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Abstract

Conditions for robust stability in linear continuous systems are derived, when all
matrices of the state-space model are perturbed by independent uncertain parameters
and static output feedback is applied. Two different approaches are presented. Then,
improved conditions for robust stability in linear discrete-time systems with both un-
structured and structured perturbations in the system matrix A are derived. Finally,
a sufficient condition for robust stability when again all matrices of the state-space
model are perturbed by independent uncertain parameters and static output feedback
is applied, is derived. The analysis for all the problems studied above is based on the
direct method of Lyapunov. Several examples are used to illustrate the results.

1 Introduction

The problem of robust stability of linear state-space models has been an active area of
research for quite some time; see [1], [3], [17] for extensive discussion and references. For
the cases of both structured and unstructured parametric uncertainty involving state-space
models, results exist for both continuous ( [2], [5], [6], [10], [12], [13], [16], [21], [22], [23] )
and discrete-time systems ( [5], [6], [7], [11], [14], [19], [20] ). In all the above papers, the
uncertain parameters describe the perturbation in either the open-loop system matrix A or
the closed-loop system matrix A. when state (A + BK) or output feedback (A + BKC)
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is applied. The uncertainty matrix AA for either A or A. is assumed to be of the form
AA =", ki A;, where k;,0 = 1,..,m denote the uncertain parameters and A;,;¢ = 1,..,m
are known constant matrices. Note that the uncertain parameters enter the uncertainty
matrix linearly.

When all the matrices of a state-space model, that is the system matrix A, the input
matrix B, and the output matrix C' are perturbed and output feedback is applied, then
existing literature methods can not be applied directly. This is because the system matrix
of the closed-loop system contains now product-terms of the uncertain parameters.

In section 2, we study the linear continuous systems with the state-space description of
(1), (2) below, where the state-space matrices are perturbed by independent uncertain
parameters, as indicated in ( 3 ), (4 ). Note that the special case of k; = X\; = p;,0 = 1,..,m
has been studied in [8] for the discrete-time case and in [18] for both discrete-time and
continuous systems. In these papers, the rather restrictive assumption has been made that
the system matrices are perturbed by the same uncertain parameters, as indicated above.
Here, this assumption is relaxed and two different approaches are presented, distinct from
[18], to address the more general problem. It should be noted that although only the static
output feedback case is studied, the results apply to the dynamic output feedback case as
well. This is because a dynamic output feedback controller of order r applied to a system of
order n is equivalent to a static output feedback controller applied to an augmented system
of order n + r; see for example [10], [18].

In section 3, we concentrate on linear discrete-time systems and present theorems, stem-
ming from the direct method of Lyapunov, that provide sufficient conditions for the robust
stability of uncertain systems. First, we study the case of unstructured perturbations AA in
the system matrix A and then the case of structured perturbations, where AA =377k, A;.
In both cases, we get bounds that improve the ones found via the methodology suggested
in [11]. Then, we study the discrete-time systems with the state-space description of ( 85 ),
( 86 ) below, where again the state-space matrices are perturbed by independent uncertain
parameters, as indicated in ( 87 ), ( 88 ). Note that this is the discrete-time counterpart to
the continuous-time case of section 2; therefore all the comments of the previous paragraph,
concerning the continuous case, apply here too. In section 4, illustrative examples for all the
cases mentioned above are presented. Finally, in section 5, concluding remarks are briefly
discussed.
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2 Continuous Systems

2.1 Problem Formulation

We consider linear continuous systems with the state space description

where © € R" is the state vector, u € R" is the input vector and y € R? is the output
vector. The state-space matrices are described by the following relations

A=Ag+> riAi, B=DBo+> \B (3)
=1 =1
C=Co+ > s (4)
=1

where k;, A;, 11; denote the real, uncertain parameters which describe the perturbations
for the state-space matrices A, B, (' respectively. For simplicity, it has been assumed that
each of the state matrices involves m distinct uncertain parameters. Note that the analysis
that follows can be extended to the case, where the state matrices above have different
number of perturbation parameters.

