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was  sufficiently  large. A similar design  procedure for discrete-time 
systems is developed in [;1. Finally, the decomposition  is applicable to 
design  criteria other than eigenvalue  locations and output feedback 
problems. 
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On the Dimensions of the Supremal ( A ,  B)-Invariant 
and Controllability Subspaces 

P. J. ANTSAKLIS AND T. W. C .  WILLIAMS 

Ahtmct- l le  dimensions of tie sup& output-nulling (A,B)- 
m v h t  and COntroIlability subspaces of a system are explicitly de- 
termined The role of the input and output decoupling zeros h also tlisasd. 

INTRODUCTION 

Among the key concepts of the  geometric  approach [3] are the 
concepts of the supremal  output-nulling ( A ,  B)-invariant and controlla- 
bility  subspaces  [2] P and R*,  respectively. Their dimensions  have been 
explicitly  determined in [I] to be functions of the order n of the system, 
the number of zeros q and d,, and the degree of the determinant of a 
polynomial  matrix  derived from the transfer matrix T(s). The assump 
tions made in [ I ]  of the system beiig completely controllable and T(s) 
having full rank are relaxed  here and it is shown that the same formulas 
are valid in the general  case  (Theorem 1 and Lemma 4). This is done by 
establishing  the relation between R* and  the supremal  controllability 
subspace of: 1) a controllable subsystem (Lemma 2), and 2) a subsystem 
with  a  transfer  matrix of full rank (Lemma 4). In addition, the role 
played  by the input and output decoupling zeros is discussed  (Corollary 
3) and their  importance to the output stabilization problem is indicated. 

MAIN RESULTS 

Let S denote the system i=Ax+Bu; y=Cx+Eu where AERnXn, 
B€RnXm,  CERPXn,  and  EERPXm. Let T(s)=C(sI-A)-’B+E be its 
transfer matrix which  is assumed to be of full rank, i.e., rank T(s)= 
W P ?  m)- 

A subspace V of the state space  is an output-nulling invariant sub- 
space [2] if and only if 

or, equivalently, if and only if for some F 

(A+BF)VcVcker(C+EF) (1) 
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where Im and ker are the image and the kernel of linear maps. Let vf be 
the supremal  output-nulling invariant subspace. The supremal output- 
nulling  controllability subspace R* is defined by [2]’ 

R*=(A+BPl@n V * )  (2) 

where V* and E* satisfy (1) and 4 is the range of the map B restricted to 
kerE, i.e., B is spanned by the columns of BG, where  the c o l u m n s  of GI 
span  ker E. If E=O, V* and R* are the supremal  (A, B)-invariant and 
controllability  subspaces in ker C. In the following, V* and R* will be 
referred to as the q r e m a l  (A, B)-imariant and conirollabili@ subqmces, 
respectively. 

If the given  system S is  completely controllable, then the dimensions 
of V* and R*  can be explicitly  determined [l] as functions of n, the 
order of the system; q, the number of zeros; and d,, the  degree of the 
determinant of a  polynomial  matrix X ( s ) ;  these quantities are defined 
below for completeness. 

The q zeros of S (also called invariant zeros) are those zi (multiplicity 
included) for which 

X ( s )  is a p x p  polynomial matrix such that X(s)T(s) has a proper 
right  inverse ( p  < m).  i.e., 

lim X(s)T(s)=K,:  rank K,=p. (4) 
s+m 

Then d, 2 degree (det X(s)).  Note that in [I] X ( s )  was taken to be 
the “interactor,” a  matrix  with special structure satisfying (4) and 
uniquely  defined via a  known  algorithm. It should  be noticed that if S 
can be decoupled via linear state feedback,  then  d, is the sum of the 
“decoupling indices” of S [I]. The main theorem of this paper can now 
be stated. 

Theorem I :  dim P =q+dim R* where dim R* is: 1) zero whenp > m, 
and2)n-q-dTwhenp<m.* 

Proof: If the  system S is completely controllable, then the theorem 
is true as has been shown in [I]  (see Theorem 11 and remarks  preceding 
the example).  Before the general case can be shown to be  true,  several 
properties  must be proved. 

