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Abstract  

Controllers capable of performing failure diagnosis have 
additional diagnostic outputs to detect and isolate sensor 
and actuator faults. A linear such controller is usually 
called a four-parameter controller. In this paper, a neural 
network model of a controller with diagnostic capabili- 
ties (CDC) is presented for the first time. This nonlin- 
ear neural controller is trained to operate as a traditional 
controller, while at the same time it provides reproduc- 
tion of the failure occurring either at the actuator or the 
sensor. The cases of actuator and sensor failures are stud- 
ied independently. Several simulation results concerning 
a nonlinear plant are provided. 

1. Introduction 

The four-parameter controller is a linear controller used 
for both control and diagnostics. It has an additional 
output that can be viewed as a diagnostic output, which 
is monitored to detect and isolate sensor and actuator 
faults. Therefore, in addition to attaining conventional 
control goals such as reference input tracking, the con- 
troller must also provide information about possible fail- 
ures that occur. A neural network model of the controller 
with diagnostic capabilities (CDC) is implemented here 
for the first time. This paper, which is a very brief ver- 
sion of [8], is based on work that was reported in [6]; some 
of this work was presented at [7]. Note that this neural 
network implementation is applicable to both linear and 
nonlinear systems, thus extending the applicability of the 
concept of the four-parameter controller. Here, the cases 
of actuator and sensor failures are considered separately, 
that is for each the assumption is made that only one kind 
of failure could occur. 

In section 2, a brief outline of the original linear CDC, 
the four-parameter controller, is presented and neural net- 
works are briefly discussed. In sections 3 and 4 a feedfor- 
ward multilayer neural network is used to implement the 
CDC controller for actuator and sensor failures respec- 
tively. Methods to emphasise either the control or the di- 
agnostic aspects of the CDC controller are also presented. 
Finally in section 5 ,  concluding remarks are discussed. 

2. Preliminaries 

The four-parameter controller, which is attributed to 
C. Nett, [ll], is a generalization of the familiar two- 
parameter linear controller. In the four-parameter con- 
troller literature, the control configuration of Fig. 1 has 
been studied extensively, where T is the command or ref- 
erence input to the controller, a is the diagnostic output, 
that is the output of the controller that is designed to 
reproduce the failures, yc is the ideal actuator input, ic 
is the manipulated controller input, n, and ns are exoge- 
nous inputs which account for unmodelled signals that 
inevitably appear at the actuator and sensor respectively, 
U is the actual actuator output, y is the ideal sensor input, 
z is the unutilized plant output, and w is the disturbance. 

The exogenous inputs n,, n, represent the deviations from 
the ideal sensor and actuator outputs and are defined as 
n, = fa+$ and n, = f s + q  respectively, where fa, fs rep- 
resent the failures in the actuator and sensor and q', q the 
respective noises. We can now specify the objective of the 
introduction of the additional controller output a,  which 
is to be able to identify and reproduce F at a, where we 
define F = ( fz f T ) T .  This is the diagnostic objective. 
The control objective is to achieve set point tracking, that 
is follow or track the reference input r at the plant output 
t and at the same time reject the unmeasured disturbance 
w at the plant output t. These requirements have to be 
satisfied in the context of plant modelling errors. It has 
been shown that the above requirements lead to certain 
conflicts; details can be found in [4]. Several applications 
of the four parameter controller have been reported; see 
[51, [91, [121, ~ 4 1 .  

An artificial neuml network (ANN) is made up of many 
parallel elements, called neurons, which can be described 
by a standard nonlinear algebraic or differential equation, 
and are interconnected via adaptive multiplicative param- 
eters, called weights. The type of neural network used 
here is the feedforward multilayer neuml network. Such 
a network is made up of any number of layers with any 
number of neurons in each of these layers. A popular 
learning heuristic for multilayer feedforward neural net- 
work is the back propagation algorithm (BP); details can 
be found in any book on neural networks, as in [2]. Neural 
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Figure 1: Four-parameter controller: general controller 
and restricted plant 

networks have been used to detect and identify failures, 
especially in chemical processes; see [6], [8] and references 
therein. Neural networks have extensively been used in 
control systems; see [l], [6], [13]. 

