
FA4 - 1O:OO

Neural Network Construction and Rapid Learning for System Identification

John 0. Moody and Panos J. Antsaklis
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556

Abstract
A very large number of potential applications

for feedforward neural networks in the field of
control theory have been proposed in recent
years. The main method used for training such
networks is gradient descent, such as the back-
propagation algorithm, which is slow and often
impractical for real time applications. In this
paper a new learning algorithm is introduced
and used to identify nonlinear functions. Its dis-
tinctive features are that it transforms the prob-
lem to a quadratic optimization problem that
is solved by a number of linear equations and
it constructs the appropriate network that will
meet the specifications. The architecture and
network weights produced by the algorithm are
suitable for further on-line training by backprop-
agation since the initial conditions produced by
the algorithm provide a small initial error. The
quadratic optimizationfdependence identifica-
tion algorithm extends the results of quadratic
optimization single layer network training and
significantly speeds up learning in feedforward
multilayer neural networks compared to stan-
dard backpropagation.

1 Introduction
In recent years, multilayer feedforward neu-

ral networks have been the subject of a great
amount of research by control engineers. The
ability to learn arbitrary nonlinear functions
through neural learning, as well as the poten-
tial for extremely fast parallel computations,
brought about numerous application ideas in the
fields of nonlinear, adaptive and intelligent con-
trol.

The type of neural network most commonly
used in control systems is the feedforward multi-
layer neural network, where no information is

fed back during operation. There is however
feedback information available during training.
Supervised learning methods, where the neural
network is trained to learn a sequence of in-
put/output patterns, are typicaly used.

One property of multilayer neural networks
central to most applications in control is that of
function approximation. It has been shown [5]
that these networks can approximate, arbitrar-
ily well, any continuous function. To model the
input/output behavior of a dynamical system,
the neural network is trained using input/output
data and the weights of the neural network are
adjusted using some training algorithm, most of-
ten gradient descent. Modeling system behav-
ior via multilayer sigmoidal neural networks has
been studied by a number of researchers; see
among others Bhat et al. [3], Hou and Antsaklis
[8], and Narendra and Parthasarathy [lo].

In general there are potential applications of
neural networks at all levels of hierarchical intel-
ligent controllers that provide higher degrees of
autonomy to systems. Neural networks are use-
ful at the lowest execution level where the con-
ventional control algorithms are implemented
via hardware and software, through the coor-
dination level, to the highest organization level,
where decisions are being made based on pos-
sibly uncertain and/or incomplete information.
An extended discussion of these issues can be
found in 111.

The main tool for training multilayer neural
networks is gradient descent, such as the back-
propagation algorithm developed by Rumelhart
[ll]. Gradient descent algorithms are suscepti-
ble to local minima, sensitive to initial condi-
tions, and slow to converge. Gradient descent
can work quite well with the appropriate set of
of initial conditions and with a proper network

0-7803-1206-6/93/$3.00 01 993 IEEE 475

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:00 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "Neural Networks Construction and Rapid Learning for System
Identification,” P roc o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 475-480,
Chicago, IL, August 25-27, 1993.

architecture, but using random initial conditions
and guessing at the network architecture usu-
ally leads to a slow and ponderous training pro-
cess. Backpropagation requires that the nonlin-
ear neural activation functions be restricted to
those with continuous derivatives. The designer
must specify the number of network layers and
the number of neurons in the “hidden layers”
when using basic bacQropagation.

The dependence identification algorithm is
proposed in this paper. Section 2 presents the
method of quadratic optimization, a major tool
used by the dependence identification algorithm
presented in section 3. Section 4 gives exam-
ples showing comparisons of neural network con-
struction using dependence identification versus
backpropagation training. Concluding remarks
appear in section 5.

