
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I ,  NO. 1, JANUARY 1996 3 

The Dependence Identification Neural 
Network Construction Algorithm 

John 0. Moody, Student Member, IEEE, and Panos J. Antsaklis, Fellow, IEEE 

Abstract- An algorithm for constructing and training multi- 
layer neural networks, dependence identification, is presented in 
this paper. Its distinctive features are that i) it transforms the 
training problem into a set of quadratic optimization problems 
that are solved by a number of linear equations, ii) it constructs 
an appropriate network to meet the training specifications, and 
iii) the resulting network architecture and weights can be further 
refined with standard training algorithms, like backpropagation, 
giving a significant speedup in the development time of the neural 
network and decreasing the amount of trial and error usually 
associated with network development. 

I. INTRODUCTION 
HE main tools for training multilayer feedfonvard neural T networks are gradient-based optimization techniques such 

as the backpropagation (BP) algorithm developed by Rumel- 
hart [ 191. Typical gradient descent algorithms are susceptible 
to local minima, sensitive to initial conditions, and slow to 
converge. Gradient descent can work quite well with the 
appropriate set of initial conditions and with a proper network 
architecture, but using random initial conditions and guessing 
at the network architecture usually leads to a slow and pon- 
derous training process. BP requires that the nonlinear neural 
activation functions be restricted to those with continuous 
derivatives. The designer must specify the number of network 
layers and the number of neurons in the “hidden layers” when 
using basic BP. A method of quickly specifying a network 
architecture and set of initial weight values for possible further 
training through gradient descent would be extremely valuable. 

One method of developing an appropriate network architec- 
ture without having to use trial and error is pruning. Pruning 
techniques start out with a very large network, with the goal 
being to eliminate superfluous weights andlor neurons. An 
important (and popular) tool for pruning weights and neurons 
is a method known as “weight decay,” see [SI, [9], [13], and 
[22]. Weight decay causes all of the weights in the neural 
network to decrease slightly in magnitude at every BP training 
step. If BP training is constantly emphasizing certain weights, 
then the slight decay will not hurt these values, however, if 
a weight is rarely changed by BP, then the decay process 
will make it go to zero. It is then possible to remove the 
weights that have near zero magnitude. The rules of weight 
decay can easily be extended to work equally on all the 
weights associated with individual neurons, thus allowing the 
decay to eliminate entire neurons from the network instead 

Manuscript received September 22, 1993; revised February 10, 1995. 
The authors are with the Department of Electrical Engineering, University 

Publisher Item Identifier S 1045-9227(96)00486-9. 
of Notre Dame, Notre Dame, IN 46556 USA. 

of just individual weights. The method of weight decay has 
two main problems, it requires that the network be very large 
at the beginning of training and it relies on gradient-based 
optimization methods. Hardware or time restrictions may 
interfere with the size requirements for the initial network, and 
gradient descent has its own set of problems. Pruning methods 
still require the designer to guess at the number of layers 
required for the network, though results from [2], [3], [IO], and 
[ 1 I] making guessing at the required number of hidden layers 
a relatively simple task. The algorithm presented in this paper 
attempts to alleviate the difficulties of constructing a network 
with pruning techniques, however, the resulting network can 
still be refined with pruning and iterative training methods. 

The most impressive progress in network construction al- 
gorithms has been for Boolean networks. Boolean networks 
realize Boolean functions, with the inputs, outputs, and neural 
activations all being binary valued. Although our interest is 
in networks that are not necessarily Boolean, some of the 
algorithms developed for Boolean networks have features in 
common with the dependence identification (DI) algorithm 
presented in Section 111. For this reason several methods of 
constructing Boolean networks are outlined below, details can 
be found in [6], [SI, [141, and 11.51. 

Marchand et al. [14] developed a method for constructing 
a Boolean network with a single hidden layer. The inputs and 
outputs and hidden-layer activations are all fl. The idea is to 
train a single hidden-layer neuron to give a correct response 
for all of the patterns that should generate a +I  output and at 
least one of the patterns that generates a -1 response. New 
hidden units are then added, each one getting one more of the 
- 1 responses correct, while maintaining the correct response 
for all of the +1 patterns. When all of the -1 responses are 
answered correctly by at least one hidden-layer unit, Marchand 
et al. prove that the perceptron training algorithm [ IS] can be 
applied to produce the output layer weights, i.e., they prove 
that the hidden layer linearly separates the pattern space. 

The upstart algorithm developed by Frean in 1990 [6] uses a 
different kind of network architecture. The first step is to train 
a single neuron to correctly classify a portion of the patterns. 
If not all of the patterns are correctly classified, then two new 
neurons are added to the network. These neurons receive the 
input patterns as their own input and feed their output to the 
first neuron. One of these neurons has a positive weight and 
the other has a negative weight. The two neurons’ weights are 
then used to correct some of the mistakes made by the first 
neuron. If the first neuron still does not classify all patterns 
correctly then four new neurons are added, two for each of 

1045-9227/96$05.00 0 1996 IEEE 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



4 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 1, JANUARY 1996 

the secondary neurons, and the process is repeated until the 
first neuron correctly classifies all of the input-output patterns. 
Frean proves that each additional layer will eliminate at least 
one of the incorrectly classified patterns at the output layer, 
thus the process must eventually halt. 

The tiling algorithm was developed by MCzard and Nadal 
[15] in 1989. The algorithm is based on the idea that if two 
input patterns are to give rise to different output values, then 
their hidden-layer representations must also be different. First 
a single neuron is trained to correctly classify as large a 
proportion of the pattem space as possible. Extra units are then 
added until no two input pattems that have opposite output 
values have the same hidden-layer representation. The process 
is then restarted, and the hidden-layer pattems are used as 
inputs to a new layer. MCzard and Nadal prove that a layer will 
always have at least one fewer neuron than the layer before 
it, thus the algorithm will always reach a conclusion with a 
single output that gives the correct response for all pattems. 

The DI algorithm is presented in this paper. DI bears some 
similarities to the Boolean network construction algorithms, 
however, it is designed to work with continuous training 
problems, and it uses the concept of linear dependence, instead 
of the desired Boolean output value, to group pattems together. 
The algorithm does not share the problems of network pruning 
techniques because it builds from a small network up to a 
large one, and because it does not use gradient descent. The 
algorithm creates a network and set of initial conditions that 
are suitable for further iterative or on-line adaptive training 
with gradient techniques such as BP and weight decay. 

The single-layer training method of quadratic optimization, 
a major tool used by the DI algorithm, is explained in the 
following section. The DI algorithm is then presented in 
Section 111. Section IV gives examples of neural-network 
construction using DI. Concluding remarks appear in Section 
V. 

11. QUADRATIC OFTIMEATION 
Many methods exist [8] for training single-layer neural net- 

works including steepest descent, least mean squares, and the 
"perceptron training algorithm" (for single-layer classification 
problems). In [20], Sartori and Antsaklis' proposed quadratic 
optimization, which transforms the nonlinear training cost 
function of a single-layer network into a quadratic one. This 
method reduces the problem to solving a set of linear equations 
and is a major tool used by the DI algorithm described in the 
next section. A description of the method is given here. 

