
TP2- 4:40

Extracting Discrete Event System Models
from Hybrid Control Systems

James A. Stiver and Panos J. Antsaklis
Department of Electrical Engineering

University of Notre Dame, Notre Dame, IN 46556

Abstract

In this paper, the state space partitioning in
the interface of the hybrid control system is
modeled using covering halfspaces; this formu-
lation extends the model introduced in [7]. The
covering halfspaces are used to define a set of
plant events and a discrete event system model
is generated which captures the behavior of the
plant and interface of the hybrid control sys-
tem.

1 Introduction

be used to apply discrete event controller design
techniques.

2 Hybrid Control System Model
A hybrid control system consists of three

parts. The modeling and interactions of these
parts are now described.

2.1 Plant
The plant is modeled as a time-invariant,

continuous-time system, represented by the fa-
miliar equations,

A hybrid control system consists of a x = j(x,r) (1)
z = g(x) (2) continuous-time system which is being con-

trolled by a discrete event system. The
continuous-time system is referred to as the
plant because it is the system under control.
The plant is usually termed a “conventional”

where x E R”, r E R”, and z E R P are the
state, input, and output vectors respectively.
For the purposes of this work we assume that

system as it has a continuous state space and it z = x.
is described by a set of differential (or difference)
equations. The discrete event system, called the
controller, has a discrete state space and sym-
bolic input and output. In addition to the plant
and controller, there is an interface which pro-
vides communication between them. The inter-
face generates symbols for the controller as the
state of the plant moves through a partitioned
state space. It also converts symbols from the
controller into plant inputs. When the plant and
interface of a hybrid control system are treated
as a single system, they behave like a discrete
event system. This is useful because it allows
the use of discrete event control theory for hy-
brid systems. The discrete event system which
models the plant and interface is referred to as
the discrete event plant model.

In this work, using the model for hybrid con-
trol systems originally described in [l] and [7],
we develop a systematic way of obtaining the
discrete event plant model from the description
of the hybrid control system. This model can

0 - 7 8 0 3 - 1 ~ . 0 0 @19W IEEE 298

2.2 Controller
The controller is a discrete event system which

is modeled as a deterministic automaton speci-
fied by the quintuple, {s,.%, R, 6, q5}, where is
the (possibly infinite) set of states, 2 is the set
of plant symbols which are generated by events
in the plant and make up the controller input,
is the set of controller symbols which constitute
the controller’s output set, 6 : x 2 + s is the
state transition function, and q5 : s + fz is the
output function. The behavior of the controller
is described by

s[n] = S (g [n - 1],E[n]) (3)
F[nI = 4(5[n1> (4)

where 6[n] E S,Z[n] E 2, and F[n] E fz. The
index n indicates the order of the symbols.

2.3 Interface
The controller and plant cannot communicate

directly in a hybrid control system because each

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

J. A. Stiver and P. J. Antsaklis, "Extracting Discrete Event System Models from Hybrid Systems,” P roc.
o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 298-301, Chicago, IL, August 25-27,
1993.

utilizes a different type of signal. Thus an inter-
face is required which can convert continuous-
time signals to sequences of symbols and vice
versa. The interface consists of two memoryless
maps, 7 and a. The first map, called the actuat-
ing function or actuator, 7 : R + I R ~ , converts
a sequence of controller symbols to a piecewise
constant plant input as follows

r = y(F) (5)
The plant input, r, can only take on certain con-
stant values, where each value is associated with
a particular controller symbol. Thus the plant
input is a piecewise constant signal which may
change only when a controller symbol occurs.
The second map, the plant symbol generating
function or generator, a : lftn -+ 2, is a func-
tion which maps the state space of the plant to
the set of plant symbols as follows

2 = a(x) (6)
It would appear from Equation 6 that, as x

changes, t also continuously changes. That is,
there is a continuous generation of plant symbols
by the interface because each state is mapped to
a symbol. This is not the case due to the way a
is defined as will now be explained.

