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Control of Petri Nets Based on Place 

Invariants” 
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PANOS ANTSAKLISt 

A computationally efficient method for constructing Petri net controllers is 
presented. The method is derived using place invariants and is able to 
enforce logical and algebraic constraints containing elements of the marking 

and firing vectors. 
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Abstmt-This paper describes a method for constructing a 
Petri net controller for a discrete event system modeled by a 
Petri net. The controller consists only of places and arcs, and 
is computed based on the concept of Petri net place 
invariants. The size of the controller is proportional to the 
number of constraints that must be satisfied. This method is 
computationally efficient, and can accommodate constraints 
written as Boolean logic formulas in the conjunctive normal 
form or algebraic inequalities that contain elements of the 
marking and/or the firing vectors. 

1. INTRODUCTION 

Petri nets (Peterson, 1981; Reisig, 1985; Murata, 
1989) are an appropriate tool for the study of 
discrete-event dynamical systems because of 
their modeling power and flexibility. In this 
paper a method for computing a feedback 
controller for a discrete-event system modeled 
by a Petri net is proposed. In particular, it is 
shown how a Petri net can be computed to 
restrict the behavior of a plant using a simple 
equation involving the plant’s Petri net model 
and the constraints that are to be enforced. The 
computation involves little more than a single 
matrix multiplication. The computational 
efficiency of the method lends itself as a practical 
approach to controller synthesis for large and 
complex discrete-event systems. 

Many researchers have used Petri nets as a 
tool for modeling, analysing and synthesizing 
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control laws for discrete-event systems (DES). 
Murata et al. (1986) defined C nets as an 
extended form of safe Petri nets, and used them 
to construct station controllers for sequencing 
control with quick response time in real-time 
control. Boissel (1993) used simulated annealing 
to compute a Petri net controller for a 
discrete-event system modeled by a Petri net. 
Zhou and DiCesare (1989) proposed an adaptive 
design of Petri net controllers for automated 
manufacturing systems. They defined the con- 
troller as the control logic based on the Petri net 
model of the process, and used the model to 
generate a supervisory controller by successive 
augmentation. Holloway and Krogh (1990) used 
controlled Petri nets to control systems that can 
be modeled as cyclic controlled marked graphs, 
which are a special class of Petri nets. Boucher 
and Jafari (1992) have presented a method of 
transforming controller designs using the ‘struc- 
tured analysis and design technique’ and the 
‘integrated computer manufacturing definition 
0’ into Petri nets in order to take advantage of 
their graphical and computational efficiencies. 
Giua and DiCesare (1994) have done work on 
language control and realization with Petri nets, 
extending some of the control synthesis ideas for 
automata developed by Ramadge (1989) and 
Wonham (1987). An informative study of Petri 
net control issues can be found in Holloway and 
Krogh (1994). 

The control method presented in this paper 
uses place invariants, a structural Petri net 
property, to compute a feedback controller. 
Valette et al. (1985) and Valette (1986) have 
explored the use of Petri nets as analytical and 
computational models for the representation of 
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discrete event system controllers, and have used 
Petri net place invariants as an analysis tool. In 
this paper invariants are not used to analyze, but 
rather to actually synthesize controls that 
enforce linear constraints on the marking 
behavior of the Petri net that is to be controlled. 
The constraints handled by the proposed method 
are the same type of constraints discussed by Li 
and Wonham (1993, 1994) in their recent work 
on Petri net control, where they concentrate on 
controllability issues and discuss other problems 
such as formal language realization and dynamic 
state feedback. The method they present for 
controller synthesis involves solving a set of 
linear integer programming problems. The 
emphasis of this paper is on the efficient 
computation of Petri net controllers given an 
appropriate set of constraints rather than the 
actual controllability of the plant or feasibility of 
the constraints. 

In order to compute a Petri net controller 
using place invariants, it is necessary that the 
constraints be linear inequalities composed of 
elements of the Petri net marking vector. 
Fortunately, it is possible to transform many 
other constraints on a plant’s behavior into such 
inequalities. Yamalidou and Kantor (1991) have 
shown how constraints written as Boolean 
expressions can be transformed into sets of 
linear inequalities involving the firing and 
marking vectors. It is shown here how 
constraints that involve the firing vector can be 
transformed, using two different methods, into 
constraints that involve only making vector 
elements. Thus the control method can be 
applied to systems whose constraints can be 
expressed as inequalities, inequalities or logic 
expressions, and may involve elements of the 
marking and/or the firing vector. 

The controller derived using the approach in 
this paper is maximally permissive in that it 
forces the set of constraints to be obyed, while 
allowing any action that is not directly or 
indirectly forbidden by the constraints. If the 
constraints on a net’s performance are written in 
terms of the firing vector then there are 
situations in which the maximal permissiveness 
of the controller can only be guaranteed if the 
net is safe. The control method is general and 
also computationally very efficient, since it 
involves little more than a matrix multiplication. 
For this reason, feedback controllers can be 
derived for very large Petri net models, opening 
the way to the design of feedback control 
systems for large and complex industrial 
applications. 

The paper is structured as follows. The control 
design method is presented in Section 2, along 

with a brief discussion of Petri net place 
invariants and some examples. Different kinds of 
constraints and constraint transformations are 
discussed in Section 3. An example is presented 
in Section 4 that includes constraint transforma- 
tion as well as controller computation. Conclud- 
ing remarks are given in Section 5. 