2 Quadratic Optimization
Many methods exist for training single layer

neural networks including steepest descent, least
mean squares, and the “perceptron training
algorithm” [7]. Sartori and Antsaklis pro-
pose a method known as quadratic optimiza-
tion [12] which transforms the nonlinear train-
ing cost function of a single layer network into
a quadratic one. Suppose a neural network is
to be constructed and trained to approximate
a function with m inputs and n outputs. The
training set consists of p input/output patterns.
The following matrices can then be constructed:

U E RpXm D E R p X n

where U is the matrix of input patterns and D
is the matrix of corresponding desired output
patterns. The output Y E R p x n of a single layer
neural network to the input U is then

Y = @(UW)

where W E Rmxn is the neural weight matrix
and @ : R P X n + R P X n is the nonlinear neural
activation function, the same function (b : R +

R is performed on each of the p x n elements of
UW in order to form Y .

The neural network training problem involves
making Y as close an approximation as possi-
ble to D. If this “closeness” is defined in the
least mean squares sense, then the neural net-
work training problem is to find a set of weights

such that

where i = l,.. .,m. The problem can also be
expressed in the matrix case:

min trace ((Y - D) ~ (Y - 0)) =
W

In order to deal with the nonlinearity of equa-
tion (1) consider defining a new matrix V E
R P X n such that

@ (V) = D (2)

If + is bijective then we can take V = +-‘(D),
however it is not necessary that a one-to-one in-
verse of @ exist. For example, the step function
is surjective for the domain of R and the range
(0 , l) i.e., it has an infinite number of inputs
which will evaluate to 1 and an infinite num-
ber of inputs which will evaluate to 0. V can
still be defined by assigning some positive num-
ber to v;j whenever d;j is 1 and assigning some
negative number to v;j whenever d;j is 0. The
numbers assigned may be random or some pre-
chosen constants. With the change of variables
in effect, the single layer neural network training
problem is transformed to

min trace ((UW - V) ~ (U W - v)) (3) W

which is equivalent to solving

U T U W = UTV

for W if UTU is positive definite (full rank).
Of course the real problem to be solved is

the nonlinear problem given by equation (1).
The relationship between the nonlinear and
quadratic will not be discussed here except to
mention that if a zero error solution to equa-
tion (1) exists, then there exists a V such that
the same solution can be found by solving equa-
tion (3). When a zero error solution to (1) does
not exist then the relationship between the two
solutions is more subtle. A more complete dis-
cussion of the error relationship can be found in
[I21 *

476

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:00 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "Neural Networks Construction and Rapid Learning for System
Identification,” P roc o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 475-480,
Chicago, IL, August 25-27, 1993.

3 Dependence Identification

This section details a method called depen-
dence identification (DI) for constructing mubti-
layer neural networks, as opposed to the single
layer construction method detailed in the previ-
ous section. The network is to be constructed
and trained to approximate a function with m
inputs and n outputs. The training set consists
of p input/output patterns. The training matri-
ces U and D are the same as defined in section 2.
The network is constructed one layer at a time,
using the rules for single layer network construc-
tion. The desired hidden layer outputs are equal
to portions of the actual desired outputs. The
hidden layer activations (outputs) for a layer are
used as the input matrix U for the next layer.

To construct the network, first attempt to
create a single layer neural network by solving
equation (3) using the method of quadratic opti-
mization. Compute the error of the single layer
network. If the error is acceptable then training
is done, otherwise create a layer of hidden neu-
rons which get portions of the output matched
correctly, i.e., every pattern should be classified
correctly by at least one hidden layer neuron.
To do this choose an m x m portion of U (it is
assumed that there are more training patterns
than there are inputs, i.e., p > m.), and the
corresponding m x n portion of D. Use these
patterns to solve a single layer neural network
training problem as above. It is guaranteed that
a zero error solution to this problem exists if
the m x m portion of U is full rank. Repeat
this procedure until every pattern is matched
by at least one hidden layer neuron. Patterns
in U and the transformed variable V which are
correctly matched by a single hidden layer neu-
ron are linearly dependent, which is the origin
of the term dependence identification. The hid-
den layer outputs are then treated as inputs to
form a new layer. Layers may be added to the
network until a maximum number of layers has
been added or the network error is within the
desired tolerance.

