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Abstract 

In this paper, the state space partitioning in 
the interface of the hybrid control system is 
modeled using covering halfspaces; this formu- 
lation extends the model introduced in [7]. The 
covering halfspaces are used to  define a set of 
plant events and a discrete event system model 
is generated which captures the behavior of the 
plant and interface of the hybrid control sys- 
tem. 

1 Introduction 

be used to  apply discrete event controller design 
techniques. 

2 Hybrid Control System Model 
A hybrid control system consists of three 

parts. The modeling and interactions of these 
parts are now described. 

2.1 Plant 
The plant is modeled as a time-invariant, 

continuous-time system, represented by the fa- 
miliar equations, 

A hybrid control system consists of a x = j(x,r) (1) 
z = g(x) (2) continuous-time system which is being con- 

trolled by a discrete event system. The 
continuous-time system is referred to  as the 
plant because it is the system under control. 
The plant is usually termed a “conventional” 

where x E R”, r E R”, and z E R P  are the 
state, input, and output vectors respectively. 
For the purposes of this work we assume that 

system as it has a continuous state space and it z = x. 
is described by a set of differential (or difference) 
equations. The discrete event system, called the 
controller, has a discrete state space and sym- 
bolic input and output. In addition to  the plant 
and controller, there is an interface which pro- 
vides communication between them. The inter- 
face generates symbols for the controller as the 
state of the plant moves through a partitioned 
state space. It also converts symbols from the 
controller into plant inputs. When the plant and 
interface of a hybrid control system are treated 
as a single system, they behave like a discrete 
event system. This is useful because it allows 
the use of discrete event control theory for hy- 
brid systems. The discrete event system which 
models the plant and interface is referred to as 
the discrete event plant model. 

In this work, using the model for hybrid con- 
trol systems originally described in [l] and [7], 
we develop a systematic way of obtaining the 
discrete event plant model from the description 
of the hybrid control system. This model can 
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2.2 Controller 
The controller is a discrete event system which 

is modeled as a deterministic automaton speci- 
fied by the quintuple, {s,.%, R, 6, q5}, where is 
the (possibly infinite) set of states, 2 is the set 
of plant symbols which are generated by events 
in the plant and make up the controller input, 
is the set of controller symbols which constitute 
the controller’s output set, 6 : x 2 + s is the 
state transition function, and q5 : s + fz is the 
output function. The behavior of the controller 
is described by 

s[n] = S ( g [ n  - 1],E[n]) (3) 
F[nI = 4(5[n1> (4) 

where 6[n] E S,Z[n] E 2, and F[n] E fz. The 
index n indicates the order of the symbols. 

2.3 Interface 
The controller and plant cannot communicate 

directly in a hybrid control system because each 
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utilizes a different type of signal. Thus an inter- 
face is required which can convert continuous- 
time signals to sequences of symbols and vice 
versa. The interface consists of two memoryless 
maps, 7 and a. The first map, called the actuat- 
ing function or actuator, 7 : R + I R ~ ,  converts 
a sequence of controller symbols to  a piecewise 
constant plant input as follows 

r = y(F) ( 5 )  
The plant input, r, can only take on certain con- 
stant values, where each value is associated with 
a particular controller symbol. Thus the plant 
input is a piecewise constant signal which may 
change only when a controller symbol occurs. 
The second map, the plant symbol generating 
function or generator, a : lftn -+ 2, is a func- 
tion which maps the state space of the plant to 
the set of plant symbols as follows 

2 = a(x) (6) 
It would appear from Equation 6 that, as x 

changes, t also continuously changes. That is, 
there is a continuous generation of plant symbols 
by the interface because each state is mapped to 
a symbol. This is not the case due to  the way a 
is defined as will now be explained. 