2. DESCRIPTION OF THE METHOD 

The system to be controlled is modeled by a 
Petri net with II places and vii transitions, and is 
known as the plant or process net. The incidence 
matrix of the process net is D,. It is assumed that 
all the enabled transitions can fire. It is possible 
that the process net will violate certain 
constraints placed on its behavior-hence there 
is a need for control. The controller net is a Petri 
net with incidence matrix D, made up of the 
process net’s transitions and a separate set of 
places. The controlled system or controlled net is 
the Petri net with incidence matrix D made up of 
both the original process net and the added 
controller. The control goal is to force the 
process to obey constraints of the form 

r-l 

where p, is the marking of place p,, and the I, 
and p are integer constants. For example, we 
might wish to enforce the constraint p, + p2 5 1, 
which means that at most one of the two places 
p, and p2 can be marked, or, in other words. 
both places cannot be marked at the same time. 
This inequality constraint can be transformed 
into an equality by introducing a nonnegative 
slack variable pC into it. The constraint then 
becomes F, + pZ + pu, = 1, or, in general, 

The slack variable in this case represents a new 
place pC, which holds the extra tokens required 
to meet the equality. It ensures that the weighted 
sum of tokens in the process net’s places is 
always less than or equal to p. The place that 
maintains the inequality constraint is part of a 
separate net called the controller net. The 
structure of the controller net will be computed 
by observing that the introduction of the slack 
variable introduces a place invariant for the 
overall controlled system defined by (2). A brief 
review of Petri net place invariants is given in 
Section 2.1, before the actual controller com- 
putation is presented in Section 2.2. The 
maximal permissiveness of the control method is 
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examined in Section 2.3, and the ‘cat-and-mouse’ 
problem of DES literature is used as an example 
of controller construction in Section 2.4. 

2.1. Place invariants 
One of the structural properties of Petri nets, 

i.e. properties that depend only on the 
topological structure of the Petri net and not on 
the net’s initial marking, are the net invariants. 
Here we are interested in place invariants; Petri 
nets may also contain transition invariants 
(Reisig, 1985; Murata, 1989). Invariants are 
important means for analyzing Petri nets, since 
they allow the net’s structure to be investigated 
independently of any dynamic process (Lauten- 
bath, 1987). 

Place invariants are sets of places whose token 
count remains constant for all possible markings. 
A single invariant is represented by an n-column 
vector x, where n is the number of places of the 
Petri net, whose nonzero entries correspond to 
the places that belong to the particular invariant 
and zeros everywhere else. A place invariant is 
defined as every integer vector x that satisfies 

T 
x p=x 

T 
PO, 

where p. is the net’s initial marking, and p 
represents any subsequent marking. Equation 
(3) means that the weighted sum of the tokens in 
the places of the invariant remains constant at all 
markings, and this sum is determined by the 
initial marking of the Petri net. The place 
invariants of a net can be computed by finding 
the integer solutions to 

xTD = 0, (4) 

where D is the n X m incidence matrix of the 
Petri net, with n being the number of places and 
m the number of transitions of the net. It is 
easily shown that every linear combination of 
place invariants is also a place invariant for the 
net. Below, it is described how place invariants 
can be used to simply compute a controller for a 
plant modeled by a Petri net. 

2.2. Controller computation 
Each constraint of the type (1) enforced on 

the net will have a slack variable associated with 
it, and each slack variable will be represented in 
the controller net as a place. Thus the size 
(number of places) of the controller net is 
proportional to the number of constraints that 
are to be enforced. Every place used to control 
the process nets adds one row to the incidence 
matrix D of the controlled system. Thus D is 
composed of two matrices, the original n x m 
matrix D, of the process model and the 
incidence matrix of the controller, called 0,. The 

arcs connecting the controller place to the 
original Petri net of the system will be computed 
by the place-invariant equation (4), where the 
unknowns are the elements of the new row of 
the matrix D and the vector x is the desired 
place invariant defined by (2), i.e. xT = 
[Z1 12 . . . 1, 11. 

The control problem can be stated in general 
as follows. All constraints of the type (1) can be 
grouped and written in matrix form as 

b+, 5 b, (5) 

where Z+, is the marking vector of the Petri net 
modeling the process, L is an n, X n integer 
matrix, b is an n, X 1 integer vector and n, is the 
number of constraints of the type (1). Note that 
the inequality is with respect to the individual 
elements of the two vectors Lpp and b, and can 
be thought of as the logical conjunction of the 
individual ‘less than or equal to’ constraints. All 
place-invariant equations of the type (2), 
generated after the introduction of the slack 
variables, can be grouped in matrix form as 
follows: 

L/%++c=b, (6) 

where p, is an n, X 1 integer vector that 
represents the marking of the controller places. 

Each place invariant defined by (6) must 
satisfy (4): 

XTD = [L I][ 2] = 0, 
c 

LD,+ D,=O, 

where X is a matrix representing the n, different 
invariants and Z is an n, X n, identity matrix, 
since the coefficients of the slack variables in the 
constraints are all equal to 1. The matrix D, 
contains the arcs that connect the controller 
places to the transitions of the process net. So, 
given the Petri net model of the process (D,) and 
the constraints that the process must satisfy (L 
and b), the Petri net controller D, is defined by 

D, = -LD,. (7) 

Since our method admits the structure of the 
process net as well as a set of specifications, it 
can control transitions that participate in 
self-loops in the process net. This is because the 
constraints on these transitions are part of the 
specifications. Note that when an element of D, 
is zero, there are no arcs at all connecting the 
given place and transition, i.e. there are no 
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cancelling self-loops in the controller structure. 
Self-loops may occur if the graph transformation 
techniques discussed in Section 3.5 are used. 