The algorithm is presented formally in Algo-
rithm l. The inputs to the algorithm include the
training patterns U and D as well as the neural
activation function 4, the maximum number of
layers h,,,, and two tolerances E N and e p . The
acceptable error for the entire network is given

by E N . The other tolerance, e p , is used to de-
termine whether the output of the network for
an individual pattern is within bounds. Larger
values for cp give fewer hidden layer neurons.

Algorithm 1 (Dependence Identification).

input U E EtPxm, D E IRPxn, 4 : IR -+ IR, cN, c p ,

Create V such that @(V) = D
Set h = 1
repeat

hmax.

Solve minw,, trace ((uwh - v)'(uwh - v)),

Compute error:
e = trace ((@(uwh) - D)'(@(UWh) - D))
if (e > CN) and (h < h,,,) then

Set G = empty matrix, 1 = 0

repeat

wh E Etmxn.

Set Uunmarked = U, Vunmarked = v

Choose U c Uunmarked, V c K n m a r k e d

where U E Etmxm, w E Etmx"
if less than m patterns are unmarked

then augment U and v with previously
marked patterns.

Solve:
min, trace ((ug- w)'(ug- w)), g E ~ t ~ ~ ~ .
Add the solution g as new column(s) of G.
l t l + n
Mark all patterns which do not satisfy

uunmarkedg = K n m a r k e d within the t01-
erance cp.

until all patterns have been marked.
Find the hidden layer outputs:
H = Q(UG) E Etpx ' .
Add a zero column to G with a single nonzero

element corresponding to the constant in-
put.

U t H
m t l
h t h + l

wh t G

until (e 5 C N) or (h = h,,,)
output W, for i = 1,. . . , h and the error e

The dependence identification algorithm con-
structs a network which solves the single layer
problem within the desired accuracy, if such a
solution actually exists. The number of lay-
ers created can be bounded with the parame-
ter h,,,. The number of hidden layer neurons
depends on the number of layers and the de-
sired accuracy. Several authors, e.g. [a], have
shown (with different degrees of ease and gen-
erality) that p neurons in the hidden layer suf-

477

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:00 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "Neural Networks Construction and Rapid Learning for System
Identification,” P roc o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 475-480,
Chicago, IL, August 25-27, 1993.

fice to store p arbitrary patterns in a two layer
network'. The dependence identification algo-
rithm has an upper bound of ceiling(5)n + 1
hidden layer neurons2, assuming the m x m por-
tions of U are full rank. The dependence iden-
tification algorithm assumes that one input is
a constant used to form thresholds for the first
layer's neurons. Thus for a SISO network m = 2
and n = 1 and the bound on the number of hid-
den layer neurons created by dependence identi-
fication is approximately one half the bound of
P.

The algorithm's solution is based on solv-
ing a succession of systems of linear equations.
Krylov subspace methods, like a block form of
the conjugate residual algorithm [6], are rec-
ommended since they are iterative methods for
solving linear equations, working toward mini-
mizing a quadratic error function instead of at-
tempting to solve the problem exactly in a sin-
gle complicated step. These methods are guar-
anteed to converge in a number of steps equal
to the order of the system, assuming that the
problem is sufficiently well conditioned [9]. The
speed of these algorithms is a key to the overall
speed of dependence identification.

The dependence identification algorithm can
not only be used to construct continuous sig-
moidal networks but can also be used to con-
struct networks that use discontinuous switch-
ing functions. The discontinuities of the these
functions prevent them from being used with
standard gradient descent training.

Dependence identification is, as presented, a
batch training process, which might make it in-
appropriate for certain on-line training tasks.
However dependence identification is very useful
for creating an initial network that may be fur-
ther trained on-line using some sort of gradient
descent that responds to each new training pat-
tern as it is presented to the network. The fol-
lowing section shows the superiority of develop-
ing this initial network with dependence identi-
fication as opposed to starting from scratch with
backpropagation.