3. Actuator Failures 

3.1. Introduction 
In this section we assume that we have only actuator fail- 
ures. Our task is to train and test a neural network model 
of the CDC controller, that will have the following task: 

"to achieve set point tracking, that is to follow the refer- 
ence input T at the plant output ypl and also to isolate 
the actuator faults and reproduce them ut the diagnostic 
output uact.n 

It is common in the failure diagnosis research work to 
establish an upper limit-bound, so that an alarm signal 
is activated, when this limit is exceeded. Although this 
limit can be defined theoretically in many possible ways, 
depending on the theory that one uses, H, for instance, 
it is basically quite arbitrary, since each theoretical foun- 
dation relies on specific assumptions, which are usually 
arbitrary themselves. In practice, this safety limit is given 
by the designer and its value designates the magnitude of 
failure that can be tolerated in each specific case. There- 
fore, it appears more reasonable and realistic to try to 
reproduce the failure as accurately as possible, and then 
allow ourselves to make the decision whether the alarm 
should be activated or not. 

I 
Figure 2: Training of neural CDC controller for actuator 

failures 

In order to train the neural model of the controller, we 
need to know the error at the output of the controller. As 
far as the error at the diagnostic output aact is concerned, 
we simply compute the difference (ai2' - aact ) .  On the 
other hand, we have no information about what the ideal 
output y:dea' should be. The error at the controller output 
yc is easily computed, when a neural model of the plant is 
available, as it is the case here. The purpose of this neural 
model is to provide a path for the plant output error to 
reach the controller, so that the error at the controller 
output yc can be computed. 

The BP algorithm is used to train the neural controller, 
as well as to back-propagate the error through the plant, 
that is from the output of the plant identification model 
to its input. For any specific time instant, the current and 
delayed reference inputs, the current and delayed neural 
plant outputs, as well as previous neural controller out- 
puts, both of aoc: and yc, are applied to the input of the 
controller and propagate to its outputs. The diagnostic 
output, denoted by aac:(k), reproduces the failure. The 
second output, denoted by yc(k), comes to the actuator 
and is added to the actuator failure, denoted by fact(k). 
The resulting signal, u(k) = yc(k) + fac:(k), is the input 
to the neural plant. 

This input, together with the previous plant outputs, 
propagate through the neural plant to its output. It 
should be noted that no actuator noise is considered dur- 
ing the training. Note that the desired output at the 
plant is the current reference input, denoted by r(k), 
considered at the beginning of this description, and that 
the desired diagnostic output is the failure at the previ- 

The configuration that we are going to study is shown 
in Fig. 2. As we see, a neural network model for the 
CDC controller has been adopted. This controller has 
two general inputs, the reference signal T and the output 
of the plant yp, and two outputs, the diagnostic output 
uact, and the yc output, which can be considered as the 
ideal actuator input. The diagnostic output sac: will be 
trained to give us the reproduction of the actuator failure, 
if a failure does occur at the actuator. We also have some 
more additional inputs to the neural controller. These 
are the delayed reference inputs, delayed plant outputs, 
as well as delays of both the controller outputs. 
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- 
ous time instant, that is fact(k - 1). The error at the 
neural plant output is obviously r ( k )  - yp(k). This er- 
ror is back-propagated to the input of the neural plant. 
The error that corresponds to the input u(k) is given by 
error,(&) = uidea'(k) - u(k), from which we readily have 
that ddeal(k)  = error,(k) + u(k) .  

Now the ideal output of the controller, that is the 
one that would satisfy the control requirement of the con- 
troller, is given by yidea'(k) = uidea'(k) - faCt(k), which 
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implies that the error that corresponds to the controller 
output y c ( k )  is given by errory,(k) = y:d""a'(k) - y c ( k ) .  
This error, together with the diagnostic output error men- 
tioned above, are used by the BP algorithm to adjust 
the weights of the neural controller. The nonlinear plant 
model that has been used, [lo], is described by the follow- 
ing equation: 

For the above plant model an identification neural model 
has already been found in [3]. After several experiments, a 
2 hidden layer structure was decided for the neural model 
of the CDC controller; 20 and 5 neurons were chosen for 
the first and second hidden layer respectively. For the 
inputs of the neural controller, 3 delays were considered 
for the reference input r ,  the plant output yp, as well as 
the previous outputs of the neural controller. Regarding 
the training sets that were used during the training of the 
controller, a random signal uniformly distributed in the 
range [-2, 21 was considered for the reference input and 
samples of a sinusoidal function were considered for the 
actuator failures. The sinusoidal signal T = 2 sin(2rk/25) 
was tested as the reference input and a step signal of 0.8 
was tested as the actuator failure. Note that actuator 
noise uniformly distributed in the range [-0.05, 0.051, was 
also applied as an input to the actuator for all the tests. 
This noise simulates the plant modelling errors. 