The initial marking of the controller Petri net 
CL,{, is calculated so that the place-invariant 
equation (6) is initially satisfied. Given (3), (6) 
can be written for the initial marking vector 

Therefore 
LF.,,,, + F=,, = b. 

(8) 

Example. Consider the simple Petri net of Fig. 
1, which is acyclic and nonsafe. Its incidence 
matrix is 

D,= 

-1 0 0 1 0 

1 l-l 0 I 

0 -1 1 -1 0 

0 0 0 0 -I 

while its initial marking is 

I 
D, is rank 3; thus it has one place invariant that 
includes the entire net, i.e. x“D, = 0. where 
rT = [l 1 1 11. The objective is to control the 
net so that places p2 and p3 never contain more 
than one token; i.e. we wish to enforce the 
constraint 

p> + fJ3 5 1. (9) 

Using the matrix notation of (S), we have 

L=[O 1 1 01, 

h = I. 

The process net will not satisfy the desired 
constraint without an external controller. A slack 
variable CL, is introduced, and the inequality (9) 
becomes an equality: 

/+f/-++&= 1. ( w 
The slack variable p= denotes the marking of the 
place pc that belongs to the controller. Equation 
(10) represents the desired invariant XT = 

Fig. I. Process Petri net for the example of Section 2.2. Fig. 2. The Petri net of Fig. 1 with controller. 

[O 1 1 0 11, which will be forced on the 
controller system. The incidence matrix of the 
controller net is computed using (7); 

DC= -LD,=[-1 0 0 1 -11. 

The initial marking of the controller place is 
computed from (8): 

I&,, = - L/J.,,= 1. 

The Petri net graph of the controlled system is 
shown in Fig. 2. The controller arcs are shown 
with dashed lines, and the control place is drawn 
thicker than the process places. 

2.3. Maximal permissiveness 
The control method can be shown to be 

maximally permissive by examining the place 
invariants of the controlled system. Let X, be an 
integer matrix of linearly independent columns 
representing a basis for the place invariants of 
the (uncontrolled) process net. Then X, satisfies 
the equation 

X;D, = 0, 

where the columns of X, are linearly indepen- 
dent, and the number of columns of X, (and 
thus the number of invariants) is equal to 
n - rank D,, since D, is an n X m matrix and X, 
forms a basis for the null space of II,. Note that 
if rank D, = n then the uncontrolled plant has no 
place invariants. 

A controller is constructed using (7). The 
incidence matrix of the controlled net is then 

Note that, since the rows of D, are linear 
combinations of the rows of II,,, rank D = 
rank D,. Thus the number of invariants of the 
controlled system is equal to n + n, - rank Dr. 
All of these invariants are accounted for by the 
uncontrolled plant invariants, and the forced 

P3 
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constraint invariants as shown below. First note 
that 

[x; O][ 21 = xp, = 0. 
c 

Thus the invariants of the uncontrolled plant are 
also invariants of the controlled plant. This is 
true for any Petri net control scheme that only 
adds places and arcs in order to control the 
plant. From the construction of the control law, 
we also know that 

[L 4[Dgp] = LD,+D,= LD,- L&=0, 
C 

and thus all n + II, - rank Dp invariants of the 
controlled net are given by XTD = 0, where 

xc= XP L 
[ 1 0 I’ 

The rank (and number of columns) of X, is 
n + n, - rank D,, since X, is rank IZ - rank D, 
and Z is an IZ, X n, identity matrix. 

There are no new or unexpected invariants 
forced on the system as a result of the control 
law. The control law is maximally permissive, 
since no action is prohibited that is not a result 
of the plant structure itself or the constraints 
forced on the plant. 

2.4. Example: the cat-and-mouse problem 
The ‘cat-and-mouse’ problem, introduced by 

Wonham and Ramadge (1987), is a popular 
example in the field of discrete event system 
control. The problem involves a maze of five 
rooms where a cat and a mouse can circulate. 

T Mouse 

The rooms are connected with doors through 
which the animals can pass, as shown in Fig. 3. 

The problem is to control the doors so that the 
cat and the mouse can never be in the same 
room at the same time. The controller should be 
maximally permissive in the sense that it should 
grant maximum freedom of movement to both 
the cat and the mouse. The simple Petri net 
model of the cat-and-mouse problem is taken 
from Boissel (1993) and is shown in Fig. 4. The 
upper net concerns the cat, while the lower net 
concerns the mouse. Each net has five places, 
which model the five rooms of the maze. The 
transitions model the ability of each animal to 
pass from one room to the other according to 
Fig. 3. 