We consider the output feedback law

u(t) = Ky(1) ()

where K is a stabilizing ouput feedback matrix for the nominal system (Ao, Bo, Co). Then
the closed loop system is described by the following equations

#(l) = [A4+BKC] (1)

=1

+ A BiKCy ] a(t)

]
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m

= [Ao+ Y (kidi + NE) 4+ wi B + > Mipi By ] (1) (6)
=1 1,7
where
AO - A0—|—B0[X’CO (7)
E} = BiKCy (8)
B = ByKC; (9)
E; = BKC; (10)

The problem can now be formulated as follows:

“If K is a stabilizing output feedback matrix for the nominal continuous system described
by (Ao, Bo, Cy), that is Ag stable, find the conditions that have to be satisfied by the parameters
Kiy Aiy ftist = 1,..,m, so that the closed loop system of ( 6 ) remains asymptotically stable.”

It has already been stated, in the introduction, that the static output feedback analysis
includes the dynamic output feedback case. Note also that the results presented here apply
to the linear state feedback case as well. To see this, let g, = 0,2 = 1,..,m and F' = KC
and consider the static state feedback law u(t) = Fx(t). As indicated in [9] and [15], a
necessary and sufficient condition for a linear time-invariant system to be stabilizable using
a linear time-invariant dynamic state feedback law is that it is stabilizable using a static
state feedback law. Hence with the definitions above, we see that our results, when applied
to the static state feedback case are general enough to include the dynamic state feedback
case.

At this point, we should mention that all the analysis techniques presented here are
intended to deal with the problem of product terms of the uncertain parameters that enter
the uncertainty matrix. When only the system matrix A is perturbed, or A together with
either the input matrix B or the output matrix €', then no such product terms exist. In
these cases, the present techniques can definitely be applied as well. Note however that this
is a problem for which numerous approaches and useful results can be found in the literature,
as indicated in the introduction above.

2.2 First Approach

Since K has been assumed to be a stabilizing gain matrix for the nominal system, then there
exists a symmetric positive definite matrix P, which is the unique solution of the Lyapunov
equation
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PAy+ AP +21,=0

We define

P, = PA; 4+ ATP

P} = PE)+ (EMN'P
P! = PEf4(EY'P

1
Py = 5 [PE;+(Ey)" P
and

K [ K1 Ko Kom ]T
A= XX - )T
M = [ p © Hm ]T
0 = [0]=[K" AT MT "

where P;, P, P! Py € R K,A, M € R™ and © € ®>",

We also define

Po= [P PP
Py [(PHT (P! (P
B, [P (P! (Pt
m = [p"pr PRI
and
Pll P12 le
P/\p, =
Pml Pm2 Pmm

H = Omn Omn P/\p,

(11)

—
-~J

AA/_\/_\
—
oo

— e

(25)

where P, P, ]5M € Rrnxn qIr g RImexn - py e R 1 e RIS and O, denotes

the 7™ gquare matrix that has zero elements.
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Theorem 2.2.1 When the output feedback law (5 ) is applied to the linear continuous
system (1 ), ( 2 ) with structured uncertainties of ( 3 ), ( 4 ), then the closed loop system
( 6 ) remains asymptotically stable, when the uncertainty parameters satisfy the relation

3m 1
(3062) Moo Z4+11) < 2 = N[5 (IT) 2711 (26)
=1

(a4

where 0;,11*, and 11 are defined in ( 19 ), ( 23 ), and ( 25 ) respectively, Z can be any
positive definite matriz € R and A,..(A) denotes the maximum eigenvalue of the
matriz A .

Proof: We consider the following Lyapunov function

Viz) = 2T Px (27)

where P is the unique positive definite matrix defined in ( 11 ). The derivative of this
function is

V(z) = 2"[PA+ ATP+Y wi( PA+ ATP)

=1
£ N(PE +(EN'P )+ Yl PEC+(BX)TP)
+§ Aipi( PE;+ ELP ) 2 B
i
= 27 [ =2l + f:(mpi + NP P A+ 22 N Py ] (28)
= o7 [ =21, + (g L)+ (0w L,)" 11 (é) ®lI,) ]z (29)

where the Lyapunov equation ( 11 ) and definitions ( 12 )-( 25 ) have been used and @
denotes the Kronecker product. For any two suitably dimensioned matrices X, ¥, and any
positive scalar «, the following matrix inequalities hold

0 < (aXZ7—VZ3)(aXZ7 -0z 3)"
1
XUl ox? < aXZXT 4+ —vz7'ut (30)
o
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where 7 can be any positive definite matrix of appropriate dimensions. Since (O® I,,)TTT*
is a symmetric matrix, the previous inequality gives