Individual neurons perform the following function: 

Y == 4 WaUz . Cl ) 
The neuron receives m inputs, (u1, . . . , um), and has a single 
output y. Each input U ,  is multiplied by a corresponding weight 
factor wz. The output is formed by performing a nonlinear 
function { 4 :  IR + R} on the sum of the weighted inputs. The 
function 4 is generally a sigmoid, but this is not necessary. 

A single-layer neural network receives m inputs and pro- 
duces n outputs with one artificial neuron for each output. The 

j th  output may be expressed as 

where 1 5 j 5 n and wZ3 is the weight between the ith input 
and the j t h  output. The network may be expressed in matrix 
form by defining the inputs and outputs as vectors and the 
weights as a matrix. Then 

y = quw> 
where 

y E RIXn U E RIXm w E ELmxn 

and the ijth element of W ,  the neural weight matrix, is given 
by wZ3. The notation ~ ( u W )  means perform the same function 
Q on every element of the vector uW, forming the new vector 
@ ( u W )  

{@:Et" --+ R"} @,(.) = $h(.%). (1) 

The overall network represents a static nonlinear mapping 
TR" t IRn from the input to the output. The training goal 
is to make this mapping approximate, as close as possible, 
some desired mapping from R" to IR". Suppose there are p 
input-output patterns that are to be used to train the network, 
defined as follows 

where U," is the value of the ith input for the kth training 
pattern and d: i s  the j th  desired output for the kth training 
pattern. The following matrices can then be constructed: 

U E E t p x m  D E RpXn 

where U is the matrix of input patterns and D is the matrix 
of corresponding desired output patterns. The value of the 
j th  output neuron (1 5 j 5 n) to the kth training pattern 
(1 5 k 5 p ) ,  yt, is given by 

/ m  \ 

or in matrix form, the output Y E R P X n  of a single-layer 
neural network to the input U is 

Y = quw) 
where W E R"'" is the neural weight matrix and B a 3 ( X )  = 

The neural-network training problem involves making Y as 
close an approximation as possible to D. If this "closeness" 
is defined in the least mean squares sense, then the error of 
the network is given by 

d(%) as in (1). 

p n  

k=l j=1 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



5 MOODY AND ANTSAKLIS: DEPENDENCE IDENTIFICATION NEURAL NETWORK 

The training goal is then to find a set of weights W which 
minimizes the e m r  e. The error equation and training goal 
can also be expressed with the matrix notation 

e = trace [(D - Y)~(D - Y ) ]  

where 1 5 j 5 n and 1 5 k 5 p.  
For the case where the change of variables, Q(V) = D, has 

been performed, the problem is defined by (6) and is rewritten 
in terms of a quadratic cost function F 

= trace {[D - @(uw)]~[D - Q(uw)]}. (3) min W F ( w )  (11) 
And the training problem is to find a set of weights that 
minimizes e 

where 

mAn trace ([D - Q(uw)]~[D - @(UW)]}. (4) 
P(w> = trace (V - U W ) ~ ( V  - VW).  (12) 

The error matrix, i E Rp n, associated with (1 1) at any time 
is given by 

To deal with the nonlinearity of (4) consider defining a new 
matrix V E Etpx" such that 

Q(V) = D. 
If + is bijective then we can take ut = +-'(d:), however, 
it is not necessary that a one-to-one inverse of 4 exist. For 
example, the zero-threshold step function is surjective for the 
domain of R and the range (0, l} i.e., it has an infinite 
number of inputs that will evaluate to one and an infinite 
number of inputs that will evaluate to zero. V can still be 
defined by assigning some positive number to w: whenever d$ 
is one and assigning some negative number to ut whenever 
d$ is zero. The numbers assigned may be random or some 
prechosen constants. With the change of variables in effect, the 
single-layer neural-network training problem is transformed to 

(6) 

UTUW = UTV (7) 

min trace[(V - U W ) ~ ( V  - UW)]  
W 

which is equivalent to solving 

for W if UTU is positive definite (full rank). 
Of course the real problem to be solved is the nonlinear 

problem given by (4). Note that if a zero error minimum 
solution to (6) exists, then a W can be found such that it 
gives a zero error solution to (4). When a zero error solution 
to (6) does not exist then the relationship between the two 
solutions is more subtle. A more complete discussion of the 
error relationship appears below. 

A. Error Analysis 

i=v-uw. 
The relation [20] between E and i is 

E = @(UW + i )  - (a(UW). (14) 

Note that each element of E depends only on the corresponding 
element of i not on the entire i matrix, i.e., E ;  is a function 
of 2; only 

where 1 5 j 5 n and 1 5 k 5 p .  
Equation (15) shows that for a given W ,  if 2 = 0 (matrix), 

then E = 0 as well. Thus if the transformed problem (1 1) has a 
zero error solution, then a zero solution to the original problem 
(8) has been found as well. If the neural activation function is 
bijective, e.g., it is sigmoid, then for any W ,  E = 0 if and only 
if i = 0. In general, however, i # 0. This case is now studied. 

In view of (15), an approximate relationship between the 
two errors can be derived that sheds some light into their 
relationship. In particular 

where @(z) = d4/ds(z). The approximation is valid for 
sufficiently small i$ by combining (15) and 

m The original single-layer neural-network training problem 
is to find a W that 

Let the error matrix, e E EtpXn, associated with (8) at any 
time be given by 

(10) E = D - (a(UW). 

Note that the scalar error measure e in (2)  and (3) is' e = 
trace E ~ E .  The jkth element of E is the error of the jth output 
neuron to the kth pattern 

where 1 5 j 5 n and 1 5 k 5 p .  
It is now clear that for E: to be small it should be 

small and/or $'( xEl uFwiJ) should be small. That is, good 
solutions to the original nonlinear problem are achieved when 
the weights w , ~  are such that 4' ( U : Z U , ~ )  N 0, or when, 
in the case of sigmoids, the weights push the neural inputs into 
the flat regions of the function. This is of course difficult to 
guarantee as it is heavily dependent on the training patterns. 
In an attempt to further shed light on the error relationship 
it is now of interest to examine the conditions under which 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



6 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 1, JANUARY 1996 

the W which minimizes P(W) adequately approximates the 
minimum of the original (nonlinear) problem. Suppose we find 
a weight matrix W* which solves (11). The associated error 
matrix is then 

i* = V - uw*. 
Under what conditions are the elements of E*,  the nonlinear 
problem's error matrix from (10) with weight matrix W*, less 
than or equal to the elements of E, where e is the error matrix 
associated with any weight matrix? Using the approximation, 
(16), we want 

where wz*, and wz3 are the ijth elements of W* and W .  The 
inequality should hold for all patterns k and output neurons 
j .  The inequality can be viewed in terms of the ratio of the 
slopes of the output activations compared to the ratio of the 
magnitudes of the errors 

Let af equal the absolute value of the ratio of the slopes for 
the j th  output neuron and the kth training pattern 

Then for the weight matrix W* to produce a minimum in the 
nonlinear space we need 

If i* = V - U W *  = 0 then the inequality will obviously 
hold. If the elements of U W *  are high in magnitude, then they 
will lie along the flat points of the sigmoid and the derivative 
will be approximately zero, making at M 0. In this case 
the solution W* should lie close to the optimal solution of 
the nonlinear problem. If the elements of UW* are small in 
magnitude, then the derivative of the sigmoid will be high 
and it is likely that W* lies farther away from the optimal 
solution to the nonlinear problem. Note that the elements 
of W* are not considered by themselves. It is necessary to 
examine the elements of U W * .  This indicates that the set 
of training patterns has a strong impact on the value of the 
solutions that are derived. 

