nonlin- 
ear neural activation functions be restricted to 
those with continuous derivatives. The designer 
must specify the number of network layers and 
the number of neurons in the “hidden layers” 
when using basic bacQropagation. 

The dependence identification algorithm is 
proposed in this paper. Section 2 presents the 
method of quadratic optimization, a major tool 
used by the dependence identification algorithm 
presented in section 3. Section 4 gives exam- 
ples showing comparisons of neural network con- 
struction using dependence identification versus 
backpropagation training. Concluding remarks 
appear in section 5.  

2 Quadratic Optimization 
Many methods exist for training single layer 

neural networks including steepest descent, least 
mean squares, and the “perceptron training 
algorithm” [7]. Sartori and Antsaklis pro- 
pose a method known as quadratic optimiza- 
tion [12] which transforms the nonlinear train- 
ing cost function of a single layer network into 
a quadratic one. Suppose a neural network is 
to  be constructed and trained to  approximate 
a function with m inputs and n outputs. The 
training set consists of p input/output patterns. 
The following matrices can then be constructed: 

U E RpXm D E R p X n  

where U is the matrix of input patterns and D 
is the matrix of corresponding desired output 
patterns. The output Y E R p x n  of a single layer 
neural network to  the input U is then 

Y = @(UW) 

where W E Rmxn is the neural weight matrix 
and @ : R P X n  + R P X n  is the nonlinear neural 
activation function, the same function (b : R + 

R is performed on each of the p x n elements of 
UW in order to  form Y .  

The neural network training problem involves 
making Y as close an approximation as possi- 
ble to  D. If this “closeness” is defined in the 
least mean squares sense, then the neural net- 
work training problem is to  find a set of weights 

such that 

where i = l,.. .,m. The problem can also be 
expressed in the matrix case: 

min trace ((Y - D ) ~ ( Y  - 0)) = 
W 

In order to  deal with the nonlinearity of equa- 
tion (1) consider defining a new matrix V E 
R P X n  such that 

@ ( V )  = D (2) 

If + is bijective then we can take V = +-‘(D), 
however it is not necessary that a one-to-one in- 
verse of @ exist. For example, the step function 
is surjective for the domain of R and the range 
(0 , l )  i.e., it has an infinite number of inputs 
which will evaluate to  1 and an infinite num- 
ber of inputs which will evaluate to 0. V can 
still be defined by assigning some positive num- 
ber to v;j whenever d;j is 1 and assigning some 
negative number to  v;j whenever d;j is 0. The 
numbers assigned may be random or some pre- 
chosen constants. With the change of variables 
in effect, the single layer neural network training 
problem is transformed to  

min trace ((UW - V ) ~ ( U W  - v)) (3) W 

which is equivalent to  solving 

U T U W  = UTV 

for W if UTU is positive definite (full rank). 
Of course the real problem to be solved is 

the nonlinear problem given by equation (1). 
The relationship between the nonlinear and 
quadratic will not be discussed here except to 
mention that if a zero error solution to equa- 
tion (1) exists, then there exists a V such that 
the same solution can be found by solving equa- 
tion (3). When a zero error solution to (1) does 
not exist then the relationship between the two 
solutions is more subtle. A more complete dis- 
cussion of the error relationship can be found in 
[I21 * 
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3 Dependence Identification 

This section details a method called depen- 
dence identification (DI) for constructing mubti- 
layer neural networks, as opposed to  the single 
layer construction method detailed in the previ- 
ous section. The network is to  be constructed 
and trained to  approximate a function with m 
inputs and n outputs. The training set consists 
of p input/output patterns. The training matri- 
ces U and D are the same as defined in section 2. 
The network is constructed one layer at a time, 
using the rules for single layer network construc- 
tion. The desired hidden layer outputs are equal 
to portions of the actual desired outputs. The 
hidden layer activations (outputs) for a layer are 
used as the input matrix U for the next layer. 

To construct the network, first attempt to  
create a single layer neural network by solving 
equation (3) using the method of quadratic opti- 
mization. Compute the error of the single layer 
network. If the error is acceptable then training 
is done, otherwise create a layer of hidden neu- 
rons which get portions of the output matched 
correctly, i.e., every pattern should be classified 
correctly by at least one hidden layer neuron. 
To do this choose an m x m portion of U (it is 
assumed that there are more training patterns 
than there are inputs, i.e., p > m.), and the 
corresponding m x n portion of D. Use these 
patterns to  solve a single layer neural network 
training problem as above. It is guaranteed that 
a zero error solution to  this problem exists if 
the m x m portion of U is full rank. Repeat 
this procedure until every pattern is matched 
by at least one hidden layer neuron. Patterns 
in U and the transformed variable V which are 
correctly matched by a single hidden layer neu- 
ron are linearly dependent, which is the origin 
of the term dependence identification. The hid- 
den layer outputs are then treated as inputs to  
form a new layer. Layers may be added to the 
network until a maximum number of layers has 
been added or the network error is within the 
desired tolerance. 