200 L)' 1" = (@ L) '+ ()" (0 1,)
< aO@@L)ZOL)+ L ()t z=* 10~ (31)

(a4

Hence, ( 29 ) can be rewritten as follows

Viz) < 27 [—=2I, + g ©w1) 2Ol

+ % " Zz7' '+ (0 L,) ' I(0al,)]
= 2T [ =21, + % Itz + (0 ]n)T(% Z+1)(O0l,) ]
< 2t [ =2I, + % (5" 271 11 + AW(% Z+1)(070) I, ]«
= 2" { [Amm(g Z +10) (%93) — 2] 1, + % QISR
= 270z . (32)

From this relation, we see that in order to maintain V(:l:) < 0, it suffices to have
Amaz(®) < 0. We know that for any matrix A € R"*", the following property holds

MN(BL, + A) =B+ M(A), i=1,..m (33)

where 3 can be any real number and \;(A) denotes the ith eigenvalue of the matrix A.

Hence, V(:l:) < 0 if the following inequality holds

1 3m
Masl - ()7 27110 + Amx(g Z4+10) (3602 —2<0 (34)
=1
Now ( 26 ) follows easily. QED

It has been stated that Z can be any positive definite matrix. For the cases, where Z = 1
gives the best results, that is the largest bounds for the uncertainty parameters, we have the
following Lemma. First, we define

& = Apaa| (IF)7 117 ] (35)
£ = Apao(ID) (36)
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Lemma 2.2.2 (a) If ¢ < 0 and [£] > & then the closed loop system ( 6 ) remains

8
asymptotically stable in the whole parameter space R>™.

(b) If ¢ < 0 and « is selected so that o < min(%, 2|€|), then the whole R3™ outside
the hypersphere with radius

R= 2 (37)
belongs to the solution space.

(¢c) If £ > 0 and « is selected so that o > 54—*, then the hypersphere with R in ( 37 )
above belongs to the solution space.

Proof: (a)If & < 0, then for § < [{], we have § 4+ ¢ < 0. Similarly, for § > %*,

we have that 2 — %f* > 0. Hence, by selecting % < 5 < [¢], we have that the solution
space is the whole R>™.

(b) By selecting o < min(i—*, 2|£]), we have that £+ ¢ < 0 and 2 — =¢* < 0, which
implies that the solution lies outside the hypersphere with radius, as indicated in ( 37 ).

(c) If ¢ > 0, and we select o > 54—*, then both £ 4¢ > 0 and 2 — ;=¢* > 0. Hence,
the hypersphere with radius R of ( 37 ) belongs to the solution space. QED

It should be noted that Theorem 2.2.1 and Lemma 2.2.2 above provide only sufficient
conditions that have to be satisfied by the uncertain parameters in order to maintain closed
loop asymptotic stability.

2.3 Second Approach

The main results of this section are given in Theorem 2.3.2. Before we show these results,
we need the following theorem, which has been proven in [4].

Theorem 2.3.1 Consider i(t) = Ax(t), where A is a stability matriz; let P = PT > 0 and
Q= QT >0, sothat ATP+PA+Q = 0. Suppose that A — A+AA, then y(t) = (A+AA)y(1)

remains asymptotically stable if any of these two equivalent inequalities holds

(AA) Q™' (AA)T < iP‘lQP (38)

(AATPQTIP(AA) < i@ (39)
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Now, we define

= = PQ_IP (40)
A=A A Ay (1)
Ey = [(EN)" (B)" (£ " (42)
E, = [(EH)T (BT (Es)" " (43)
v o= [AT ET ET )T (44)
and
h h Elm
2 2 2
EM = : (45)
Eml Em2 Emm
2 2 2
h h Eml
. 2 2 2
Eye=1 + 1 (46)
Eim B ., Emm
2 2 2

Omn E/\u Omn

Where A7EN’/\7EN’M c gETnnxn7 Z* c yeSmn)(n7 E/\M and ENW/\M c yETanan7 and Z c %Smnxiﬁmn‘

Theorem 2.3.2 When the output feedback law (5 ) is applied to the linear continuous
systems (1), ( 2 ) with structured uncertainties of ( 3 ), ( 4 ), then the closed loop system
( 6 ) remains asymptotically stable, when the uncertainty parameters satisfy the relation