The plant symbol generating function, a,  is 
designed based on an open covering of the state 
space of the plant. Consider a collection of 1 
open subsets in IR" which form an open cover 
for the plant state space. Let this collection be 
represented as 

c = { c 1 q  ... cz} (7) 
The collection consists of open subsets, where 
each subset is called a covering event. The set 
of covering events is formed by a set of ( n  - 1) 
dimensional hypersurfaces, which are described 
by a set of functions, h; : IR" + R. The ith 
covering event is defined as 

ci = {x : h;(x)  < 0) (8) 
Let the ith covering event, ci, be associated 

with a unique covering symbol, Z;. The "alpha- 
bet" of covering symbols can therefore be repre- 
sented as 

These covering symbols are used to  define the 
plant symbols as follows 

H = a(x) = {z; : x E c;}  (10) 

As shown in Equation 10, a plant symbol is a 
collection of covering symbols which defines a 
region in the state space. It is convenient to 
treat this collection as a symbol. It is also con- 
venient to index the set of plant symbols with 
a binary vector b E B'. Then Z; E 26 only if 
b; = 1. 

A set of plant events can also be defined based 
on the covering events. 

A plant symbol is generated only when a new 
event first occurs. The overall effect is that the 
state space of the plant is partitioned into a 
number of regions and each is associated with 
a unique plant symbol which is generated when- 
ever the state enters that region. Thus, these 
regions (i.e. plant events) form the equivalence 
classes of a. 

2.4 DES Plant  Model 
If the plant and interface of a hybrid control 

system are viewed as a single component, this 
component behaves like a discrete event system. 
It is advantageous to  view a hybrid control sys- 
tem this way because it allows it to be mod- 
eled as two interacting discrete event systems 
which are more easily analyzed than the system 
in its original form. The discrete event system 
which models the plant and interface is called 
the DES Plant Model and is modeled as an au- 
tomaton similar to  the controller. The automa- 
ton is specified by a quintuple, {p, 3, R,  $, t}, 
where + is the set of states, 2 and R are the 
sets of plant symbols and controller symbols, 
.11, : 13 x 2 -+ is the state transition function, 
and t : x fi -+ P(2) is the enabling function. 
The enabling function defines which events are 
enabled for a given state and input. Since there 
is generally more than one event enabled for a 
given state and input, the DES plant model is 
nondeterministic. The state transition function 
defines the state which results following the oc- 
currence of an event. The state transition func- 
tion, $, is a partial function because some events 
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are never enabled from a given state. This model 
for the DES plant differs in notation, though not 
in essence, from that used in [l] and [7]. The 
change is to  facilitate the use of existing DES 
methods. 

The behavior of the DES plant model is as 
follows 

4 Example 
The plant is a double integrator 

*= [ :  : I - + [  y]r (14) 

where r E { -1, 0 , l )  which yields 

+ + 11 E w . 1 ,  +I) (12) 
F[nI = lG4. - 11,5[nI) (13) 

where fi[n] E P,F[n] E R ,  and Z[n] E 2. After 
an input from the controller, one of the enabled 
events occurs and the state of the DES plant 
changes according to the state transition func- 
tion. 

3 Obtaining t h e  DES Plant  Model 

As described in the previous section, the DES 
plant model is an automaton described by the 
quintuple, { P ,  9, &, $, f } .  To obtain the DES 
plant model it is necessary to find each of these. 
First, 2 and 2 are already specified in the hy- 
brid system model. The set of states, p ,  is de- 
termined by the set of plant events. Specifically, 
for each plant event, Zb, there is a DES plant 
state, such that whenever x E Zb, the state 
of the DES plant will be &. 

The state transition function, II, is defined as 
follows 

$b if 3zk 3 z b  E ( ($a ,  Ek) 
otherwise 

This leaves the enabling function, 5. The en- 
abling function maps a state and an input to a 
set of states. We can find 5 by a test which de- 
termines whether a given event is in the set of 
events which are enabled for a certain state and 
input. & is enabled from state $a by input z k  
(i.e. z b  E [($a,C"k)) if a # b and there exists x 
such that 

The events are formed by the following two hy- 
persurfaces 

h(x)  = 2 1  (18) 
h2(x) = 2 2  (19) 

Thus, there are two covering events 

and 22 plant events 
\ 

zoo = {x: 2 1  2 o , x 2  2 0) (22) 

zo1 = { x : x ~ ~ O , x ~ < 0 }  (23) 
z10 = {x:  2 1  < 0,22 2 0) (24) 
211 = {x:  2 1  < 0,22 < 0) (25) 

Now that the hybrid system has been de- 
scribed, the DES plant model can be obtained. 
There are four plant symbols which represent 
the four plant events. 