The algorithm is presented formally in Algo- 
rithm l. The inputs to  the algorithm include the 
training patterns U and D as well as the neural 
activation function 4, the maximum number of 
layers h,,,, and two tolerances E N  and e p .  The 
acceptable error for the entire network is given 

by E N .  The other tolerance, e p ,  is used to de- 
termine whether the output of the network for 
an individual pattern is within bounds. Larger 
values for cp  give fewer hidden layer neurons. 

Algorithm 1 (Dependence Identification). 

input U E EtPxm, D E IRPxn, 4 : IR -+ IR, cN, c p ,  

Create V such that @(V) = D 
Set h = 1 
repeat 

hmax. 

Solve minw,, trace ((uwh - v)'(uwh - v)), 

Compute error: 
e = trace ((@(uwh) - D)'(@(UWh) - D ) )  
if (e > CN) and ( h  < h,,,) then 

Set G = empty matrix, 1 = 0 

repeat 

wh E Etmxn. 

Set Uunmarked = U, Vunmarked = v 

Choose U c Uunmarked, V c K n m a r k e d  

where U E Etmxm, w E Etmx" 
if less than m patterns are unmarked 

then augment U and v with previously 
marked patterns. 

Solve: 
min, trace ((ug- w)'(ug- w)), g E ~ t ~ ~ ~ .  
Add the solution g as new column(s) of G. 
l t l + n  
Mark all patterns which do not satisfy 

uunmarkedg = K n m a r k e d  within the t01- 
erance cp. 

until all patterns have been marked. 
Find the hidden layer outputs: 
H = Q(UG) E Etpx ' .  
Add a zero column to G with a single nonzero 

element corresponding to the constant in- 
put. 

U t H  
m t l  
h t h + l  

wh t G 

until (e 5 C N )  or ( h  = h,,,) 
output W, for i = 1,. . . , h and the error e 

The dependence identification algorithm con- 
structs a network which solves the single layer 
problem within the desired accuracy, if such a 
solution actually exists. The number of lay- 
ers created can be bounded with the parame- 
ter h,,,. The number of hidden layer neurons 
depends on the number of layers and the de- 
sired accuracy. Several authors, e.g. [a], have 
shown (with different degrees of ease and gen- 
erality) that p neurons in the hidden layer suf- 
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fice to store p arbitrary patterns in a two layer 
network'. The dependence identification algo- 
rithm has an upper bound of ceiling(5)n + 1 
hidden layer neurons2, assuming the m x m por- 
tions of U are full rank. The dependence iden- 
tification algorithm assumes that one input is 
a constant used to form thresholds for the first 
layer's neurons. Thus for a SISO network m = 2 
and n = 1 and the bound on the number of hid- 
den layer neurons created by dependence identi- 
fication is approximately one half the bound of 
P. 

The algorithm's solution is based on solv- 
ing a succession of systems of linear equations. 
Krylov subspace methods, like a block form of 
the conjugate residual algorithm [6], are rec- 
ommended since they are iterative methods for 
solving linear equations, working toward mini- 
mizing a quadratic error function instead of at- 
tempting to  solve the problem exactly in a sin- 
gle complicated step. These methods are guar- 
anteed to converge in a number of steps equal 
to  the order of the system, assuming that the 
problem is sufficiently well conditioned [9]. The 
speed of these algorithms is a key to  the overall 
speed of dependence identification. 

The dependence identification algorithm can 
not only be used to  construct continuous sig- 
moidal networks but can also be used to con- 
struct networks that use discontinuous switch- 
ing functions. The discontinuities of the these 
functions prevent them from being used with 
standard gradient descent training. 

Dependence identification is, as presented, a 
batch training process, which might make it in- 
appropriate for certain on-line training tasks. 
However dependence identification is very useful 
for creating an initial network that may be fur- 
ther trained on-line using some sort of gradient 
descent that responds to each new training pat- 
tern as it is presented to  the network. The fol- 
lowing section shows the superiority of develop- 
ing this initial network with dependence identi- 
fication as opposed to  starting from scratch with 
backpropagation. 