To evaluate the performance, the difference vector (R - 
Yplast) was considered, where R is the vector with the 
sampling values of the reference signal and Yplant is the 
vector with the respective outputs of the neural plant. 
Then, the absolute values of all the elements of this dif- 
ference vector were computed and the mean value, defined 
as rmean, was found. In the same way, we can define the 
actmean for the difference vector (Aact  - Fact),  where Aact 
is the vector with the values of the diagnostic output of 
the controCer and Fact is the vector with the respective 
samples of the failure introduced at the actuator. 

The training of the CDC controller was done in two steps. 
First, no failure signals participated in the training and 
the controller was trained, so that it tracks the reference 
input r at the plant output, and at the same time it gives 
0 at the diagnostic output aact. The weights found in this 
step were used as initial conditions for the second step, 
where the controller was trained for 200.000 iterations to 
meet both the control and diagnostic requirements. The 
behavior of the plant is shown in Fig. 3 - Fig. 4. Similar 
results were obtained, when a ramp function was used for 
the actuator failure. For all the simulations in this section 
a momentum term of 0.9 and a learning rate of 0.01 were 
used. 

3.2. Weight Assignment on Control and Diagnos- 
tic Objectives 
The BP algorithm minimizes the mean squared error be- 
tween the actual outputs of the output layer and the de- 
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Figure 3: Reference input (solid line) and plant output 
(dotted line). Rmean=0.2045. 

I ,  . . . . . . . . . , 

Figure 4: Actuator failure (solid line) and diagnostic 
output (dotted line). Actmean=O.l132. 

sired outputs. We can assign weights to the square terms 
that participate in the sum, and by doing so we emphasize 
those terms that are assigned the largest weights. Since 
the CDC controller has two outputs, the control and the 
diagnostic, by assigning various weights to these two out- 
puts, we simply train the controller in the direction we de- 
sire. Hence, depending on the specific application, we ei- 
ther assign a larger weight to the control objective, which 
results in a better tracking of the reference input at the 
output of the plant, or to the diagnostic objective, which 
results in a better and more reliable reproduction of the 
actuator failures, if any, at the output of the controller. 
Therefore, the minimizing quantity at the output of the 
controller is given as follows: 

where errora,,t, erroryc denote the errors at the diagnos- 
tic and control output of the CDC controller respectively. 

In order to illustrate the above points, two cases were 
considered. Again, the weights obtained by training the 
controller as a conventional controller, that is by requir- 
ing the diagnostic output to be equal to zero, were used 
as initial condition and then the system was trained for 
additional 200,000 iterations in both cases. The results 
are given in Table. 1. We see that in the case, where the 
weight w1 = 0.3 was assigned to the diagnostic output, the 
diagnostic capabilities of the controller became less pow- 
erful, whereas the reference tracking seemed to be quite 
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Table 1: Rmean, actmean when assigning weights to the 
controller outputs. Actuator failures. 

weights rmean 

successful. In the case, where the weight w2 = 0.2 was 
assigned to the second controller output, the diagnostic 
performance was excellent and the control performance 
was almost as good as in the first case. 

sensmean 

4. Sensor Failures 

0.3 errory, 
0.3 errora,,,, 

4.1. Introduction 
In this section we assume that we have only sensor fail- 
ures. Our objective is to train a neural network model of 
the CDC controller that will have the following task: 

0.0979 0.1017 
0.0699 0.0969 

“to achieue set point tracking, that is to follow the refer- 
ence input r a t  the plant output y,,, and also to isolate the 
sensor faults and reproduce them a t  the diagnostic output 
asens.” 