'The bound of p assumes that one input to the net-
work is constant, if the neural thresholds are handled
differently then the bound is p - 1.

'The notation ceiling(%) means the smallest integer
greater than or equal to 2.

4 Examples

Dependence identification has been tested on
several multi-input/multi-output functions with
the number of training patterns ranging from 4
to 2000. The functions were also trained using
backpropagation with random initial conditions.
It was discovered that dependence identification
could achieve a smaller error than backpropaga-
tion while performing the job 10 to 1600 times
faster.

Two examples are covered in this paper. The
examples include the approximation of a 2 in-
put/2 output function and a 3 input/l output
function. The 2 input/2 output function is given
by

1

dl = i (5 6 sin(u1) + c0s(u2))
1

d2 = -(3 5 cos(u1) + 2 sin(u2))

u1,u2 E [0,2*] (4)

The 3 input/l output function is given by

1
10

d = -(eu1 + 212213 cos(u1u2) + q u 3)

(5)

The activation function for the networks cre-
ated by backpropagation (BP) and dependence
identification (DI) is +(z) = tanh(z). A train-
ing set for function (4) is created by generating
200 uniformly distributed random values of u1
and u2 and calculating the associated values of
dl and d2. The training set for function (5) con-
tains 2000 patterns. The learning parameters
for back-propagation are 77 = 0.005 and a = 0.1,
where 7 is the learning step size along the cost
gradient and CY is the momentum factor. The BP
iterations are halted3 when the overall square
error is less than 0.8 for function (4) and after
1 million BP iterations for function (5). The
programs for both quadratic optimization and

3The process of determining r] , a, the number of hid-
den layer neurons and the stopping requirement for back-
propagation is an exhausting trial and error procedure
that involves modifying the network architecture and
working from high learning rates to lower ones. The
time required to actually determine an appropriate set
of parameters is not included in the reported times for
solutions using backpropagation.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:00 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "Neural Networks Construction and Rapid Learning for System
Identification,” P roc o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 475-480,
Chicago, IL, August 25-27, 1993.

2 input/2 output
Function

3 input/l output
Function

Table 1: Comparative results of network training methods.

’ Training Network Square Error Square Error Time to Solution
Method Architecture (Training) (Test Set) (seconds)

DI 3 - 103 - 2 0.3547 1.5508 15.14
BP 3 - 103 - 2 0.7902 2.1196 4429.25
DI 4 - 286 - 1 0.4495 0.1221 291.13
BP 4 - 5 0 - 1 1.2661 0.2475 3026.93

backpropagation are written in C and are run
on Sun SPARCstation 2 computers. The results
are summarized in table 1. The training times
given in the table are the actual CPU times used
to calculate the solutions. Note that dependence
identification derived a lower error solution al-
most 300 times faster than back-propagation for
function (4) and 10 times faster for function (5),
despite the fact that DI must deal with very
large matrices in order t o construct the network
for function (5). The number of hidden layer
neurons used by BP was kept low while approx-
imating function (5) due to the excessively long
training times required.

Figures l a and l b show the results of test-
ing the approximations of function (4) with u1
and 212 set to parametrized functions of t , which
takes on 100 evenly spaced values within the in-
put range. Figures IC and Id show the results of
testing the approximations of function (5). Ta-
ble l shows that dependence identification per-
forms better on the test sets as well as the train-
ing sets.