Note that if the solution produced by quadratic optimization 
is not close enough to the true minimum, then the solution from 
quadratic optimization can be used as a set of initial conditions 
to further reduce the error u$ng some form of nonlinear 
gradient descent. The solutions) from quadratic optimization 
will generally lie close to the nonlinear solution, making 
gradient descent an effective tool for fine tuning the error if 
a further reduction of the error is necessary. In the Appendix 

TABLE I 
Re XOR FUNCTION 

1 1 0  

of this paper, the relationship between the errors 6 and i is 
illustrated through examples. 

m. DEPENDENCE IDENTIFICATION 
This section introduces the multilayer neural-network con- 

struction method DI. An example of network construction is 
given as an introduction in Section 111-A before the algorithm 
is formally described in Section 111-E. Sections 111-C and 111-D 
address specific issues of the algorithm. 

A. Network Construction Example 
A pseudocode description of the DI algorithm is given in the 

next subsection. A simple example is given here to help the 
reader develop a more intuitive understanding of the algorithm, 
though the reader may omit this subsection without loss of 
continuity. A neural network is to be constructed that realizes 
the exclusive or (XOR) Boolean function. The XOR function 
has two Boolean inputs and a single Boolean output: The 
desired input-output mapping is given in Table I. 

The input patterns are augmented with a vector of constant 
inputs to act as a bias. The U and D matrices are then 

ro 0 11 r o i  

Because the input-output space is Boolean, it makes sense to 
define the neural activation function 4 as the step function, 
which also has output values of zero and one. We now need 
to define the V matrix such that @(V)  = D. As mentioned 
in Section II, the step function is not bijective, but we can 
still assign values to V that would give rise to the appropriate 
values in D. One way to do this is to assign a -1 to V when 
D contains a 0 and a 1 to V when D contains a 1. Thus 

r-1 i 

If a single-layer neural network with weight matrix W E R3 
is to realize the function, then we need U W  = V. A solution 
to this equation exists if 

rank(U) = rank([U VI) (18) 

but U is rank 3 and [U V] is rank 4, thus a single- 
layer neural-network solution does not exist with the given 
activation function and choice for V. The pattern space is 
not linearly separable, which is a well-known result. If the 
XOR function is to be realized with the given nondecreasing 
activation function, then the network must have a minimum 
of two layers. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



MOODY AND ANTSAKLIS: DEPENDENCE IDENTIFICATION NEURAL NETWORK 

1 -$Y/ 
(a) (b) (C) 

Fig. 1. Components of the XOR neural network. 

The rank condition of (18) dictates the entire pattern set 
cannot be realized at once, but what about a subset? Take the 
first three rows of U, call them U1:3, and the first three rows of 
V, call them  VI:^. Now rank (U1:3) = rank ([Up3  VI:^]) = 3 
so a solution to this problem does exist. An inspection of the 
three patterns shows that the solution is simply the Boolean 
OR function. The equation 

u1:3gl E v1:3 

is solved for 91 and we obtain 

91 = [-;I. 
Weight matrix g1 provides a single-layer neural-network solu- 
tion to the Boolean OR problem as shown in Fig. l(a). 

Now we take the last three rows of U and V: Uz:4,V2:4. 
Once again the two matrices satisfy the rank condition of (18) 
and we can see that the solution would be the Boolean NAND 
function. The equation 

u2:4g2 = v2:4 

is solved for g2 

The single-layer solution to the Boolean NAND problem is 
shown in Fig. l(b). 

The two single-layer neural networks for OR and NAND 
can be used as building blocks for the multilayer XOR 
network. First we will define another single-layer network that 
has an output which never changes. This will act as a bias just 
like the third column of U .  The weight matrix for this bias 
neuron is then 

g 3 =  [8]. 
The first layer weight matrix can then be constructed as 

Wl = 191 92 931. 

The output of the hidden layers is then computed 

ro 0 11 
(a(UW,)=W= I1 II ti  o 11 

and it is easy to see that rank (H) = rank ([H VI) = 3, thus 
a solution W2 E R3x1 to the final problem HW2 = V does 
exist 

The network that realizes the XOR problem is shown in 
Fig. l(c). 

B. The Algorithm 
The XOR network in the previous section was constructed 

using the DI algorithm, which will now be formally defined. 
A network is to be constructed and trained to approximate 
a function with m inputs and n outputs. The training set 
consists of p input-output patterns. The training matrices U 
and D are the same as defined in Section 11. The network is 
constructed one layer at a time. If hidden layers are necessary, 
they are created by selecting subsets of the pattern space, as 
described below, and using the rules for single-layer network 
construction from Section 11. The outputs of the hidden-layer 
neurons are then used as inputs for the next layer. 

To construct the network, first attempt to create a single- 
layer neural network by solving (6) using the method of 
quadratic optimization. Compute the error of the single-layer 
network. If the error is acceptable (less than a given tolerance) 
then training is complete and the solution is a single-layer 
network, otherwise create a layer of hidden neurons each of 
which gets a subset of the complete set of training patterns 
matched correctly, i.e., every pattern should be classified 
correctly by at least one hidden-layer neuron. To do this choose 
an m x m portion of U (it is assumed that there are more 
training patterns than there are inputs, i.e., p > m.), and the 
corresponding m x n portion of D. Use these patterns to solve 
a single-layer neural-network training problem as above. It is 
guaranteed that a unique zero error solution to this problem 
exists if the m x m portion of U is full rank, see (7) and (18). 
Repeat this procedure until every pattern is matched by at least 
one hidden-layer neuron. Patterns in U and the transformed 
variable V that are correctly matched by a single hidden-layer 
neuron are linearly dependent, which is the reason for the 
name DI. The hidden-layer outputs are then treated as inputs 
to form a new layer. Layers may be added to the network until 
a maximum number of layers has been added or the network 
error is within the desired tolerance. 

Fig. 2 gives the pseudocode used to implement DI. The 
inputs to the algorithm include the training patterns U and 
D as well as the neural activation function 4, the maximum 
number of layers h,,, and two tolerances E N  and cp. The 
acceptable error for the entire network is given by E N .  The 
other tolerance, tp, is used to determine whether the output of 
the network for an individual pattern is within bounds. Larger 
values for cp  give fewer hidden-layer neurons. 

C. Hidden-Layer Neurons 
The DI algorithm constructs a network that solves the 

single-layer problem within the desired accuracy, if such a 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I, NO. 1, JANUARY 1996 8 

ilgon'thm 1 (Dependence Identification). 
sput U E IRPxm, D E IRpx", 

q5:IR-rIR. CN, ~ p ,  L a x .  