(%ﬂ: 02) < o [ Umal’(aZ —I_ E) U’?naac(z*) ]
= 2[0mae( T2 21 E4Z) 02,,,(8)]

VIomar(aZ +Z) 02, (5P 4 0nanl L EZEHE) 02,,(5) 00in(Q)
2 [Omae LEZTE43)

_|_

where =, ¥*, ¥ are as defined in ( 40 ), ( 44 ), ( 47 ) above, and Z can be any positive
definite matriz € R"*",
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Proof: Using ( 16 )-( 19 ), ( 41 )-( 47 ), we can rewrite ( 6 ) as follows

where

#(t) = ( Ay + AA) z(t) (49)

AA=(00L)"Y + (00,) 2 (0a1,) (50)

From Theorem 2.3.1, we see that ( 39 ) is a sufficient condition for ( 49 ) to remain

asymptotically stable.
We define

I, = (0a,)' ¥ (51)
r, = ©aL)'YO0l,) (52)
Ay = (PQ7'P)T, = =T, (53)

With these definitions, we have

(AA)T = (AA)

r'zry, + 1tz + 17z, + 17214

IT=1, + 1720+ T A, + AL DY (54)
1

FlTErl—|—F2TEF2—|—ozF1TZF1—|—EA2TZ‘1A2 (55)

1
I'T (aZ +2) Ty + rg[azz—l

[1]

+E]T, (56)

where obviously ( 30 ) was used in ( 54 ) for X = I'T and ¥ = AZ. From ( 56 ), we see
that the following relations provide a sufficient condition for ( 39 ) to hold

Traal(AA)T Z (AA)

IA

IA

A

O-max[rf (OéZ —I' E) Fl] —I' O-max[rg (
Omaz(@Z + E) 07,,,(X7) (070)
O ~EZTVELE) 02, (3) (070)
(8%
1
Tin( Q) (57)

10
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or finally

- 7-1= : 2
EZTVE4E) 0l Z@

[maz(

|

1
+ [ Oman(aZ +Z) 02, ( 202 — Opin(~ I Q) < 0 (58)

We see that the 2 roots of ( 58 ) have opposite sign, and therefore the solution is as
indicated in ( 48 ). QED

3 Discrete-Time Systems

3.1 Unstructured Perturbations in A

We consider linear discete-time systems with the state-space description

w(k+1)=Ax(k) (59)

where x € R” is the state vector and A an asymptotically stable matrix. Therefore, for
every symmetric positive definite matrix (), we can find a symmetric positive definite matrix
P, which is the unique solution of the Lyapunov equation

ATPA-P+Q=0 (60)

When the state matrix A is perturbed by the matrix AA, then for the perturbed system

y(k+1) = (A+AA) 2(k) (61)

the following theorem holds. First define

O =ATPZ71PA (62)

Theorem 3.1.1 Consider the linear discrete-time system ( 59 ), where A is an asymptoti-
cally stable matriz that satisfies ( 60 ). Suppose that A — A+ AA, then the perturbed system
of ( 61 ) remains asymptotically stable, if

11
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(AN (07 +P) (M) + -0y < Q (63)

or

Umm(Q) - O-max(i Ql)
Omaz(aZ + P)

Omar(AA) < J (64)

where P, Q) are defined in ( 60 ), Qy in ( 62 ), Z can be any positive definite matriz, and

« s any positive number that satisfies

Umax(Ql)
a > 7Umm(Q) (65)

Proof: We rewrite ( 60 ) as follows

(A+AA)TP(A+AA)— P+ Q — (AA)TP(AA) — ATP(AA) — (AA)TPA=0  (66)

Using the direct method of Lyapunov, we see that (A + AA) remains an asymptotically
stable matrix, if

Q=0Q— (AA)TP(AA) — ATP(AA) — (AATPA > 0 (67)

Similarly to ( 30 ), we know that the following inequalities hold for any positive definite
matrix Z and positive number «

1 1 1 1 1 1
0 < (Z:X ——72720) (72X — —Z72")
o o

1
X4 0TX < oXTZX + —v'Z7'v (68)
(8%

Applying ( 68 ) for X = AA and U = PA, we have

(AATPA+ ATP(AA) < o(AA)TZ(AA)+ 1 0
o

(AADTP(AA) + (AA)TPA+ ATP(AA) < (AT (aZ + P)(AA) + é O, (69)