2 = {~OO,~Ol, z1o,z111 (26) 

(27) 

There are three controller symbols, 

ii = {el, i;2, e,) 
which provide the three possible plant inputs de- 
scribed above. There are four DES plant states, 

p = {$~,~01,~10,$11) (28) 

which correspond to  the four events. 
To find the enabling function, we must look 

at each state and input. For example, consider 
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,$(Flo,Fl), 200 is enabled because there exists 
x = [0,1]’ which satisfies the conditions of equa- 
tion 14. Also, 511 is enabled because there exists 
x = [-1, 01’ which satisfies equation 14. 210 is 
not enabled because it has the same index, 10, 
as the current state and 201 is not enabled either 
because there is no x which satisfies equation 14. 
Thus we have: 

t(F10, Fl) = (~00, 511) (29) 

Once the enabling function has been derived, 
the state transition function is obvious from 
equation 14. For example, 

$@lo7 &lo) = $00 (30) 
$(@lo, 511) = Fll (31) 

5 Conclusion 

The technique described here to extract the 
DES plant model is very similar to  the test used 
in variable structure control to  determine if a 
surface is invariant. In our case we are interested 
in whether or not a trajectory will actually cross 
a surface, thus representing a state transition in 
the DES plant model. 

When applied to  the general case as in this 
paper, the technique can become cumbersome 
for systems with many inputs and events. A 
more streamlined procedure should be available 
for systems with linear plants and linear hyper- 
surfaces. 

References 

P. J. Antsaklis, M. D. Lemmon, J. A. 
Stiver, “Hybrid System Modeling and 
Event Identification” , Technical Report of 
the ISIS Group, ISIS-93-002, University 
of Notre Dame, Notre Dame IN, January 
1993. 

R. Grossman, R. Larson, “Viewing Hybrid 
Systems as Products of Control Systems 
and Automata”, Proceedings of the 31st 
Conference on Decision and Control, pp. 
2953-2955, Tucson AZ, December 1992. 

L. Holloway, B. Krogh, “Properties of Be- 
havioral Models for a Class of Hybrid Dy- 
namical Systems”, Proceedings of the 31st 
Conference on Decision and Control, pp. 
3752-3757, Tucson AZ, December 1992. 

[4] W. Kohn, A. Nerode, “Multiple Agent Au- 
tonomous Hybrid Control Systems”, Pro- 
ceedings of the 3lst  Conference on Deci- 
sion and Control, pp. 2956-2966, Tucson 
AZ, December 1992. 

[5] P. J. Ramadge, W. M. Wonham, “Super- 
visory Control of a Class of Discrete Event 
Processes”, Systems Control Group Report 
#8515, University of Toronto, Toronto, 
Canada, November 1985. 

[6] P. J. Ramadge, W. M. Wonham, “The Con- 
trol of Discrete Event Systems”, Proceed- 
ings of the IEEE, Vol. 71, No. 1, pp. 81-98, 
January 1989. 

[7] J. A. Stiver, P. J. Antsaklis, “Modeling and 
Analysis of Hybrid Control Systems”, Pro- 
ceedings of the 31st Conference on Decision 
and Control, pp. 3748-3751, Tucson AZ, 
December 1992. 

[8] J. A. Stiver, P. J. Antsaklis, “State Space 
Partitioning for Hybrid Control Systems”, 
Proceedings of the American Control Con- 
ference, San Francisco, California, June 2-4, 
1993. 

[9] W. M. Wonham, P. J. Ramadge, “On 
the Supremal Controllable Sublanguage 
of a Given Language”, Systems Con- 
trol Group Report #8312, University of 
Toronto, Toronto, Canada, November 1983. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 15:45 from IEEE Xplore.  Restrictions apply. 

J. A. Stiver and P. J. Antsaklis, "Extracting Discrete Event System Models from Hybrid Systems,” P roc. 
o f t he 8 th I EEE I nternational S ymposium o n I ntelligent C ontro l , pp. 298-301, Chicago, IL, August 25-27, 
1993.