Assume that the  system S is not completely controllable. Then its 
state-space representation can be  reduced to 

where the system S,: {Ac, B,, C,, E }  is completely  controllable. 

ity subspaces of S,. 
Let V,* and R: denote the supremal (A, Bkinvariant and  controllabil- 

Lemma 2: dimR*=dimR:. 
Proof: Equation (2) can be  written as R* =(A +BPIan V*n 

(AIQ)).Notethat  V*n(AIQ)=span  withspantg’=~ascan 

be easily  seen  by  restricting the system to the controllable subspace and 
u s i n g ( 5 ) . N o w R ~ = ( A c + B , ~ ~ ~ , n V , * )  whichimpliesthat%*=span ( z )  with span r,‘ = R:; therefore,  dim R* =dim R:. Q.E.D. 

The system S, is  completely controllable; therefore, dim Rr(=dim R* 1 
can be  expressed [I] as a function of the order n, of &(A, €GjLnCx”c), q,, 
the number of invariant zeros of S,, and dT which is derived from the 
transfer matrix T(s) ( S  and S, have the same transfer matrix). In order 
to complete the proof  of the theorem,  the relations between n ,  q and 
nc, qc must be established. The order and the zeros of S and S, are 
related  via the input decoupling  zeros  defined below. 

(5) 

ZNote that n-q-d,-Owhenp=m. 
‘<AI%) %+A%+ ... +A”-’%. 
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The I iqmt-decoupling zeros (i.dz.) of S are those zi (multiplicity 
included) for which rank[zi -A,  B]<n [6]. They  correspond  to  the I 
uncontrollable  eigenvalues of S. It is therefore  clear that 

n=n,+I. (6) 

Let I ,  denote the number of  i.d.2.  which are invariant zeros of S. 
Consider the composite  matrix P(s) and notice that if p < m ,  all of the I 
i.dz. zi reduce  the normal (n+p) row rank of P(s). Therefore, in view  of 
(3), whenp < m, all i.d.z.  of S are invariant zeros as well,  i.e., l=l, .  When 
p>m, l > l z  

The invariant zeros of S, are all of the invariant zeros of s except 
those  which  correspond to uncontrollable modes, that is, except  those 
which are i.dz 

4=4 ,+L .  (7) 

The proof of the  main  theorem can now  be  completed. 
Proof of Theorem 1 (Continued): It is clear, in view  of the above, that 

dimR*=dimR: is: 1) zero whenpsm, and 2) n , - q , - d , = ( n - l ) - ( q  
-I,)-d,=n-q-d,whenp<m. Note also that d i m P = q + d i m R *  is 
true for a  system not necessarily controllable [4]. Q.E.D. 

Theorem 1 gives the dimension of VL and R* explicitly in terms of the 
order n ,  the number of zeros q. and d,, a quantity which depends only 
on the transfer matrix or the controllable and observable part of the 
system. If the linear state feedback control law u= PX+O [ s e e  (1) and 
(211 is applied to S ,  dim V* modes will be hidden from the output (they 
become  unobservable) and this is the maximum  possible  number of 
modes  with this property; dim R* of these  modes  is arbitrarily assigna- 
ble, while the rest  coincide  in  value  with  the q invariant zeros of S [l]. 
One can go  one step further and determine  which ones of the uncontrol- 
lable and/or unobservable  eigenvalues can be arbitrarily assigned and 
which ones remain  fixed in the process. This is done by determining  the 
relation  between  the  supremal ( A ,  B)-invariant  and  controllability sub- 
spaces of S and  the  corresponding  subspaces of the systems obtained 
from S by isolating the controllable  part, the observable part, or the 
controllable and observable part. 

The  controllable  subsystem S, : {A, ,  Be, C,, E )  has been defined al- 
ready. In a  similar  way, the observable part of S can be  isolated and the 
subsystem h: ( A o ,  Bo, q, E }  is defined. The controllable and observa- 
ble subsystem Sco: {A,,,  Bco, Cco, E )  can be derived  by,  say,  taking  the 
observable part of S,. 

In addition to the order nc ,  no, n,, and the number of invariant zeros 
qc, qo, qco of S,, So, and Sc0,3 respectively,  we shall  need the input, 
output, and input-output decoupling  zeros 161. 

The I iqwt-&cqling zeros ( idz . )  have already been defined  above. 
The r ourput-decoqling zeros (o.dz.) of S are those zi (multiplicity 

included) for which rank[zj-AT,CTlT<n. They  correspond to the r 
unobservable  eigenvalues of S.  The  k  values zi which are common 
between the i.d. and 0.d.  zeros are the k input-ouput &coupling zeros 
(io.&.) and they correspond to those (k) eigenvalues of S which are 
both uncontrollable and unobservable. 