12
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In view of ( 67 ), ( 69 ), we see that

Q0 > Q- (AN (aZ + PY(AA) — L0, (70)

Therefore, a sufficient condition for @ to be positive definite is that the RHS of (70 ) is
positive definite, from which ( 63 ) follows easily. Note that a can be chosen as any positive
number that satisfies ( 63 ). Next a sufficient lower bound for « is derived. We know that
the following equivalence holds for any two positive definite matrices A, B

A< B & 0pu(A) < 0pn(B) (71)
Since
Umax(A+B) S O-max(A)—l'O-maac(B) (72)
Umax(AB) S Umax(A) O-maac(B) (73)
we have

Omanl(AA)T (aZ + P) (AA) + é U] < ol (AA)T (@Z + P) (AA)]
1
+ O-max(a )

1
< 02, (AA) Opa(@Z + P) + 0pan(— O )(74)
a
In view of ( 71 ), ( 74 ), we see that a sufficient condition for ( 63 ) to hold is

O'Tznal,(AA) O-max(aZ —I' P) —I' O-mal’(é Ql) < Umzn(Q) (75)

from which ( 64 ) follows easily. Note that o has to satisfy ( 65 ), in order to maintain
the RHS of ( 64 ) positive. QED

3.2 Structured Perturbations in A

We consider the case that the perturbation matrix A is described by

13
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=1

where x;,¢ = 1,..,m denote real, uncertain parameters and A;,2 = 1,..,m are constant,
known matrices.

We need again the definitions
K = [k]=[k k2 - &' (77)
= [Af A4y o ALT (78)

Theorem 3.2.1 The linear discrete-time system ( 61 ) with structured perturbations of the
form of (76 ) remains asymptotically stable, when the uncertainty parameters satisfy

“ 2 < O-mzn(cg) - O-max(i Ql)
=1 O-Tznax(A) Umal’(aZ + P)

(79)

where Oy, Z, ki, A, are defined in (62 ), (68), (77), (78 ) respectively, and « is a
positive number that satisfies ( 65 ).

Proof: In view of ( 76 ), ( 77 ), ( 78 ) we have

AA=(K&I,)" A (80)
In view of ( 80 ), we can rewrite ( 63 ) as follows
- T 31T - T 3 1
[(KalL) Al (aZ+ P)[(K®I,) A]—I—EQ1<Q (81)

It can be easily shown that

(K@ L)= (K2 L) (K@ L) = K'K (82)

2
O maz

From (71 ), ( 72 ), ( 73), ( 82 ), we get the following sufficient condition for ( 81 ) to
hold

14
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o2 (A) opas(aZ + P) (KTK) + amw(é D) < 0min(Q) (83)

or equivalently

N 1

(22 %7) 0 A) Omaz(@Z + P) < 0min(Q) = Oman( = () (84)
=1

from which ( 79 ) follows easily, under the condition that « has to be selected in order to

satisfy ( 65 ). QED

3.3 Perturbations in all System Matrices
We consider the linear discrete-time systems with the state space description
w(k+1) = Ax(k)+ Bu(k) (85)
y(k) = Ca(k) (86)

where © € R" is the state vector, u € R" is the input vector and y € R? is the output
vector. Similarly to section 2.1, the state-space matrices above are described by ( 3 ), (4 ),
that is

A= Ao + Z /iiAZ', B = BO + Z )\sz (87)
=1 =1
C=Co+ > 1C; (88)
=1

where k;, A;, 11; denote the real, uncertain parameters which describe the perturbations
for the state-space matrices A, B, C respectively. Once more, it has been assumed that
each of the state matrices involves m distinct uncertain parameters and the analysis that
follows can be extended to the case, where the state matrices above have different number
of perturbation parameters.

We consider the output feedback law

u(k) = Ky(k) (39)

15
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where K is a stabilizing ouput feedback matrix for the nominal discrete-time system
(Ao, Bo, Cy). Then, similarly to ( 6 ), the closed loop system is described by

z(k+1) = [A4+ BKC]«(k)

= [Ao+ D (kiAi + M) 4 pil5) + > N By ] (k) (90)

=1 ]

where Ag, B3, E¥, E;; are as defined in ( 7 )-( 10 ). The problem can now be formulated

as follows:

“If K is a stabilizing output feedback matrixz for the nominal discrete-time system de-
seribed by (Ao, Bo, Co), that is Ag stable, find the conditions that have to be satisfied by the
uncertainty parameters £;, A\;, i, ¢ = 1,..,m, so that the closed loop system ( 90 ) remains
asymptotically stable.”