:reate V such that @ ( V ) = D  
;et h = 1 
wpeat 

Solve minwh trace ( ( U w h  - V)T(UWh - V)) 

Compute error: 
e = trace ((@(UWh) - D)T(@(UWh) - D ) )  
i f  ( e  > CN) and ( h  < h,,,) then 

wh E IRmx". 

Set G = empty matrix, 1 = 0 

repeat 
Set Uunmarked = us Vunmarked = v 

Choose U c Uunmarked , U c Vunmarked 
where U E Etmxm, v E Rmxn 

i f  less than m patterns are 
unmarked then augment U and v 
with previously marked patterns. 

Solve: 
ming trace ( (ug-v)T(ug-v)) ,  g E Etmx". 
Add g as new column(s) of G. 
l - l + n  
Mark a l l  patterns which do 

not sat i s fy  Uunmarkedg = Vunmarked 
within the tolerance c p .  

unt i l  a l l  patterns have been marked. 
Find the hidden layer outputs: 
H = @(UG) E Etpx'. 
Add a zero column t o  G with a single 
nonzero element corresponding t o  the 
constant input. 

wh + G 
U + H  
m t l  
h c h + l  

unt i l  (e 5 E N )  or ( h  = hmw) 
output w, for i = l ,  ..., h and the error e 

Fig. 2. Algorithm 1. 

solution actually exists. The number of layers created can be 
bounded with the parameter hmax. The number of hidden- 
layer neurons depends on the number of layers and the desired 
accuracy. Several authors have shown (with different degrees 
of ease and generality) that p neurons in the hidden layer 
suffice to store p arbitrary patterns' in a two-layer network 
(see [l], [17l, and [21] for constructive proofs). 

The bound on the number of hidden-layer neurons created 
by DI is proportional to the bound of p described above. 
Assume that the m x m portions of U are full rank and 
that the number of network layers is limited to two (one 
hidden layer). The U matrix has p rows, so it will be broken 
into at most ceiling(p/m) linearly dependent groups' to form 
the hidden-layer neurons. This bound is achieved when every 
group is made of at most m patterns. In practice the number 
of groups can be much smaller than ceiling(p/m) since larger 
groups of linearly dependent patterns may be found. Every 
linearly dependent groups yields n hidden-layer neurons (one 
for each output). An extra neuron with a constant output is then 
added to the hidden layer to help form constant offsets and/or 

I The bound of p assumes that one input to the network is constant, if the 

'The notation ceiling(z) means the smallest integer greater than or equal 
neural thresholds are handled differently then the bound is p - 1. 

to 2. 

thresholds for the output layer. Thus the DI algorithm has an 
upper bound of ceiling(p/m)n + 1 hidden-layer neurons for a 
two-layer network and assuming the m x m portions of U are 
full rank. The DI algorithm assumes that one input is a constant 
used to form thresholds for the first layer's neurons. Thus for 
a single-inputlsingle-output network m = 2 and n = 1 and 
the bound on the number of hidden-layer neurons created by 
DI is approximately one half the bound of p .  

There may be situations where DI determines a number of 
neurons andor layers that may not be physically realizable 
due to hardware or software constraints. The number of layers 
may be limited by the parameter h,, in Algorithm 1, but 
it is not so easy to limit the number of neurons within a 
hidden layer. One way to decrease the number of hidden- 
layer neurons is to increase the tolerance tp. This value is 
used to determine whether a pattern should be considered part 
of a linearly dependent set, i.e., if a pattern subset U ,  d ,  w 
and_associated weight g satisfies ug = U ,  then another pattern 
6, d, 2 is considered "linearly dependent" if the elements of 
I@(fig) - 21 are all less than c p .  Linear dependence is written 
in quotes here because the nonlinear, not the linear, function 
is actually being used to determine a pattern match. If the 
linear function were used, then the check would be to see if 
the elements of I6g - 61 are all less than c p .  Increasing the 
value of ep increases the number of patterns that are considered 
linearly dependent no matter which method is used to check 
for linear dependence. Since each group of n hidden-layer 
units is associated with a single linearly dependent pattern set, 
increasing tp decreases the number of hidden-layer neurons. 

Unfortunately when the number of hidden-layer neurons are 
decreased by including more patternsin the same group, the 
overall error of the network tends to increase. One way to 
reduce this error is to recompute the weight matrix g after the 
complete set of linearly dependent patterns has been found. 
The original value of g is computed just as before, using an 
m x m section of U .  The set of linearly dependent patterns 
is also computed as before, but then g is recomputed using 
the complete set of linearly dependent patterns. This is easily 
done with the block conjugate residual algorithm [16] since it 
does not require that the U matrix be square. An example of 
decreasing the number of hidden-layer neurons while keeping 
the error low with recomputed weights is given in Section IV- 
B. Further discussion and implementation concerns regarding 
DI can be found in [ 161. 

D. Further Comments 
The algorithm's solution is based on solving a succession 

of systems of linear equations. Krylov subspace methods, like 
the block conjugate residual algorithm, see [4] and [16], are 
recommended since they are iterative methods for solving 
linear equations, working toward minimizing a quadratic error 
function instead of attempting to solve the problem exactly 
in a single complicated step. These methods are guaranteed to 
converge in a number of steps equal to the order of the system, 
assuming that the problem is sufficiently well conditioned [ 121. 
The speed of these algorithms is a key to the overall speed of 
DI. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



MOODY AND ANTSAKLIS: DEPENDENCE IDENTIFICATION NEURAL NETWORK 9 

Function (19) 

Function (20) 

The DI algorithm can not only be used to construct contin- 
uous sigmoidal networks but can also be used to construct 
networks that use discontinuous switching functions. The 
discontinuities of these functions prevent them from being 
used with standard gradient-based training. 

DI shares some common characteristics with Hecht- 
Nielsen’s counterpropagation networks 151, 171, [81 which 
are known to converge quickly. Both approaches can 
be used for continuous function approximation, and both 
use the hidden layer to organize and classify patterns. 
DI is primarily distinguished from counterpropagation in 
that it is a construction algorithm. The architecture of a 
counterpropagation network is chosen by the designer as 
well as the supervised and unsupervised learning parameters. 
Counterpropagation networks perform competitive learning 
with the hidden-layer neurons, thus their operation often 
involves “winner-take-all” or similar rules. The networks 
constructed by DI have a standard feedforward architecture 
that allows them to be used with tools developed for such 
networks such as feedforward iterative training techniques 
and pruning methods. Maintaining the structure of the standard 
BP-trained feedforward network was an important goal in the 
development of DI. 

DI is, as presented, a batch training process, which might 
make it inappropriate for certain on-line training tasks. DI, 
however, is very useful for creating an initial network that 
may be further trained on-line using some sort of gradient 
descent (like BP) that responds to each new training pattern 
as it is presented to the network. The usefulness of combining 
DI construction with further training from BP is illustrated in 
Section IV-C. 

q S Stopping criterion 
0.02 - 0.002 0.1 Square error < 1.0 

0.005 0.1 Square error < 0.8 

IV. EXAMPLES 
Programs are written in C to perform BP and DI and are run 

on Sun SPARCstation 2 workstations. Section IV-A shows a 
comparison between networks constructed with DI to networks 
trained with BP. Section IV-B shows how the number of 
hidden-layer neurons may be reduced by increasing the DI 
tolerance value c p .  The overall error of the network is kept 
down, while the tolerance is increased, by recomputing the 
weights after each linearly dependent set of training patterns is 
found. Section IV-C shows how DI may be successfully used 
to construct a network architecture and set of initial conditions 
for further training by BP. 