Let r, and k, denote the number of 0.d and i.0.d. zeros  which are also 
invariant zeros of S ,  respectively.  Proceeding in a  similar fashion as for I 
and l z ,  it can be  shown that forp>m, r=rz and r s r ,  forp<m. These 
relations  together  with l= l ,  for p G m and I > I ,  for p > m  imply that 
k = k,  always.  Summarizing, 

for p < m  1-1, r>rz k=k, 
p = m  I = I ,  r=r, k=k, (8) 
p>m I>I, r=rz k=k,. 

It is not difficult to see that the  following  relations  among the order of S, 
S,, So, and Sco are satisfied. 

n=n,+I=no+r=nco+l+r-k. (9) 

Furthermore, the  number of invariant zeros are related  by [see also 
(31 

from T(s). 
"he invariant zeros of Sco are the aansmission zems of Sand they can also found 

( p > m )  dimv*=q=qco+Iz+rr-k ,=dimV,+,+(I ,+r-k)  

d imR*=O=dimR:o=dimR:o+(r-rz )  

(p<m) d i m V f = n - d T = ( n c o - d T ) + ~ + r - k = d i m ~ o + ( I , + r - k )  

d imR*=dimvf -q=d imv*- (qco+Iz+rz -k , )=d imR~,+(r - r z ) .  

The remaining  relations are proved in a  completely adogous fashion. 
Q.E.D. 

If the  given  system S is  completely controllable @ut not neceSSarily 
observable),  then I=l,=k=k,=O  and dimvf=dimY,+r, dimR*= 
dim R:, + ( r -  rr ) which are the relations derived  in [I]. 

Corollary 3 suggests that when  the control law u = F l x + o  is used [ s e e  
(1) and (2)], in  which case the maximum possible  number of eigenvalues 
becomes  unobservable, only the unobservable eigenvalues  which do not 
correspond to invariant zeros,  i.e.,  only r-rz eigenvalues among the 
uncontrollable and/or unobservable  eigenvalues can be arbitrarily 
changed. (Note that r - r, is nonzero  only  when p < m.) The remaining 
( I ,  + rr - k)  uncontrollable and/or unobservable  eigenvalues  become  un- 
observable  without changing their  value. Note that the (I- I,) uncontrol- 
lable eigenvalues  which do not correspond to invariant zeros do not 
become  unobservable (note that I -   I ,  is nonzero  only  when p > m ) .  This 
can be  explained as follows. An uncontrollable eigenvalue will remain 
fixed  in  value and uncontrollable under linear state feedback; however, 
this type of compensation can affect the direction of the corresponding 
eigenvector and make the eigenvalue  unobservable. It is easy now to see 
that when zi is both an uncontrollable and unobservable  eigenvalue  (it 
corresponds to an i.0.d.  zero), it must be an invariant zero of the system 
as well. Therefore,  only the I ,  uncontrollable eigenvalues can become 
unobservable. 

It is thus clear that i f p  > m and some of the  uncontrollable  eigenvalues 
which do not coincide  with invariant zeros are undesirable, then linear 
state feedback  compensation cannot be used to 'Tide"  these  modes from 
the output. This gives a  nonsolvability condition for the output stabiliza- 
tion  problem  using  linear state feedback since, as it is known, all the 
controllable eigenvalues can be arbitrarily altered, while the unstable 
uncontrollable eigenvalues  (which  remain  fixed) can only  become, at 
best, unobservable from the output. 

Theorem I was derived  under  the assumption that the transfer matrix 
T(s) is  of full rank m i n ( p ,  m).  In the following,  the  dimensions of vf 
and R* of a  system  which  does not satisfy this assumption will be found. 

Let T ( s ) = C ( s Z - A ) - ' B + E  and rankT(s)=p<min(p,m). T(s) is 
defined as a p X m rational matrix  -consisting of p linearly independent 
rows of T(s).  It is thus clear e a t  T ( s )  &_full row p itpd it is  the 
transfer matrix of the  system S: { A ,  B ,  C, E }  where C and E consist of 
the corresponding p rows  of C and E ,  respectively. 

Since f(s) has  full rank, Theorem 1 can be  applied to s and the 
dimensions of +e supremal ( A ,  B)-invariant  and  controllability sub- 
spaces vf and R* can be readijy  Cbtained. We-WiU now determine the 
relations  between V,', R* and v*, R* of S and S, respectively. 
Le- 4: R*=R*. 

Proo)? Let 
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kerP(s)=ker Z 

P(s)=ker(  )=ker[s-A, B]nker[O,T(s)] .  
0 T ( s )  

But  ker T(s)=ker f(s) since ( p - p )  rows of T(s) are-linearly dependent 
on the remaining p rows  which are exactly those of T(s). 