Before we present the main results of this section, we need to recall the previous definitions

of (16 )-( 19 ), and ( 41 )-( 47 ). We also define
Oy, = ALPZ7IPA, (91)

Theorem 3.3.1 When the output feedback law ( 89 ) is applied to the linear discrete-time
systems (85 ), ( 86 ) with structured uncertainties of ( 87 ), ( 88 ), then the closed loop
system ( 90 ) remains asymptotically stable, when the uncertainty parameters satisfy the
relation

S < 3ZAZ)

maxr

\/Umax OéZ —I_ P Ufnaw(z*) —I_ 2 Umal’(aZ —I_ P) O-Tznal’(z) [Umzn(Q) - O-max(i Qz) ]
2 opaz(Z + P) 02, (%)

maxr

where X7, X, Oy, are as defined in ( 44 ), ( 47 ), ( 91 ) above, Z can be any positive

definite matriz € ™", and « can be any positive number that satisfies

Umax(QZ)
a > 7Umm(Q) (93)

16
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Proof: Using (116 )-( 19 ), (41 )-( 47 ), we can rewrite ( 90 ) as follows

ek +1) = (Ao + AA) x(k) (94)

where

AA=0OL)'S + (00,) 2 (0al,) (95)

From Theorem 3.1.1, we have the following sufficient condition for ( 94 ) to remain
asymptotically stable

1
(AA)T (aZ 4+ P) (AA) + ~h <Q (96)
where P, @, and Ay satisfy the Lyapunov equation ( 60 ), that is
ATPA - P4+ Q=0 (97)

We define

o, = (aZ+P)
o, = (aZ+P)

I (98)
I, (99)

ISR

With definitions ( 51 ), ( 52 ) and ( 98 ), ( 99 ), we have

(AA)T (aZ + P) (AA) = TT (@Z+P)Ty + I (aZ + P) T,
+IT (@Z+P)Ty + T (aZ +P) Ty
= 1T (aZ+P)Ty + IS (aZ +P) Ty

+ ol @, + ol @, (100)
< I'T(@Z+P)Ty + T (aZ + P) Ty

+ o7 o, + o @, (101)
= 21T (aZ+P)Ty + 21T (aZ 4+ P) Ty (102)

where obviously ( 68 ) was used in ( 100 ) for « = 1 and Z = [. From ( 102 ), we see
that the following relations provide a sufficient condition for ( 96 ) to hold
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IA

Omanl(AA)T (aZ + P) (AA) + é 0] 2 Opan 1T (aZ + P) Ty ]

1
‘I’ 2 Umax[ FT (OéZ —I' P) FZ ] —I' O-max(a QZ)

2 0ar(aZ + P) 0y,,(57) (670)
+2 Umax(OéZ +P)oy,.(X) (076)?

+ O-max(a Q)
< Omin(Q) (103)

IA

or finally

[2 Opmaz(aZ + P) o, ( Z (92 [2 Omaz(aZ + P) o, ( Z (92

+ [O-max(a Q2) - Umm(Q) ] < 0 (104)

Selecting o to satisfy (193 ), we see that the 2 roots of ( 104 ) have opposite sign, and there-
fore the solution is as indicated in ( 92 ). QED

4 Illustrative Examples

Example 1  Consider the following uncertain continuous system

1=(o 2 )Gy o
p=(5)+ ) s
C=(0 1)+ m (=3 1) (107)

Note that this system was studied in [18] under the restriction that k1 = Ay = py = &.
First we apply ( 26 ) of Theorem 2.2.1. For a given output feedback gain K = 3, let o = 63
and
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0.9762  —0.0001 —0.0269 0.0003 —0.0272 —0.0001
—0.0001 0.8706  —0.0002 0.0106 —0.0001 —0.0111
7 —0.0269 —0.0002 0.8736  0.0005 0.0638 0.0254 (108)
0.0003 0.0106 0.0005  0.8471  0.0002 0.0289
—0.0272  —0.0001  0.0638  0.0002 08757 —0.0252