The incidence matrix of the Petri net model 
for thi s system is 

--1 0 l-l 0 10 

l-l 0 0 0 0 -1 

0 l-l 0 0 0 0 

0 0 0 l-l 0 1 

0 0 0 0 l-l 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 

1 0 0 0 0 

0 0 0 0 0 

-1 0 0 0 0 

0 0 0 0 0 

0 -1 0 1 -1 

0 0 1 -1 0 

0 l-l 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

-1 

0 

7 

There is one token only in each of the subnets, 
since there is one cat and one mouse. The 
presence of a token in a place indicates that the 
animal modeled by the token is in the room 
modeled by the particular place. Initially the cat 
is in room 3 and the mouse is in room 5, so the 
initial marking is 

Z-&= [p1 CL2 *. . /d 

= [O 0 1 0 0 0 0 0 0 l]? 

D, is rank 8; this it has two place invariants. The 
first consists of all five places of the upper Fig. 3. The cat-and-mouse maze. 
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Room4, p9 

v 
L 

Rooml, p6 

me 

Y4 

Fig. 4. The Petri net model of the cat-and-mouse problem. 

subnet, and the second consists of all five places 
of the lower subnet. 

Assume that all the doors of the maze are 
controllable. The control goal is to ensure that 
the cat and the mouse are never in the same 
room simultaneously. This means that each pair 
of places, one from the upper net and one from 
the lower net, that model the same room must 
never contain more than one token. This 
requirement is translated into the following five 
constraints: 

cL,+ll.t,~l! ru*+EL,41. /-%+/-+~I, 

cL‘i+llg(l, /Gf/-Qo~l. 
(11) 

The constraints are forced into equalities by 
introducing slack variables 

/11+ /-Ql + t&, = 1, CL2 + P7 + i+ = 1, 

P.3 + Px + PC, = 1, &I + P1Lg + ELq = 1, (12) 

Fs+P10+Pc5=1. 

The five slack variables correspond to five new 
places, which belong to the controller, i.e. 

CLC = [EL,, ILCZ CLCj I+ k,lT. 
Using the matrix notation of (6), we have 

The portion of the matrix D associated with the 
controller is given by (7). 

DC=-LD, 

! 

1 0 

-1 1 

= 0 -1 

0 0 

0 0 

0 

0 

0 

1 1 

0 0 

1 0 

0 -1 

0 0 

0 -1 

-1 1 

1 0 

0 0 

0 0 

o-1 0 0 

0 0 1-l 

0 0 0 0 

1 O-l 1 

-1 0 0 0 

1 0 -1 

0 0 0 

0 0 0 

o-1 1 

-1 1 0 1 

. (13) 

The initial marking of the slack places is given by 

(8). 
/.k,, = 1 - Lp,,, = [l 1 0 1 O]T. 

The incidence matrix and initial marking of the 
controlled system are 

The new net prevents the cat and mouse from 
evern entering the same room, but allows all 
other legal moves. The controlled cat-and-mouse 
system is shown in Fig. 5. Once again, dashed 
lines and thick-lined places are used to represent 
the elements of the controller Petri net. 

The ‘cat-and-mouse’ problem presented in 
Wonham and Ramadge (1987) specifies that 
transitions c7 and c8 are uncontrollable. This was 
not considered in the example above, because 
the focus of this paper is not on controllability 
but on efficient controller computation given an 
appropriate set of constraints. It is posssible to 
specify constraints in the form (5) to realize the 
solution of this problem even with the 
uncontrollable transitions; however, the con- 
straints themselves are not as straightforward as 
those used above. This issue is briefiy discussed 
below. 

Suppose we wish to write an appropriate set 
of constraints such that the cat and the mouse 
never meet and so that each animal is able to 
find its way back to its original room. This goal 
must be met while accounting for all valid initial 
conditions and the uncontrollability of transi- 
tions c7 and c8. First note that, because of the 
uncontrollability, the cat cannot be prevented 
from moving back and forth between rooms 2 
and 4. So at most one animal should be allowed 
in rooms 2 and 4 at any time. Now suppose that 
initially the mouse is in room 4 and the cat is still 
at its normal starting position in room 3. If the 
cat is allowed to move to room 1, both animals 
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Slack 1 

MOUSQ 

Fig. 5. The cat-and-mouse Petri net and its Petri net controller. 

will be stuck, because the cat cannot be allowed 
to go into room 2 since it could then catch the 
mouse in room 4, and the only exit door from 
room 4 for the mouse is into the cat’s current 
position in room 1. Thus, if we are to be certain 
that the animals can return to their starting 
rooms, we must make sure that no more than 
one animal inhabits rooms 1, 2 and 4 at any 
given time. In order to complete that set of 
constraints for this example, we include the 
remaining two constraints in (11) concerning 
rooms 3 and 5 respectively, to obtain 

At this point, the controller can be computed 
using the method shown above (Yamalidou et 
al., 1994). 

3. CONSTRAINT TRANSFORMATIONS 

Since the method presented here is based on 
the concept of place invariants, the constraints 
must be expressed as a weighted sum of ps so 
that the controller can be constructed as 
discussed in Section 2. However, not all 

constraints are initially written in this form, so all 
other types of constraints must be first 
transformed to the form that the method can 
handle. This section examines diffeent types of 
constraints, and describes approriate transfor- 
mations for each of them, based on the concept 
of replacing an element of the firing vector q 
with the sum of the input places of the 
corresponding transition. Three general cate- 
gories are distinguished: logical constraints 
written as Boolean logic formulas in the 
conjunctive normal form, inequality constraints 
and equality constraints. Several cases are 
considered within each category. In addition, a 
graphical transformation method is briefly 
described. 