Consequently, 

ker P( s) = ker F-L) 

This imp!= that R*=R* since, as it can be shown  using  [5], kerP(s) 
and  kerl(s) defme q y  and all output-nulling controllability  subspaces 
of the  systems S and S. Q.E.D. 

Let i be the number of invariant zeros of s and notice that 4 depends 
on the choice of the p independent rows of T(s). Clearly,  now, 

d i m V . = q + d i m R * = q + d i m R * = d i m ~ + ( q - g ) ,  

that is, the system s can be used to determine the dimensions of V. and 
Ra of S. 

CONCLUDING RFMARKS 

The dimensions of V* and R* of a  system  were  explicitly determined, 
and they were  shown to be functions of the order of the  system, the 
number of invariant zeros, and the degree of the determinant of a matrix 
derived  from  the transfer matrix of the system. The role played by the 
invariant zeros as well as by the input and output decoupling  zeros was 
discussed and their importance to the output stabilization problem was 
indicated. 
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An Iterative  Method for Generalized 
Complementarity  Problems 

SHU-CHERNG FANG 

Abshoct-Given a genedizd complementarity problem @.e., com- 
plementarity problem over a cone), Habetler and Price introchrced an 
iterative method to solve it under the condilions that the m e  is solid and 
the firnetion is continuous and strongly eopositive on the cone. In this 
paper, we provide  an easier iterative method to solve this problem  provided 
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that the function is Lipscbitz continuous and stroogly monotoae on tbe 
(maybe n o d @  cone. A separate c o n s i d e r a t i o n  is given to polylwdrd 
cones. 

I. INTRODUCTION 
Given a closed  convex  cone  K in the n-dimensional  Euclidian space 

R", its dual cone  K* (i.e., the  set of all vectors y in R" such that the 
inner product ( x ,  y ) > 0 for all x in K) and a function j from K to R". 
The generalized  complementarity  problem is to find all solution  vectors 
x such that 

xEK,  f ( x ) € K *  

and 

( x , f ( x ) )  =o. (1) 

This problem was first introduced by Habetler and Price [q and later 
refined by Karamardian [9], [lo]. When K=RT (i.e., the positive orthant 
of R"), the problem  becomes the common complementarity  problem: to 
find solution  vectors x such that 

x > o ,  j (x)>O 

and 

( x , f ( x ) >  5 0 .  (2) 

Moreover,  when f has the form f( x )  = Mx + q where M is + given n by n 
matrix and q is an n-vector, the problem is called the linear complemen- 
tarity problem. A considerable number of authors have contributed to 
the computational algorithms for solving linear and/or nonlinear com- 
plementarity  problems. For example, see Cottle and Dantzig [3], Lemke 
[ll], [12], Merrill  [15],  Eaves and Saigal [4], and Fisher  and Gould [5]. 

Habetler and Price [7] introduced an iterative method to solve the 
generalized  complementarity  problem  when the cone  K is solid (i.e., K 
has interior points) and f is continuous and strongly  copositive on K. 
Their work is theoretically  correct, but is not so easy to apply. In this 
paper, we propose an applicable iterative method under the assumption 
that f is Lipschitz continuous and strongly  monotone on K  (maybe 
nonsolid). Then a separate consideration will be given to the case  when 
K is a  polyhedral  cone. 

11. PRELIMINARIES 

The well-known  result that a given generalized  complementarity prob- 
lem is equivalent to the corresponding variational inequality  problem 
can be stated in  the  following  theorem. 

Theorem I :  Given  a  closed  convex cone K and a function f from K to 
R n , x  is a  solution to the generalized  complementarity conditions (1) if 
and only if x is a solution to the corresponding variational inequalities. 

x E K  

and 

(x'-x,f(x)) > O  forallx'inK. (3) 

Proof: See Karamardian [9]. 
For a  given function f from K to Rn,  we  say that f is  strongly 

monotone on K if there is a scalar a > 0 such that 

( x . - x , f ( x ' ) - f ( x ) )  >allx'-xll* 

for each x', x in K. The following existence and uniqueness  theorem is 
given  by Mor& 

Theorem 2: For any generalized  complementarity  problem, if the 
function f is continuous and strongly monotone on the closed  convex 
cone K, then  there  is one and only one solution to the generalized 
complementarity conditions (1). 

Pro08 See Mor; [ 161. 

0018-9286/80/1200-1225$00.75 0 1980 IEEE 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:11 from IEEE Xplore.  Restrictions apply. 