—0.0001 —0.0111 0.0254 0.0289 —0.0252  0.9391

Then

k7 4+ A+ i < (0.1806)° (109)

Then, we apply ( 48 ) of Theorem 2.3.2 for the same output feedback gain K. Now, the
largest hypersphere radius is obtained, when we select () = 2/, a = 0.003 and

0.9518 0.0094
Z= (0.0094 0.9982) (110)
In that case, we obtain
KD+ A 4 pd < (0.0293)2 (111)

Now, we consider a different problem. Specifically, we want to find the output feedback
gain K that maximizes the hypersphere radius, when the second approach is followed; note
that K = 3 gave the best results for the first approach. Now, the largest bound is obtained,
when we consider output feedback gain K =1, ) = 21, a = 0.0008 and

5.3644  —1.9444
Z= (—1.9444 6.7889 ) (112)
Then
Ky + A+ ud < (0.0696) (113)
Note the considerable improvement compared to ( 111 ).
Example 2 Consider the following uncertain discrete-time system from [11]
x(k)=(A+ AA) x(k) (114)
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where

0.20 0.30
A= (0.10 —0.15) (115)

Using ( 64 ) of Theorem 3.1.1 for Q) = I, a = 0.2702 and

2.0399  —0.2037
7= (—0.2037 1.4586 ) (116)
we obtain
Omaz(AA) < 0.6787 (117)
which compares favorably to the result of [11], which is
Omaz(AA) < 0.6373 (118)
Example 3  Consider the same nominal system as before, but now with structured
perturbations of the form of ( 76 ), with m = 3 and
10 0.1 —-0.5 9 1 0.6
A1_<—1 5)’ A2_< 0 —3)’ A3_<1 0.3) (119)
Using (79 ) of Theorem 3.2.1 for @) = I, a = 0.40 and
1.3462  —0.1184
7= (—0.1184 0.8786 ) (120)
we obtain
k7 + K5 + K5 < (0.0606) (121)

that is a sphere with radius R = 0.0606, whereas the method suggested in [11] gives

ki < 00348  i=1,2,3 (122)
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d = cube edge
2*0.0348

R = sphere radius = 0.0606
Rc = cube radius =0.0603

Figure 1: Example 3

Note that, as we can see in Fig. 1, the cube implied by ( 122 ) is completely included in
the sphere of ( 121 ), which shows that our bound is less conservative than the one of [11].

Example 4  Consider the following uncertain discrete-time system

A= (0?110 —102?5>+ ’“(—11 8) (123)
= (D)o n (0) o1
C=(12 —15)+ (-1 1) (125)

For a given output feedback gain of K = 0.80, we use ( 92 ) of Theorem 3.3.1 for ) = 21,
a = 0.35 and

0.8160 0.0345
Z = (0.0345 1.2865) (126)

to obtain
KD+ A2 4 pd < (0.2654)° (127)
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Note that the values of @ and Z in all the examples above have been decided experimen-
tally to give the best bound, that is the largest radius for the hypersphere within which the
uncertain parameters can vary. Note also that for all the cases that () had to be selected in
the discrete Lyapunov equations (examples 2-4 above), the choice of ) = ol gave the best
results.

5 Conclusions

In this paper, conditions for robust stability in continuous systems with output feedback
controllers, when independent uncertain parameters describe the perturbations of all the
state-space matrices, have been derived. Two different approaches have been presented.
Then, conditions for robust stability in linear discrete-time systems with both unstructured
and structured perturbations in the system matrix A have been derived. These conditions
provide bounds that improve the ones found via the methodology suggested in [11]. A suffi-
cient condition for robust stability in discrete-time systems with output feedback controllers,
when independent uncertain parameters describe the perturbations of all the state-space ma-
trices, has also been derived. The approach for all the problems studied above is based on
Lyapunov techniques and several examples have been used to illustrate the results.

Issues to be addressed include reduction of conservatism; the extension of the present
results to the case where the bounds do not have to be necessarily symmetric with respect
to the origin; and the study of the case where the parameters are nonlinear functions of an
uncertainty. Another issue that would be of considerable interest is the development of a
systematic way-procedure, possibly based on optimization techniques, to obtain the optimal
positive matrix needed for our theorems above, where with optimal matrix we mean the
matrix that could give the best bounds.
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