Function (21) 0.005 

A. Function Approximation Examples 
DI has been tested on several multi-inputlmulti-output func- 

tions with the number of training patterns ranging from 20 to 
2000. The speed and utility of the algorithm is demonstrated by 
comparing the results obtained from BP training from random 
initial conditions. 

Three function approximation examples are covered in this 
section. The first is a sine wave 

0.1 1 million iterations 

d = sin(u1) 
~1 E [0, 4 ~ 1 .  

Function (19) 
20patterns 

Function (20) 
200patterns 
Function (21) 
2000 patterus 

TABLE I1 
BACKPROPAGATION LEARNING PARAMETERS AND STOPPING C R ~ E R I A  

Method Architecture (Training) {Tent Set) (seconds) 
DI 2 - 9 - 1 0.2923 1.8023 0.0167 
BP 2 -  10- 1 0.9993 3.8570 274.8 
DI 3 - 103 - 2 0.3547 1.5508 15.14 

’ BP 3 -  103-2 0.7902 2.1196 4429.25 
DI 4 - 286 - 1 0.4495 0.1221 291.13 
BP 4 - 50 - 1 1.2661 0.2475 3026.93 

TABLE I11 
COMPARATIVE RESULTS OF NETWORK TRAINING METHODS 

I Traininz I Network I Souare Enor I Sauare EROI I Time to Solution 

The second is a two input-two output function given by 

d l  = [5 sin (u1) + cos (u2)] 
d2 = [3 cos (u~) + 2 sin (u2)] 

u1, U2 E [O, 274. (20) 

The third is a three-inputlone-output function 

The activation function for the networks created by BP and 
DI for all three functions is (b(z) = tanh(z). Initial weights 
for the networks trained with BP were uniformly distributed 
random values between -0. I and 0. I. The learning parameters 
and stopping criteria used in the BP training were obtained 
through trial and error; a variety of values were tried and the 
results that yielded the smallest errors in the shortest amount of 
time are reported here. The stopping criterion for each function 
was chosen so that the BP cost function was near a local 
minima and that the resulting error was of the same order of 
magnitude as that obtained by DI (the use of BP to improve 
the error obtained from DI is shown in Section IV-C). The 
parameters used to train each of the given functions with BP 
are summarized in Table 11. The training results are given in 
Table 111. 

Twenty training patterns were generated, evenly spaced 
from u1 = 0 to u1 = 47r, to train the sine wave of function 
(19). DI reached a solution fairly quickly and produced a final 
square error of 0.2923 in 0.0167 s, while deriving a network 
architecture of 2-9-1. 

BP had significant difficulties with learning the sine wave, 
being particularly susceptible to local minima in the error 
space. Many methods were tried to overcome the problem, 
including varying the number of hidden-layer neurons. The 
problem was finally overcome by using a network architecture 
of 2-10-1 and setting the BP learning rate 77 = 0.02, and the 
momentum term /3 = 0.1. These learning parameters caused 
the solution to vary wildly, but it was stopped as soon as it 
found one set of weights that “beat” the local minimum. These 
weights were then used as the initial conditions with a slower 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



10 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7 ,  NO. 1, JANUARY 1996 

U 

Fig. 3 .  Testing results of sine wave approximation. 

learning rate of q = 0.002, ,8 = 0.1 and BP iterations were 
performed until the final square error was less than 1.0. Table 
I11 shows the actual CPU time required to construct and/or 
train the networks. Note that DI was over 1600 times faster 
than BP for computing a slightly more accurate solution. 

The process of determining BP learning parameters and 
,8, the number of hidden-layer neurons, and the stopping 
requirement for BP can be a tedious trial and error procedure. 
The time required to actually determine an appropriate set 
of parameters is not included as part of the solution time 
reported for BP. The times in Table I11 illustrate that even 
when the learning rates and network architecture are known, 
the systems of linear equations used by DI are computed 
faster than the gradient descent performed by BP. The most 
important contribution of DI, however, is that the search for 
the appropriate parameters is eliminated and an appropriate 
network architecture is an output of the algorithm, not an input. 

The two neural-network approximations to function (19) 
were tested by choosing 126 values of u1 evenly spaced 
between zero and 47r. The results are shown in Fig. 3. The 
20 training patterns are marked with “0”s on the graph, 
and the corresponding learned responses to these patterns are 
marked with “x”s. Table I11 shows that DI computed a better 
approximation for the 126 test patterns as well as the training 
set of 20 patterns while requiring much less training time. 

A training set for function (20) is created by generating 
200 uniformly distributed random values of u1 and uz and 
calculating the associated values of d l  and dz. The training set 
for function (21) contains 2000 patterns. DI derived a lower 
error solution almost 300 times faster than BP for function 
(20) and 10 times faster for function (21), despite the fact 
that DI must deal with very large matrices to construct the 
network for function (21). The number of hidden-layer neurons 
used by BP was kept low while approximating function (21) 
due to an excessively long training time that did not yield a 
corresponding decrease in error. 

Fig. 4(a) and (b) shows the results of testing the approxi- 
mations of function (20) with u1 and uz set to parameterized 
functions of t ,  which takes on 100 evenly spaced values within 
the input range. Fig. 4(c) and (d) show, the results of testing 

the approximations of function (21). Table 111 shows that DI 
perfoms better on the test sets as well as the training sets. 

DI has been compared to BP because BP is a well-known 
algorithm and many neural-network researchers have expe- 
rience training feedforward networks with it. The results 
are intended to demonstrate the utility of DI by contrasting 
its training times with a training method that the reader 
knows to be slow and sometimes cumbersome. The results 
demonstrate that DI is, at the very least, a fast, effective 
method of developing the initial network architecture and 
weights from the given training data. Faster methods than 
BP for training neural-network function approximators are of 
course known to exist. One of these faster methods is Hecht- 
Nielsen’ s counterpropagation networks [7]. Counterpropaga- 
tion networks actually have a different network architecture 
than the kind discussed in this paper, and DI is a construction 
technique while counterpropagation is a training method like 
BP, but because counterpropagation networks are known to 
converge quickly, DI was compared to them anyway. Forward- 
only counterpropagation based on an algorithm described in 
[5] was implemented on the same computing platform used to 
test DI and BP. The output of the counterpropagation networks 
was formed using a linear interpolation of the hidden-layer 
units in a neighborhood of the winning unit, rather than 
using strict winner-take-all. In all of the examples above, DI 
constructed a feedforward network that achieved less error in 
less time than could be produced using counterpropagation. 
Because counterpropagation networks are a kind of adaptive 
lookup table, the error produced by a counterpropagation 
network can be made very small as the number of hidden 
neurons approaches the number of training patterns. In this 
case, however, the training can take a considerably longer 
time. When counterpropagation was constrained to use the 
same number of hidden-layer neurons as DI, DI was able to 
construct a better network approximator in 5-20% of the time 
required by counterpropagation. Empirical evidence from these 
examples suggests that DI requires fewer neurons to produce 
a network with similar error, and it produces networks in less 
time than that needed by counterpropagation training. Fur- 
thermore DI is a construction (rather than training) technique, 
and it uses the standard feedforward network architecture that 
may be further modified by established gradient training and 
pruning techniques. 