The plant symbol generating function, a, is
designed based on an open covering of the state
space of the plant. Consider a collection of 1
open subsets in IR" which form an open cover
for the plant state space. Let this collection be
represented as

c = { c 1 q ... cz} (7)
The collection consists of open subsets, where
each subset is called a covering event. The set
of covering events is formed by a set of (n - 1)
dimensional hypersurfaces, which are described
by a set of functions, h; : IR" + R. The ith
covering event is defined as

ci = {x : h;(x) < 0) (8)
Let the ith covering event, ci, be associated

with a unique covering symbol, Z;. The "alpha-
bet" of covering symbols can therefore be repre-
sented as

These covering symbols are used to define the
plant symbols as follows

H = a(x) = {z; : x E c;} (10)

As shown in Equation 10, a plant symbol is a
collection of covering symbols which defines a
region in the state space. It is convenient to
treat this collection as a symbol. It is also con-
venient to index the set of plant symbols with
a binary vector b E B'. Then Z; E 26 only if
b; = 1.

A set of plant events can also be defined based
on the covering events.

A plant symbol is generated only when a new
event first occurs. The overall effect is that the
state space of the plant is partitioned into a
number of regions and each is associated with
a unique plant symbol which is generated when-
ever the state enters that region. Thus, these
regions (i.e. plant events) form the equivalence
classes of a.

2.4 DES Plant Model
If the plant and interface of a hybrid control

system are viewed as a single component, this
component behaves like a discrete event system.
It is advantageous to view a hybrid control sys-
tem this way because it allows it to be mod-
eled as two interacting discrete event systems
which are more easily analyzed than the system
in its original form. The discrete event system
which models the plant and interface is called
the DES Plant Model and is modeled as an au-
tomaton similar to the controller. The automa-
ton is specified by a quintuple, {p, 3, R, $, t},
where + is the set of states, 2 and R are the
sets of plant symbols and controller symbols,
.11, : 13 x 2 -+ is the state transition function,
and t : x fi -+ P(2) is the enabling function.
The enabling function defines which events are
enabled for a given state and input. Since there
is generally more than one event enabled for a
given state and input, the DES plant model is
nondeterministic. The state transition function
defines the state which results following the oc-
currence of an event. The state transition func-
tion, $, is a partial function because some events

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

J. A. Stiver and P. J. Antsaklis, "Extracting Discrete Event System Models from Hybrid Systems,” P roc.
o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 298-301, Chicago, IL, August 25-27,
1993.

are never enabled from a given state. This model
for the DES plant differs in notation, though not
in essence, from that used in [l] and [7]. The
change is to facilitate the use of existing DES
methods.

The behavior of the DES plant model is as
follows

4 Example
The plant is a double integrator

*= [: : I - + [y]r (14)

where r E { -1, 0 , l) which yields

+ + 11 E w . 1 , +I) (12)
F[nI = lG4. - 11,5[nI) (13)

where fi[n] E P,F[n] E R , and Z[n] E 2. After
an input from the controller, one of the enabled
events occurs and the state of the DES plant
changes according to the state transition func-
tion.

3 Obtaining t h e DES Plant Model

As described in the previous section, the DES
plant model is an automaton described by the
quintuple, { P , 9, &, $, f } . To obtain the DES
plant model it is necessary to find each of these.
First, 2 and 2 are already specified in the hy-
brid system model. The set of states, p , is de-
termined by the set of plant events. Specifically,
for each plant event, Zb, there is a DES plant
state, such that whenever x E Zb, the state
of the DES plant will be &.

The state transition function, II, is defined as
follows

$b if 3zk 3 z b E (($a , Ek)
otherwise

This leaves the enabling function, 5. The en-
abling function maps a state and an input to a
set of states. We can find 5 by a test which de-
termines whether a given event is in the set of
events which are enabled for a certain state and
input. & is enabled from state $a by input z k
(i.e. z b E [($a,C"k)) if a # b and there exists x
such that

The events are formed by the following two hy-
persurfaces

h(x) = 2 1 (18)
h2(x) = 2 2 (19)

Thus, there are two covering events

and 22 plant events
\

zoo = {x: 2 1 2 o , x 2 2 0) (22)

zo1 = { x : x ~ ~ O , x ~ < 0 } (23)
z10 = {x: 2 1 < 0,22 2 0) (24)
211 = {x: 2 1 < 0,22 < 0) (25)

Now that the hybrid system has been de-
scribed, the DES plant model can be obtained.
There are four plant symbols which represent
the four plant events.