3.1. Logical constraints 
If a constraint can be written as a well-formed 

Boolean formula in the conjuctive normal form 

A+@I~(P2~. . .A$, (15) 

where A is a propositional variable and each of 
the <pi is an elementary disjunction of the form 

@i=Yi,vYi2v.. .VYih, (16) 

and each of the Yi, is a propositional variable, 
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then it has been proved (Yamalidou and Kantor, 
1991) that it can be translated to an equivalent 
set of g simultaneous linear inequalities 

(1 -‘I’,,) + (1 - W,,) +. . . + (1 - Y ,,,,) + A 

sh, fori=1,2 ,..., g. (17) 

The set of all inequalities (17) will now represent 
the constraint that the system must satisfy. The 
system of inequalities should be refined after 
this transformation in order to eliminate those 
inequalities that appear more than once. The 
inequalities produced from the transformation of 
(15) can then be handled as described in the 
approriate sections below. 

3.2. ‘Less than or equal to’ constraints 
3.2.1. Constraints containing marking vector 

elements only. Assume that the constraints that 
must be satisfied by the system can be written as 
a sum of elements of the marking vector: 

This means that the sum of tokens in 

Pl,P2,~.., pr of the Petri net should 

(18) 

places 
never 

exceed the integer k. This type of constraint is 
already in the desired form, since it is an 
inequality similar to that shown in (1). By 
introducing a slack variable Pi, it can be forced 
to become an equality: 

c p, + p, = k. 
,=I 

(19) 

The method then applies as described in Section 
2. Constraints that contain a weighted sum of pus. 

are treated in the same way. The integer 
coefficients f, will be contained in L. 

Note that the constant k in (18) and (20) does 
not play any role in the structure (i.e. the 
number of places or arcs) of the controller. It 
defines the constant token count of the invariant 
described by (19), and should be taken into 
account when the Petri net is initially marked. 

3.2.2. Constraints containing both marking and 
firing vector elements. Such constraints link the 
occurrence of events to part or all of the current 
state vector, and they denote the actions allowed 
by the system’s state. Since the method 
described in this paper applies to expressions 
containing elements of the marking vector only, 
constraints that contain elements of both the 
marking and the firing vectors must be 
transformed to an appropriate equivalent form. 
Below, we show how this is done, and we 
distinguish various cases. Note that these 

transformations produce a maximally permissive 
controller for safe Petri nets only, i.e. for nets 
whose places can receive at the most one token. 

Consider constraints that contain only one 
element of the firing vector and have the form 

c P, + 4, 5 r, (21) 
i=l 

where the number of ps involved in the 
constraint is equal to the constant of the right 
side r. This constraint means that tj cannot fire if 
all the places p,, p2, . . . , pr are marked. Using 
the enabling condition of Petri net theory, which 
states that a transition can fire if and only if all 
its input places are marked, we may replace qj in 
(21) with the sum of its input places and modify 
the right part of the inequality accordingly. The 
transformed constraint becomes 

where c, is the number of input places of tj. The 
constraint in its new form will not allow more 
than r + c, - 1 of the places in the left-hand side 
of (22) to be marked. So, if all the places 
pI,pz,..‘, p, are marked then not all the input 
places of transition tj may be marked, and 
consequently tj cannot fire. On the other hand, if 
all the input places of t, are marked then at the 
most r - 1 of the places p,,p2,. . . ,pr can be 
marked. The constraint in its new form (22) 
contains only elements of the marking vector. 
Note that some of the input places of qj may be 
involved in the sum of marking elements in (21). 
This is taken into account in (22) since they are 
counted twice in the right side, in both r and cj. 

If the constraint has the form 

C P; + qj 5 k, (23) 
,=I 

where k <r, then two cases must be distin- 
guished. If the transition tj has only one input 
place, p,, then qj in the above expression can be 
replaced by the marking pj of that input place, 
and the constraint becomes 

The transformed constraint (24) is equivalent to 
(23) but contains only marking vector elements. 

If the transition tj has more than one input 
place then the constraint (23) must first be 
replaced by an equivalent set of constraints that 
list all the cases not allowed by (23) each of 
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which is in a form that can be transformed to 
(18). This set will have the form 

Par,t 1 2 pi 5 k, 
i=l 

Part 2 

%l+P2+... +pk-1 +P/c +qjsk, 

pr-ktl + pr-k+2 +. . * + Pr-I + /Jr + qj s k. 

(25) 

The inequality in the first line of (25) is already 
in the form of (18). The second line contains as 
many inequalities as are the combinations of r 
elements taken by k. Each of these inequalities 
involves k marking elements from the original T 
of (23) and qj, and is in the form of (21), SO it 
can be further transformed as shown above. 

Lastly, the constraint may have the more 
general form 

(26) 
i=l j=l 

where k < r + g. This type of constraint must be 
first replaced by an equivalent set of constraints, 
i.e. a set of inequalities that describe all the 
forbidden situations contained in (26), each of 
which will be in one of the forms described in 
this section and will contain at the most one 
marking element qj, j = 1, . . . , g. Each can then 
be transformed appropriately, as shown else- 
where in this subsection. 

3.2.3. Constraints involving firing vector ele- 
ments only. The constraints refer to the 
simultaneous occurrence of two or more events. 
All the possible cases are considered. The 
transformations are valid for safe nets only. 