B. Increased Tolerance and Recomputed Weights 
Hardware and/or memory restrictions may limit the number 

of hidden layers or hidden-layer neurons that may be used in 
a particular neural network. Section 111-C mentions that it is 
possible to decrease the number of hidden neurons created 
by the DI algorithm by increasing the tolerance, cP,  used 
to check whether or not a pattern should be included in 
a set of “linearly dependent” patterns. Unfortunately as the 
parameter ep is increased and the number of hidden-layer 
neurons decreases, the overall error of the network tends to 
increase. The increase in network error can be combated by 
recomputing the weight mztrix g (see Algorithm 1) for the 
entire set of linearly dependent patterns after this set has been 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



MOODY AND ANTSAKLIS: DEPENDENCE IDENTIFICATION NEURAL NETWORK 

I, Glpl- 

- - M m  I 

I 

~ 

7 

OlllPnJlpll 
0.4 . . . . . . , . . 

03 

01 

d a1 

0 

4 1  

Ill 

Fig. 4. Testing results of the network approximations. 

found. Fig. 5 shows how the number of hidden-layer neurons 
decreases as the tolerance cp  is increased from 0.05 to 5.00. 
The training pattems are for the sine wave approximation 
problem from Section IV-A function (19) and the network 
is constrained to have three layers3 (hmax = 3). Note that in 
this example the DI algorithm determines linear dependence 
on the basis of the quadratic error cost, i.e., it is checking 
whether or not ug = U instead of (a(ug) = d. This allows 
the error tolerance to be increased past ep = 2 up to eP = 5. 
In Section IV-A the dependence judgments were based on 
the nonlinear, not the quadratic check. Fig. 5 shows that the 
number of hidden-layer neurons can be successfully decreased 
with and without the recomputation of the weights. The reason 
the number of hidden-layer neurons is different when the 
weights are recomputed is that a three-layer network is being 
constructed. The inputs produce a set number of neurons in 
the first hidden layer dependent on c p  only, not on whether 
the weights are recomputed. The recomputation of weights 
produces different hidden-layer activations (outputs) than those 
produced when the weights are not recomputed. Thus the 
second hidden layer may have a different number of neurons 
when the weights are recomputed since the inputs to the second 
hidden layer are different. 

Fig. 6 shows how the overall error of the network varies 
as the tolerance is increased. Network errors are calculated 
with (2). The figure shows how recomputing the weight matrix 
helps to keep the overall error of the network from blowing 
up. It also shows that there is no simple relationship between 

3The networks in Section IV-A have two layers. 

11 

I 

OS 

0.6 

0.4 

02 

B o  
01 

4.4 

06 

ac 

' 0  I 2  3 4 S 6 7 

I 

0 

0. I 

a! dl & 03 QA d6 d7 0.1 d9 

U1 

Tolerance 

Fig. 5. Decrease of hidden-layer neurons due to increased tolerance e p .  

the overall error and the tolerance e p .  For example, when ep 
increases from three to four, the overall error when the weights 
are not recomputed actually decreases from about 9.2 to 3.2. 
The trend, however, is that the recomputation keeps the error 
down. The average error for the 14 different tolerances used 
in the figure is 3.47 when the weights are not recomputed and 
1.25 when they are. It is possible that an error of 1.25 may 
be higher than the degree of approximation accuracy required 
for a particular problem. The next section shows how DI can 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



12 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 1, JANUARY 1996 

niaining Method 

“0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Tolerance 

Fig. 6.  Overall network error versus increased tolerance cp .  

Correctly Classified 
Patterns 

W EROI 

I B P  with initial conditions from DI I 62 I 3.12% I 
Dependence Identification 1 47 I 26.56% 

B P  with random initial conditions I 30 I 53.12% 

be used to identify an appropriate network architecture and set 
of initial conditions that will allow BP to quickly decrease the 
overall network error. 

C. DI for BP Initial Conditions 
BP is typically sensitive to initial conditions and there are 

some problems that are inherently very difficult for it to solve 
due to a large number of local minima and relatively flat 
sections of the cost function. One of these difficult problems 
is the parity checker [23]. This example is presented to 
illustrate how DI and iterative gradient techniques like BP 
can compliment each other and cooperate to solve a problem 
that is difficult for either method to solve independently. 

A parity checker receives a number of Boolean inputs. In 
this example, the Boolean values are 1 and -1. The parity 
checker has one Boolean output that should be 1 when there 
are an odd number of 1’s at the input and -1 when there 
are an even number of 1’s at the input. A six-input parity 
checker is used in this problem. The number of network inputs 
is seven because one input is constant and is used to create 
biases. The number of training patterns is 64, which includes 
all possible combinations of six Boolean inputs (a6 = 64). DI 
is used to find an appropriate two-layer network architecture 
of 7-7-1. Networks are then trained using BP with random 
initial conditions and with the initial conditions obtained from 
DI. Table IV shows the results. Patterns are considered to be 
identified correctly if the network has the proper sign, i.e., a 
desired output of 1 is classified correctly if the network output 
is positive and a desired output of -1 is classified correctly 
if the network output is negative. The entry for “% Error” is 
calculated as the number of missed patterns divided by 64. 

0’ I 
x lo’ 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Iterations 

Fig. 7. Network error versus BP iterations for the parity checker problem. 

The table shows that, by itself, DI does not produce a very 
successful solution to the problem. The initial conditions it 
produces, however, are quite good for improving the network 
with BP, bringing the error down from about 27% to just over 
3%. When random initial conditions are used, BP is completely 
unsuccessful in learning the problem, misclassifying more than 
half of the input space. 

Fig. 7 shows how the error decreases with the iterations 
of BP. When initial conditions from DI are used, the error 
decreases from about 45 to level off around eight. Random 
initial conditions start out with a high error, and each iteration 
of BP causes an extremely small change in the overall error. 
The error curve for random initial conditions (IC’s) looks like 
a straight line with error 64 on the graph, but a magnification 
would show that the error is slowly going up and down by very 
slight amounts. The random initial conditions occur in an area 
of the cost function with a very small slope and probably near 
a local minimum since the curve goes up and down, instead of 
steadily down. The graph shows 200 000 iterations. The actual 
training was continued for 1 000 000 iterations with no change 
in the behavior of the curve with random initial conditions. 

V. CONCLUSIONS 
A new method of constructing feedforward multilayer neu- 

ral networks has been presented, and examples show that 
it works well for creating neural-network approximations of 
continuous functions as well as providing a starting point for 
further BP training. The data from Section IV-A suggest that 
DI has good generalization properties, however, no formal 
analysis of this was done and this is a topic for future research. 