2 = {~OO,~Ol, z1o,z111 (26)

(27)

There are three controller symbols,

ii = {el, i;2, e,)
which provide the three possible plant inputs de-
scribed above. There are four DES plant states,

p = {$~,~01,~10,$11) (28)

which correspond to the four events.
To find the enabling function, we must look

at each state and input. For example, consider

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

J. A. Stiver and P. J. Antsaklis, "Extracting Discrete Event System Models from Hybrid Systems,” P roc.
o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 298-301, Chicago, IL, August 25-27,
1993.

,$(Flo,Fl), 200 is enabled because there exists
x = [0,1]’ which satisfies the conditions of equa-
tion 14. Also, 511 is enabled because there exists
x = [-1, 01’ which satisfies equation 14. 210 is
not enabled because it has the same index, 10,
as the current state and 201 is not enabled either
because there is no x which satisfies equation 14.
Thus we have:

t(F10, Fl) = (~00, 511) (29)

Once the enabling function has been derived,
the state transition function is obvious from
equation 14. For example,

$@lo7 &lo) = $00 (30)
$(@lo, 511) = Fll (31)

5 Conclusion

The technique described here to extract the
DES plant model is very similar to the test used
in variable structure control to determine if a
surface is invariant. In our case we are interested
in whether or not a trajectory will actually cross
a surface, thus representing a state transition in
the DES plant model.

When applied to the general case as in this
paper, the technique can become cumbersome
for systems with many inputs and events. A
more streamlined procedure should be available
for systems with linear plants and linear hyper-
surfaces.

References

P. J. Antsaklis, M. D. Lemmon, J. A.
Stiver, “Hybrid System Modeling and
Event Identification” , Technical Report of
the ISIS Group, ISIS-93-002, University
of Notre Dame, Notre Dame IN, January
1993.

R. Grossman, R. Larson, “Viewing Hybrid
Systems as Products of Control Systems
and Automata”, Proceedings of the 31st
Conference on Decision and Control, pp.
2953-2955, Tucson AZ, December 1992.

L. Holloway, B. Krogh, “Properties of Be-
havioral Models for a Class of Hybrid Dy-
namical Systems”, Proceedings of the 31st
Conference on Decision and Control, pp.
3752-3757, Tucson AZ, December 1992.

[4] W. Kohn, A. Nerode, “Multiple Agent Au-
tonomous Hybrid Control Systems”, Pro-
ceedings of the 3lst Conference on Deci-
sion and Control, pp. 2956-2966, Tucson
AZ, December 1992.

[5] P. J. Ramadge, W. M. Wonham, “Super-
visory Control of a Class of Discrete Event
Processes”, Systems Control Group Report
#8515, University of Toronto, Toronto,
Canada, November 1985.

[6] P. J. Ramadge, W. M. Wonham, “The Con-
trol of Discrete Event Systems”, Proceed-
ings of the IEEE, Vol. 71, No. 1, pp. 81-98,
January 1989.

[7] J. A. Stiver, P. J. Antsaklis, “Modeling and
Analysis of Hybrid Control Systems”, Pro-
ceedings of the 31st Conference on Decision
and Control, pp. 3748-3751, Tucson AZ,
December 1992.

[8] J. A. Stiver, P. J. Antsaklis, “State Space
Partitioning for Hybrid Control Systems”,
Proceedings of the American Control Con-
ference, San Francisco, California, June 2-4,
1993.

[9] W. M. Wonham, P. J. Ramadge, “On
the Supremal Controllable Sublanguage
of a Given Language”, Systems Con-
trol Group Report #8312, University of
Toronto, Toronto, Canada, November 1983.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

J. A. Stiver and P. J. Antsaklis, "Extracting Discrete Event System Models from Hybrid Systems,” P roc.
o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 298-301, Chicago, IL, August 25-27,
1993.