A neural model of the plant was again used for the train- 
ing, as illustrated in Fig. 5. The sensor failures account 
for the disturbances that occur at the output of the plant; 
hence it is these disturbances that we are trying to iso- 
late at the diagnostic output usens. Note that here, the 
signal at the second output of the controller propagates 
through the layers of the neural plant and gets to its out- 
put, where it is added to the sensor failure, denoted by 
fsens. The resulting signal is going to be the second gen- 
eral input to the CDC controller; the other general input 
is the reference signal. Note that the error at the output 
of the plant is easily computed, since we know that the 
expected plant output is the reference input at the con- 
troller, and then back-propagated to the plant input. One 
of the components of the error vector at the input of the 
plant is the error at the second output of the controller 
errory,. This error, together with the easily computed 
error at the diagnostic output of the controller are used 
by the BP algorithnm to train the neural network. 

The internal structure of the neural model of the con- 
troller, the learning rate, the training and testing sig- 
nals were the same as in the actuator case. The criterion 
for the evaluation of the diagnostic performance was the 
sensmean, defined for the difference vector Fsens-Asens 

similarly to the actuator case. The controller was again 
trained initially as a conventional controller giving no sig- 
nal at the diagnostic output asens, and noise that simu- 
lates the plant modelling errors, uniformly distributed in 
the range [-0.05, 0.051 was applied at the output of the 
plant for all the experiments. The simulation results were 
similar to the ones obtained for the actuator case and 

Table 2: Rmean, sensmean when assigning weights to 
the controller outputs. Sensor failures. 

therefore are ommited due to space limitations; for more 
details see [6], [8]. 

4.2. Weight Assignment on Control and Diagnos- 
tic Objectives 
Now, the cost function is given as follows 

1 1 
2 2 

J = - w1 error:,,,, + - 0 2  error: (3) 

since, as stated before, the error at the second output of 
the controller is just the error that corresponds to the in- 
put 2~ of the plant. Here, we considered as initial condition 
for the training the layer-weights that were found before 
after 200,000 iterations of training of the controller, with- 
out assigning weights to its ouputs. This was done to see 
whether the behavior of the CDC controller for this spe- 
cific plant would change, once we decided to emphasize 
either of its two objectives. Two cases were investigated. 
First the error at the diagnostic output of the controller 
was assigned a weight of w1 = 0.3 and then the error 
at the input of the plant was assigned the same weight 
w2 = 0.3. The results are given in Table. 2. We see that 
although the control behavior was evidently improved, by 
assigning the weight of w1 = 0.3 at the diagnostic output, 
the diagnostic performance did not differ significantly in 
both cases. Hence, for this specific plant the initial train- 
ing of 200,000 iterations was sufficient for the diagnostic 
performance of the controller, and the additional 200,000 
iterations could not change the picture dramatically. The 
configuration with w1 = 0.3 was then used to test ramp 
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Figure 6: Reference input (solid line) and plant output 
(dotted line). Rmean=O.O719. 

‘7 

Figure 7: Sensor failure (solid line) and diagnostic out- 
put (dotted line). Sensmean=0.0870. 

failures and the results are illustrated in Fig. 6, Fig. 7. 
Note that a momentum term of 0.1 and a learning rate of 
0.01 were used for all the experiments in this section. 

5. Conclusions 

In this paper, a neural network implementation of the con- 
troller with diagnostic capabilities (CDC) has been pre- 
sented for the first time, whose the major advantage is 
that it can also be applied to nonlinear plants. Here, a 
unified approach for both sensor and actuator failures has 
been introduced for the design of a controller, which is ca- 
pable of reproducing failures at the actuator as well. With 
our design we have the flexibility of concentrating on one 
of the two objectives by appropriately emphasizing the 
contribution of this specific objective in the cost function 
to be minimized by the BP algorithm. 

The methodology presented here does not handle simul- 
taneous sensor and actuator failures. That would suggest 
a controller with three outputs, two outputs for diagnos- 
tics and one output for control. This seems to be quite a 
difficult computational problem and alternative forms of 
neural networks or training should be investigated. Note 
that we have not considered plant failures and have not 
provided stability theoretical results. We should state, 
however, that unless a reference signal or failure of mag- 
nitude much greater than those used in training are a p  
plied, our system is guaranteed (and has been successfully 
tested in numerous simulations) to meet the desired spec- 
ifications, avoiding any instabilities. Finally, note that 

more details can be found in [8]. 
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