Assume that the constraint is of the type 

iqjSr-l, (27) 
j=l 

which indicates that not all transitions 

41,927. * * 9 4r can fire simultaneously. The 
enabling condition of Petri net theory suggests 
that the constraint can be transformed into an 
equivalent constraint by replacing each transition 
with the sum of its input places in the left-hand 
side of the inequality (27) and by modifying the 
right-hand side appropriately. The constraint 
then becomes 

i P-j, + Pj2 +. . . + /AC, s i Cj - 1, (28) 
j=l j=l 

where pj,, pj2, . . . , CL,, are the input places of the 
transition tj, while Cj denotes their number. The 
transformed constraint does not allow all of the 
input places of all transitions to be marked 
simultaneously, so it ensures that not all 
transitions can fire together and it contains only 
elements of the marking vector. 

Any other type of constraint containing only 
elements of the firing vector has the form 

2 qj 5 k, 
j=l 

(29) 

where k 5 r - 2. This must be first replaced by 
an equivalent set of inequalities of the type (27) 
each of which will contain k + 1 firing vector 
elements: 

41+ 92 + *. * +qk+qr~k 

92 + 93 +. . . +qk+l +9k+z<k, (30) 

92 + 93 +. . . +qk+l +qrsk, 

qr-k+qr-k+,+...+qr-,+q,<k. 

Each inequality in the above set is in the form 
(27) and can be transformed as shown earlier. 

3.3. ‘Greater than or equal to’ constraints 
3.3.1. Constraints containing marking vector 

elements only. In some cases it is necessary to say 
that a set of places contains at least k tokens. 
This is expressed by the constraint 

(31) 

This means that at least k of the r places must be 
marked. This constraint can become an equality 
if we add an excess variable pe to its left-hand 
side: 

i: pi - CL, = k. (32) 
i=l 

As in the case of the slack variable, the excess 
variable CL, introduces a place that belongs to the 
controller and forces an invariant formed by 

places CLI, CL~, . . . , pL, and pe in the controlled 
Petri net. As shown by (32) it is the weighted 
sum of the tokens in the places of the invariant 
that remains constant. Since the constraint has 
been brought into the form of an invariant, it 
can be treated similarly to (19), the only 
difference being that the coefficients of the slack 
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variables are now - 1. The structure of the 
controller net is computed as 

[L -1][9,] = 0, 
c 

LD, - D, = 0; 

therefore 

D, = LD,, (33) 

while the initial vector of the controller places is 

3.3.2. Constraints containing both marking and 
firing vector elements. The transformations 
described in this section are valid for safe Petri 
nets only. 

The first case considered is the constraint 
containing one element of p and one element of 

4: 

p, + 9,z 1. (35) 

This expression means that whenever p, is not 
marked, t, should fire, and whenever t, does not 
fire, CL, should be marked. In order to transform 
this constraint to an expression containing 
elements of the marking vector only, we must 
first express the constraint as a well-formed 
Boolean formula. It can be replaced by the 
following logical expression, since they are 
logically equivalent: 

l/J; + 4,. (36) 

This simply means that whenever EL, is not true 
(i.e. pi is not marked), qj must be true (i.e. t, 
must fire), and whenever qj is not true (t, does 
not fire), p, must be true (i.e. p, must be 
marked). According to Petri net theory, a 
transition can fire if and only if all its input 
places are marked. This allows us to replace q, 
in (36) with the conjunction of all its input 
places. It then becomes 

-V+~./,A~,~~.“A/-&,r (37) 

where Cj is the number of input places of t,. This 
contains only elements of the marking vector. It 
is a well-formed formula of the type (1.5) and, 
as shown in Section 3.1, it is equivalent to and 
can be replaced by the following set of 
inequalities: 

(l- Pj,) + Cl- PI)~~IISII,,+ P, ?l, 

(1 - l-4 + (1 - /A> 22 13 11,2 + P! 2 1, (38) 

(l-cL,;)+(1--,)11~/1~;+~,~1. 

The term T/.L( has been replaced by 1 - CL,, 

because the net is safe. This substitution holds, 
because lp, and 1 - pi have the same value: 

for IL, = 1 up, = 0 and 1 - p, = 0, 

for p,=O lp,-l and l-p,=l. 
(39) 

All the inequalities in (38) have the form (31). 
and can be dealt with accordingly. 

The general form of the constraints in this 
category is 

(40) 

Following the reasoning for the case of (35), the 
above constraint must first be written as a logical 
expression with the same meaning. Then each of 
the parts of the logical expression must be 
manipulated as shown above. Care should be 
taken to simplify the set of well-formed Boolean 
formulas in order to avoid redundancy. 

3.3.3. Constraints containing jiring vector ele- 
ments only. The last case in this section is the 
case when the constraint contains elements of 
the firing vector only. The general form is 

2 q,rk. 
,- I 

(41) 

This implies that at every firing instant at least k 
of the g transitions t,, t2, , tg must fire. These 
constraints must be first replaced by logical 
expressions having the same meaning, as in 
Section 3.3.2, before any further transformation 
is possible. In this case also, the transformations 
are valid for safe nets only. 