DI is a faster and more systematic method of developing 
initial network architectures than trial and error or gradient- 
based pruning techniques. It is not intended to replace iterative 
training or pruning methods, as these algorithms can be applied 
to further refine networks that have been generated with DI. 
Network size and construction time are conserved since DI 
builds a small network up instead of whittling a huge network 
down, and because it relies on the ability to solve fast linear 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



MOODY AND ANTSAKLIS: DEPENDENCE IDENTIFICATION NEURAL NETWORK 

- 

13 

equations instead of ponderous gradient descents. The systems 
of linear equations are actually a product of the single-layer 
neural-network training method of quadratic optimization. It 
would be possible to implement DI with some other single- 
layer training algorithm, though quadratic optimization is 
recommended because of its speed compared to techniques 
involving nonlinear gradient descent. 

DI relaxes the constraint that neural activation functions 
be continuously differentiable, and it determines the number 
of hidden-layer neurons and layers as part of its operation. 
DI does not require trial and error with learning rates like 
BP does. There may well be situations with specific applica- 
tions where DI indicates a number of hidden-layer neurons 
that can not be physically implemented (due to memory or 
hardware constraints). The number of hidden-layer units can 
be decreased by increasing the tolerance cp  in Algorithm 1. 
The number of layers can also be limited with the parameter 
hmax. The speed of DI makes it appropriate for creating neural- 
network architectures and initial weight values to be used in 
real applications. 

APPENDIX 

A, Error Cost Function Examples 
In this Appendix, three examples are presented that explore 

and illustrate the relationship between the original single-layer 
nonlinear minimization problem and the transformed quadratic 
optimization problem. It is possible to obtain good solutions 
to the original problem even when quadratic optimization 
provides significant errors. This is accomplished by working 
in the “flat” regions of the sigmoid. 

Consider a single-layer two-inputJone-output neural network 
with d(x) = tanh(x). The network is capable of realizing 
functions of the following form exactly 

y = tanh (u1wI + ~ 2 ~ 2 ) .  

The following examples will explore the differences between 
the nonlinear and quadratic cost functions when the network is 
trained to approximate a function that can be realized exactly, 
that has no exact solution, and that has infinite solutions. 

B. Unique Zero Error Solution 
The network is to be trained to realize the following function 

d = tanh (2ul + 3u2) 

which has an exact solution at W* = [2 3IT. The following 
10 pattern U and D matrices are created 

U =  

- 1.4052 
- 2.2648 

0.8943 
0.8965 
2.1735 

0.0971 
1.6548 

-0.5825 

-2.3271 
-2.2327 

0.1485 
0.8557 

-2.4615 
-0.5829 
-2.1658 
-0.4126 

0.9339 
0.4449 
2.1522 
1.7308 

D =  

-0.9825 
-0.9613 
-1.0000 

0.0443 
-0.9732 

0.9950 
0.9998 
0.9471 
0.6212 

- 0.9838 

0 0  w2 

Fig. 8. Quadratic cost function with a unique zero error solution. 

0 0  w l  

Fig. 9. Nonlinear cost function with a unique zero error solution. 

Fig. 8 shows the error described by the quadratic cost 
function (6). The “*” on the graph at coordinates (2, 3) 
represents the global minimum that corresponds to ? = 0 with 
solution W*. The previous section demonstrated when i = 0 
then the solution W* will also cause E = 0. This is indeed the 
case as can be seen in Fig. 9, which shows the nonlinear error 
cost function described by (9). Notice the highly nonlinear 
nature of the surface shown in Fig. 9. This demonstrates that 
even with extremely simple networks, the actual nonlinear cost 
function can be quite complicated. 

C. No Exact Solution 
In this example, the network can not realize the desired 

function exactly, but can only approximate it. The desired 
function is 

d = 0.9 tanh (2ul + 3 ~ 2 ) .  

The same U matrix defined in (22) is used and the correspond- 
ing new D matrix is created. Fig. 10 shows the quadratic error 
function. The minimum4 is given by I&* = [0.75 1.25IT. 
This minimum is marked by a “Q” on the graph. The minimum 
for the actual (nonlinear) problem is at W = [1.25 2IT and is 
marked with an “N” on the graph. The nonlinear cost function 
is shown in Fig. 11 with the two minima marked as above. 

4The weights in these examples are only computed at intervals of 0.25, 
thus the actual minimizing weights for the two cost functions may be slightly 
different than the values given. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



14 

'0.5093 - 
0.6894 
0.0320 
0.9968 
0.3725 
0.4510 
0.2851 
0.1041 
0.4561 
0.7944- 

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 1, JANUARY 1996 

--1.4052 
-2.2648 

0.8943 
0.8965 
2.1735 

0.0971 
1.6548 

-0.5825 

-2.3271 
_- 2.2327 

800 

Mx1 

5 

8 
8400 m 

5400 

5 

200 600 

0 
8 

m 
0 

w2 

Fig 10. 
minimum, N = Nonlinear minimum 

Quadratic cost function with no zero error solution. Q = quadratic 

Fig. 12. Quadratic cost function with infinite zero error solutions. 

--1.0000 
- 1 .0000 

0.9997 
0.9997 
1.0000 

-0.9941 
0.4506 
1.0000 

-1.0000 
--1.0000 

w2 0 0  

Fig. 11. Nonlinear cost function with no zero error solution. 
Q = quadratic minimum, N = Nonlinear minimum. 

Fig. 13. Nonlinear cost function with infinite zero error solutions. 
The derivative values corresponding to the solution of the 

quadratic function are given by 

@'(U@*) = 

however, now the U matrix is changed such that both columns 
are identical. The U and D matrices are now 

U =  

- 1.4052 
-2.2648 

0.8943 
0.8965 
2.1735 

0.0971 
1.6548 

-0.5825 

-2.3271 
-2.2327 

D =  

which are not in general near zero, and indicate why the 
solution to the quadratic problem is not nearer to the solution 
of the nonlinear problem. 

This network has infinite solutions, along the line w1 + w2 = 
5. Figs. 12 and 13 show the quadratic and nonlinear cost 
functions, respectively. The quadratic cost function has the 
same line of zero errors as the nonlinear cost. 

A possible, and likely, solution to this problem is I@* = 
[2.5 2.5IT. This is a valid solution to the problem for the 
particular matrix U ,  but note that the desired function defined 
at the beginning of this section has an associated weight 
matrix of W = [2 3IT (23). If the desired function were 
really d = tanh ( 2 ~ 1  + 3u2) and u1, and u2 were allowed to 
have different values, then we would have found an incorrect 

D. Infinite Exact Solution 

solutions to the problem. The desired function is again 
In this example, there are an infinite number of possible 

d = tanh (2ul + 324) (23) 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.



MOODY AND ANTSAKLIS: DEPENDENCE IDENTIFICATION NEURAL. NETWORK 15 

solution, not because of some flaw with the training method 
but because of an unwise choice of U.  

The examples above have shown that the method of 
quadratic optimization will solve the single-layer neural- 
network training problem exactly if at least one exact solution 
exists. This’is even the case when the nonlinear error cost 
function is highly irregular or has large flat regions that would 
hinder gradient descent techniques. An example has shown 
that when an exact solution to the problem does not exist, 
then quadratic optimization can come close to the optimal 
solution, but it will probably not achieve it exactly. The third 
example demonstrated that care must be taken when choosing 
the set of training patterns so that the training data accurately 
reflect the kinds of inputs the trained network will receive. 
This situation is not unique to quadratic optimization but is 
present for all training algorithms. 