'The bound of p assumes that one input to the net- 
work is constant, if the neural thresholds are handled 
differently then the bound is p - 1. 

'The notation ceiling(%) means the smallest integer 
greater than or equal to 2. 

4 Examples 

Dependence identification has been tested on 
several multi-input/multi-output functions with 
the number of training patterns ranging from 4 
to  2000. The functions were also trained using 
backpropagation with random initial conditions. 
It was discovered that dependence identification 
could achieve a smaller error than backpropaga- 
tion while performing the job 10 to 1600 times 
faster. 

Two examples are covered in this paper. The 
examples include the approximation of a 2 in- 
put/2 output function and a 3 input/l output 
function. The 2 input/2 output function is given 
by 

1 

dl = i ( 5  6 sin(u1) + c0s(u2)) 
1 

d2 = -(3 5 cos(u1) + 2 sin(u2)) 

u1,u2 E [0,2*] (4) 

The 3 input/l output function is given by 

1 
10 

d = -(eu1 + 212213 cos(u1u2) + q u 3 )  

( 5 )  

The activation function for the networks cre- 
ated by backpropagation (BP) and dependence 
identification (DI) is +(z) = tanh(z). A train- 
ing set for function (4) is created by generating 
200 uniformly distributed random values of u1 
and u2 and calculating the associated values of 
dl and d2. The training set for function (5) con- 
tains 2000 patterns. The learning parameters 
for back-propagation are 77 = 0.005 and a = 0.1, 
where 7 is the learning step size along the cost 
gradient and CY is the momentum factor. The BP 
iterations are halted3 when the overall square 
error is less than 0.8 for function (4) and after 
1 million BP iterations for function (5). The 
programs for both quadratic optimization and 

3The process of determining r ] ,  a, the number of hid- 
den layer neurons and the stopping requirement for back- 
propagation is an exhausting trial and error procedure 
that involves modifying the network architecture and 
working from high learning rates to lower ones. The 
time required to actually determine an appropriate set 
of parameters is not included in the reported times for 
solutions using backpropagation. 
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2 input/2 output 
Function 

3 input/l output 
Function 

Table 1: Comparative results of network training methods. 

’ Training Network Square Error Square Error Time to  Solution 
Method Architecture (Training) (Test Set) (seconds) 

DI 3 - 103 - 2 0.3547 1.5508 15.14 
BP 3 - 103 - 2 0.7902 2.1196 4429.25 
DI 4 - 286 - 1 0.4495 0.1221 291.13 
BP 4 - 5 0 - 1  1.2661 0.2475 3026.93 

backpropagation are written in C and are run 
on Sun SPARCstation 2 computers. The results 
are summarized in table 1. The training times 
given in the table are the actual CPU times used 
to calculate the solutions. Note that dependence 
identification derived a lower error solution al- 
most 300 times faster than back-propagation for 
function (4) and 10 times faster for function (5), 
despite the fact that DI must deal with very 
large matrices in order t o  construct the network 
for function (5). The number of hidden layer 
neurons used by BP was kept low while approx- 
imating function (5) due to  the excessively long 
training times required. 

Figures l a  and l b  show the results of test- 
ing the approximations of function (4) with u1 
and 212 set to  parametrized functions of t ,  which 
takes on 100 evenly spaced values within the in- 
put range. Figures IC and Id show the results of 
testing the approximations of function (5). Ta- 
ble l shows that dependence identification per- 
forms better on the test sets as well as the train- 
ing sets. 

5 Conclusions 

A new method of constructing feedforward 
multi-layer neural networks has been presented, 
and examples show that it works well for creat- 
ing neural network approximations of continu- 
ous functions. The new method is faster than 
the gradient descent of backpropagation and is 
much more systematic since the actual network 
architecture is determined by the algorithm. De- 
pendence identification relaxes the constraint 
that neural activation functions be continuously 
differentiable, and it determines the number of 
hidden layer neurons and layers as part of its 
operation. Dependence identification does not 
require trial and error with learning rates like 
backpropagation does. There may well be situ- 

ations with specific applications where DI indi- 
cates a number of hidden layer neurons that can 
not be physically implemented (due to memory 
or hardware constraints). The number of hid- 
den layer units can be decreased by increasing 
the tolerance ep  in Algorithm 1. The number 
of layers can also be limited with the parameter 
h,,,. The speed of DI makes it appropriate for 
creating neural network architectures and initial 
weight values to  be used in real neural control 
applications. 
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