As an example, consider the simpler case 

41 +q221. (42) 

This means that at any given firing instant one of 
the two transitions t, and t2 must fire. Logically, 
this can be expressed as 

~91+4?. (43) 

Each of the qs in (43) can be substituted by the 
conjunction of the markings of its input places. 
The above then becomes 

where pl,, E-L~~, , pu,, and p2,, p22, . . . , I-+, are 
the sets of input places of the transitions t, and tz 
respectively. The expression in (44) can be 
written as 

t7/1c, -+ i-b A l-b, A. . A ,L&,). 
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Each of the above has the form (15), and each 
can be substituted by a set of inequalities, as 
shown in Section 3.1. 

3.4. Equality constraints 
The last general case that remains to be 

considered is the case where the constraints are 
written as plain equalities. Different sub- 
categories are discussed. 

3.4.1. Equality constraints containing marking 
vector elements only. These constrints are written 
as 

2 Pi = k. (46) 

This equation means that places p,, p2, . . . ,pr 
must always form a place invariant. This is really 
a specification for the system, and should have 
been incorporated into the Petri net model. If 
this invariant is not already part of the Petri net 
model, it should become part of it at this point. 
This is done by modifying the incidence matrix 
D, of the Petri net so that (4) holds, where X 
contains the place invariant defined by (46). The 
new elements of D, represent the arcs that 
should be added to the Petri net so that the 
place invariant becomes part of it. 

3.4.2. Equality constraints containing both 
marking and firing vector elements. Assume that 
the constraint is of the type 

(47) 

This constraint means that at all times all of 

PI, CL27 f.. I pk should be marked and all of 

91, q2,. . . , qg should fire. It is rare that such a 
requirement is imposed on a system, but it may 
occur. The constraint can be transformed by 
substituting each of qj with the sum of its input 
places and by modifying the right part 
accordingly. The transformation is valid for safe 
Petri nets only. The transformed constraint is 

g CLi + 2 i /Jj, = k + 2 c/j (48) 
j=ls=l j=l 

where cj is the number of input places of 
transition tj. The constraint now has the form 

(46). 
3.4.3. Equality constraints containing firing 

vector elements only. Some equality constraints 
may contain only elements of the firing vector. A 
simple example is 

qi + qj = 1. (49) 

This means that one of the two transitions 
should fire at every instant. In other words, if qi 

will not fire next then qj must fire, and vice versa. 
This can be written as a logical formula 

(4i+ 14j)A(1qi+qj)* (50) 

The same concept can be expressed by means of 
the input places of the two transitions: 

(~[~LLilAEl.izA...A~=~~CLj,AILj2h...hCL,,). 

These formulas should be separated, and each 
should be brought into the form of (15) and 
then replaced by inequalities. All constraints of 
this type should be analyzed as shown above. 
This transformation is valid for safe Petri nets 
only. 

3.5. Graph transformations of the Petri net 
Another way of transforming constraints that 

contain elements of the firing vector based on a 
transformation performed on the Petri net graph 
itself is now described. Assume that a system 
modeled by a Petri net must satisfy the 
constraint 

/.L, + qj 5 1. (52) 

This means that transition tj cannot fire if place 
pi is marked, and vice versa. In order to bring 
this constraint into a form that contains elements 
of the marking vector only, a graph transforma- 
tion is performed on the process Petri net. The 
transition tj is replaced by two transitions tj and 
ti and a place p/ beteeen them, as shown in 
Fig. 6. 

The incidence matrix D, of the process Petri 
net is increased by one column and one row, 
since the overall number of transitions and 
places of the Petri net has each been increased 
by one. This transformation is artificial, and does 
not add to or subtract anything from the Petri 
net model of the process. Its sole purpose is to 
introduce the place pi that records the firing of 
the transition tj. 

The marking pi of the place p,! replaces qj in 
the constraint (52), which becomes 

/.Li + /_L; 5 1. (53) 

The constraint now contains only ps, and the 
controller can be computed as described in 
Section 2. Since the method produces a 
controller consisting of places and arcs only, no 
part of the controller is connected directly to the 
place p,’ of the transformation. After the 

Fig. 6. Graph transformation of a transition. 
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controller structure has been computed by the 
method, the two transitions and the place of the 
transformation collapse to the original transition. 
The same transformation is performed on each 
and every transition that appears in the 
constraints. Constraints that contain only ele- 
ments of the marking vector are treated in the 
same way. 

Note that the graphical transformations do not 
unfold those constraints that contain elements 
of the firing vector, as the algebraic transforma- 
tions described in Section 3 do. So the original 
number of constraints is conserved. However, 
this way of transforming constraints produces a 
controller that is connected directly to the 
corresponding transitions and does not allow 
these transitions to fire even if they are enabled. 
when their firing violates the constraint. This 
requires that the transitions be controllable. If 
they are not then the computation of the 
controller based on the graph transformation is 
not valid, and the constraints must be trans- 
formed using the algebraic methods described 
previously. 

Parts Station 

Fig. 7. The automated guided vehicle Petri net 

4. EXAMPLE 

The example used to illustrate the controller 
computations introduced in this paper concerns 
a flexible manufacturing cell, used by Holloway 
and Krogh (1990) and Li and Wonham (1994). It 
consists of three workstations: two part-receiving 
stations and one completed-parts station. There 
are five automated guided vehicles (AGVs) that 
can transport material between the stations. The 
Petri net model of this system, taken from 
Holloway and Krogh (1990) is shown in Fig. 7. 
The vehicles and the parts are modeled by 
tokens, and the marking of the Petri net 
corresponds to the actual state of the system. 
The shaded areas represent the zones in which 
the vehicles’ trajectories cross on the floor of the 
plant. A forbidden situation arises when two 
vehicles are present in a zone at the same time. 
In order to demonstrate the constraint transfor- 
mation techniques described in Section 3, we 
introduce an additional specification for this 
system that is not in Holloway and Krogh (1990). 