REFERENCES 

E. B. Baum, “On the capabilities of multilayer perceptrons,” J. Com- 
plexity, vol. 4, pp. 193-215, 1988. 
D. Chester, “Why two hidden layers are better than one,” in Proc. Int. 
Joint Con$ Neural ketworks, 1990, pp. 265-268. 
G. Cybenko, “Continuous value neural networks with two hidden layers 
are sufficient,” Math. Contr. Signals Syst., vol. 2, pp. 303-314, 1989. 
H. C. Elman, “Iterative methods for large sparse nonsymmetric systems 
of linear equations,” Ph.D. dissertation, Comput. Sci. Dep., Yale Univ., 
New Haven, CT, 1982. 
L. Fausett, Fundamentals of Neural Networks-Architecture, Algorithms, 
and Applications. 
M. Frean, “The upstart algorithm: A method for constructing and 
training feedforward neural networks,” Neural Computa., vol. 2, pp. 

R. Hecht-Nielsen, “Counterpropagation networks,” Appl. Optics, vol. 
26, no. 23, pp. 4979-4984, 1987. 
J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theoly of 
Neural Computation. 
G. E. Hinton, “Learning distributed representations of concepts,” in 
Proc. 8th Annu. Con& Cognitive Sci. Soc., 1986. 
K. M. Hornik, M. Stinchocombe, and H. White, “Multilayer feedforward 
networks are universal approximators,” Neural Networks, vol. 2, pp. 
359-366, 1989. 
L. K. Jones, “Constructive approximations for neural networks by 
sigmoidal functions,” Proc. IEEE, vol. 78, no. IO, pp. 1586-1589, 1990. 
D. Kincaid and W. Cheney, Numerical Anal. Monterey, CA: 
BrooksKole, 1991. 
A. H. Kramer and A. Sangiovanni-Vincentelli, “Efficient parallel learn- 
ing algorithm for neural networks,” in Advances in Neural Information 
Processing Systems I, D. S. Touretzky, Ed. San Mateo, C A  Morgan 
Kaufmann, 1988, pp. 40-48. 
M. Marchand, M. Golea, and P. Rujin, “A convergence theorem for 
sequential learning in two-layer perceptrons,” Europhysics Lett., vol. 
11, pp. 487-492, 1990. 
M. MBzard and J.-P. Nadal, “Learning in feedforward neural networks: 
The tiling algorithm,” J. Physics, vol. A, no. 22, pp. 2191-2204, 1989. 
J. 0. Moody, “A new method for constructing and training multilayer 
neural networks,” Master’s thesis. Dep. Electrical Engineering, Univ. 

Englewood Cliffs, NJ: Prentice-Hall, 1994. 

198-209, 1990. 

Reading, MA: Addison-Wesley, 1991. 

Notre Dame, IN, 1993. 
N. J. Nilsson, Learning Machines. 
F. Rosenblatt, Principles of Neurodynamics. 

New York McGraw-Hill, 1965. 
New York Spartan, 1962. 

[ 191 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal 
representations by error propagation,” in Parallel Distributed Process- 
ing: Explanations in the Microstructure of Cognition, vol. I :  Foundation, 
D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT 
Press, 1986, pp. 318-362. 

[20] M. A. Sartori and P. J. Antsaklis, “Neural network training via quadratic 
optimization,” in Proc. ISCAS, San Diego, CA, May 10-13, 1992, and 
Tech. Rep. 90-05-01, Dep. Electrical Comput. Eng., Univ. Notre Dame, 
revised Apr. 1991. 

[21] -, “A simple method to derive bounds on the size and to train 
multilayer neural networks,” IEEE Trans. Neural Networks, vol. 2, no. 
4, pp. 467-471, July 1991. 

[22] R. Scalettar and A. Zee, “Emergence of grandmother memory in 
feed forward networks: Learning with noise and forgetfulness,” in 
Connectionist Models and their Implications: Readings from Cognitive 
Science, D. Waltz and J. A. Feldman, Eds. Norwood, M A  Ablex, 

[23] G. Tesauro and B. Janssens, “Scaling relations in backpropagation 
1988, pp. 309-332. 

learning,” Complex Syst., vol. 2, pp. 39-44, 1988. 

John 0. Moody (S’90) received the B.S. and M.S. 
degrees in electrical engineering in 1991 and 1993 
from the University of Notre Dame, IN, where he 
is currently pursuing the Ph.D. degree. 

He has worked as an engineering intern for the 
Bendix Engine Controls Division of the Allied Sig- 
nal Aerospace Company. His research interests in- 
clude neural network construction and architec- 
ture, parallel computing, and autonomous, intelli- 
gent control systems. 

Mr. Moody is a member of Eta Kappa Nu and 
Tau Beta Pi. 

Panos J. Antsaklis (S’74-M’7&SM’86-F‘91) re- 
ceived the Diploma in mechanical and electrical 
engineering from the National Technical University 
of Athens (NTUA), Greece, in 1972 and the M.S. 
and Ph.D. degrees in electrical engineering from 
Brown University, Providence, RI, in 1974 and 
1977, respectively. 

He is currently Professor of Electrical Engineer- 
ing at the University of Notre Dame. He has held 
faculty positions at Brown University, Rice Univer- 
sity, and Imperial College, University of London. 

During sabbatical leaves, he has been Senior Visiting Scientist at LIDS of 
MIT in 1987 and at Imperial College in 1992; he also was Visiting Professor 
at NTUA Greece in 1992. His research interests include multivariable system 
and control theory, hybrid and discrete event systems, neural networks, and 
autonomous, intelligent, and learning control systems. He is co-Editor with 
K. M. Passino of “An Introduction to Intelligent and Autonomous Control,” 
(Kluwer, 1993). 

Dr. Antsaklis was the Program Chair of the 30th IEEE CDC in England in 
1991 and has been Associate Editor of IEEE TRANSACTIONS ON AUTOMATIC 
CONTROL and IEEE TRANSACTIONS ON NEURAL NETWORKS. He was the Guest 
Editor of the 1990 and 1992 special issues on “Neural Networks in Control 
Systems” and of the 1995 special issue in “Intelligent Learning Control” in the 
IEEE Control Systems Magazine. He has served as the General Chair of the 
1993 8th IEEE International Symposium on Intelligent Control in Chicago and 
of the 1995 34th Conference on Decision and Control in New Orleans. He is 
an elected member of the IEEE Control Systems Society Board of Govemors 
and Vice President Conferences for 1994-1995. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 7, 2009 at 11:27 from IEEE Xplore.  Restrictions apply. 

J. O. Moody and P. J. Antsaklis, "The Dependence Identification Neural Network Construction Algorithm,” 
Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-93-005, 
Univ of Notre Dame, August 1993. Also in I EEE T ransactions o n N eural N etwork s , Vol 7, No 1, pp. 3- 
15, January 1996.