5 Conclusions

A new method of constructing feedforward
multi-layer neural networks has been presented,
and examples show that it works well for creat-
ing neural network approximations of continu-
ous functions. The new method is faster than
the gradient descent of backpropagation and is
much more systematic since the actual network
architecture is determined by the algorithm. De-
pendence identification relaxes the constraint
that neural activation functions be continuously
differentiable, and it determines the number of
hidden layer neurons and layers as part of its
operation. Dependence identification does not
require trial and error with learning rates like
backpropagation does. There may well be situ-

ations with specific applications where DI indi-
cates a number of hidden layer neurons that can
not be physically implemented (due to memory
or hardware constraints). The number of hid-
den layer units can be decreased by increasing
the tolerance ep in Algorithm 1. The number
of layers can also be limited with the parameter
h,,,. The speed of DI makes it appropriate for
creating neural network architectures and initial
weight values to be used in real neural control
applications.

References

Antsaklis, P. J., “Neural Networks for the
Intelligent Control of High Autonomy Sys-
tems”, Mathematical Studies of Neural Net-
works, J.G. Taylor, Ed., Elsevier, 1993. To
Appear. Also Tech. Report of the ISIS (In-
terdisciplinary Studies of Intelligent Sys-
tems) Group, No. ISIS-92-01, Univ. of
Notre Dame, September 1992.

Baum E. B., “On the Capabilities of Mul-
tilayer Perceptrons,” J . Complexity, vol 4,
pp 193-215, 1988.

Bhat N.V., Minderman P., McAvoy, Wang
N., “Modeling Chemical Process Systems
via Neural Computation,” IEEE Control
Systems Magazine, vol. 10, no. 3, April
1990.

Chester D. (1990), “Why Two Hidden Lay-
ers are Better than One,” Proc Int. Joint
Conf. on Neural Networks, IEEE Publica-
tions, pp. 265-268, 1990.

Cybenko, G., “Continuous Value Neural
Networks with Two Hidden Layers are Suf-
ficient ,” Math. Contr. Signals 43 Systems,
V O ~ 2, pp. 303-314, 1989.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:00 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "Neural Networks Construction and Rapid Learning for System
Identification,” P roc o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 475-480,
Chicago, IL, August 25-27, 1993.

1

c>
a4

--D.pm.

o ai a2 a3 a4 OJ 0.6 a7 a8 a9 I
. 0 . 2 “ ” “ ” ’

pl

0

-ai

Figure 1: Testing results of the network approximations.

[6] Elman, H. C., “Iterative Methods for Large
Sparse Nonsymmetric Systems of Linear
Equations,” Ph.D. thesis, Computer Sci-
ence Dept., Yale University, New Haven,
CT., 1982.

[7] Hertz, J., Krogh, A. and Palmer, R. G.,
Introduction to the Theory of Neural Com-
putation, Addison-Wesley Publishing Com-
pany, 1991.

[SI Hou Z., Antsaklis P. J., Analysis of Auto
Powertmin Dynamics and Modeling us-
ing Neura2 Networks, MSc Thesis, Depart-
ment of Electrical Engineering, University
of Notre Dame, May 1992.

[9] Kincaid, D. and Cheney, W., Numeri-
cal Analysis, Brooks/Cole Publishing Com-
pany, 1991.

[lo] Narendra K.S., Parthasarathy K., “Identi-
fication and Control of Dynamical Systems
Using Neural Networks,” IEEE Transac-
tions on Neural Networks, vol. 1, no 1, pp.
4-27, March 1990.

[ll] Rumelhart, D. E., Hinton, G. E. and
Williams, R. J., “Learning Internal Rep-
resentations by Error Propagation,” in
Rumelhart, D. E. and McClelland, J . L.,
eds. Parallel Distributed Processing: Expla-
nations in the Microstructure of Cognition,
vol1: Foundation, pp. 318-362, MIT Press,
1986.

[12] Sartori, M. A. and Antsaklis, P. J., ‘‘Neural
Network Training via Quadratic Optimiza-
tion”, Proc of ISCAS, San Diego, CA, May
10-13, 1992.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:00 from IEEE Xplore. Restrictions apply.

J. O. Moody and P. J. Antsaklis, "Neural Networks Construction and Rapid Learning for System
Identification,” P roc o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 475-480,
Chicago, IL, August 25-27, 1993.