The constraints that concern the presence of 
the vehicles in the dangerous zones are 
expressed by the inequalities 

where Z, is the set of indices of places that make 
up zone j. These constraints contain only 
marking vector elements, so slack variables are 
introduced and the inequalities become 
equalities: 

c pu,+&,=l. c ~,+/.+=I, 
it %, ,E.?Z (55) 

c /J,+/&;=1. c /-&+/&=I. 
i+y; IF/l 

The four slack variables define four places for 
the controller. Each place controls the access of 
a zone. 

The additional specification concerning the 
input parts stations can be written as 

q1+425 1, (56) 

where f, and t2 are the transitions indicating that 
a part has been removed by an AGV from input 
parts stations 1 and 2 respectively. The 
constraint of (56) contains firing vector elements 
only has the form of the expression in (27), and 
must be transformed as described in Section 
3.2.3. Both q, and q2 are replaced by the sum of 
their input places, indicated as F,, F~, pJ and p_, 
in Fig. 7: 
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LzI$g3 
Fig. 8. The controlled AGV Petri net. 

The above will not allow all four places pl, p2, p3 
and p4 to be marked at the same time. An 
additional slack variable makes the transformed 
constraint an equality, and introduces a fifth 
controller place: 

~.1+cL2+113+cL~+I*c5=3. (58) 

The incidence matrix of the process is 
increased by five rows which correspond to the 
five controller places and constitute the in- 
cidence matrix D, of the controller net. After 
computing 0, and pc, from equations (7) and 
(8), the appropriate arcs are added to connect 
the controller places to the appropriate transi- 
tions of the Petri net of the process. The 
controlled Petri net is shown in Fig. 8. 

5. CONCLUSIONS 

This paper has presented a particularly simple 
method for constructing feedback controllers for 
untimed Petri nets given a set of constraints. The 
method is based on the idea that specifications 
representing desired plant behaviors can be 
enforced by making them invariants of the 

controlled net. In this paper a technique has 
been derived which uses place invariants 
representative of logical design specifications. 
The resulting controller consists only of places 
and arcs, and its size is proportional to the 
number of constraints. The method can accom- 
modate a variety of constraints containing 
marking and/or firing vector elements. The use 
of place invariants makes the approach transpar- 
ent and facilitates the extension of these results 
to more general control problems. Note that this 
method produces controllers identical to the 
monitors of Giua et al. (1992), which were 
independently derived without use of the notion 
of place invariants. 

The method uses two different ways of 
transforming constraints that contain firing 
vector elements to the desired form. The first, 
based on algebraic manipulations of the 
constraints, can be applied to both controllable 
and uncontrollable transitions. In certain cases, 
discussed above in detail, it unfolds one 
constraint, replacing it by a set of constraints 
that have the appropriate form, thus increasing 
the controller size; in certain other cases this 
transformation technique is applicable to safe 
Petri nets only. The second approach is based on 
a graphical transformation, and it conserves the 
initial number of constraints. It is able to 
compute double-pointed arcs, and is valid for 
nonsafe nets as well. Its drawback is that it 
cannot be applied to uncontrollable transitions. 

The significance of this particular approach to 
Petri net controller design is that a feedback 
controller can be computed very efficiently by a 
single matrix multiplication. The resulting 
controlled system will generally not be optimal 
in terms of minimizing the number of its places 
in the controller net. However, owing to the ease 
of computation, it can represent a good initial 
point in subsequent controller optimization. 
Consequently, the proposed approach appears to 
offer significant promise in designing Petri net 
feedback controllers for industrial systems. 

Another advantage of the method is that it can 
be used to design Petri net controllers in a 
modular way. Assuming that the specifications 
on the controlled system’s behavior can be 
decomposed into a collection of place invariants, 
it may be possible to realize the specifications by 
switching the system’s marking vector between 
the various place invariants. The methodology 
presented in this paper represents a numerically 
efficient manner of finding controllers which 
enforce place invariants. This technique is 
therefore useful in the modular design of Petri 
net controllers. 

There are three important characteristics of 
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this approach. First, this method is able to 
construct a feedback controller without any state 
enumeration. This is very important, since it is 
now possible to design feedback controllers for 
very large systems. Second, the method designs a 
feedback controller modeled by a Petri net that 

is attached to the Petri net model of the process 
and closes the loop. The closed-loop system 
satisfies the control specifications. This is in 

contrast to other methods, which compute a 
control logic instead, which regulates the 
transition firings. Third, the method can compute 
controllers for general simple, untimed Petri net 
models, and is not restricted to cyclic or 

bounded Petri nets only. This is true, although 

some of the constraint transformations product 
maximally permissive controllers only for safe 
Petri nets, as is indicated in Section 3. 

There are several areas in which the control 
method based on the place invariants is oepn for 

further research. First the method should hc 
expanded to deal with timed Petri nets. since 
these networks have added modeling power. 
Another important future research goal is a 
systematic method for transforming a set of 
constraints into an equivalent set when transi- 
tions in the process net are uncontrollable or 

unobservable. 
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