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On the Suprema1 Controllable Sublanguage 
in the Discrete-Event Model of 

Nondeterministic Hybrid Control Systems 

Xiaojun Yang, Michael D. Lemmon, and Panos J. Antsaklis 

Abstract-This paper is concerned with the logical control of hybrid 
control systems (HCS). It is assumed that a discrete-event system PES) 
plant model has already been extracted from the continuous-time plant. 
The problem of hybrid control system design can then be solved by 
applying logical DES controller synthesis techniques to the extracted DES 
plant. Traditional DES synthesis methods, however, are not always ap- 
plicable since the extracted plant DES will often exhibit nondeterministic 
transitions. This paper presents an extension of certain DES controuer 
synthesis techniques to the nondeterministic control automaton found in 
NCS. In particular, this paper derives a formula computing the supremd 
controllable sublanguage of a given specification language under the 
assumption that the DES plant exhibits nondeterministic transitions. 

I. INTRODUCTION 
In many industrial applicafions, control systems can be represented 

by a continuous-time plant controlled by a discrete-event system. 
Such systems are called hybrid control systems (HCS). There has 
recently been considerable activity investigating the modeling and 
supervision of HCS’s [1]-[9]. This paper uses the HCS modeling 
framework proposed by [7] and [8]. In this framework, a discrete- 
event system (DES) is extracted from the continuous-state system 
(CSS) plant. This DES is called the DES plant. Once such a logical 
model of the plant has been extracted, a DES supervisor for the 
system can be obtained using conventional DES controller synthesis 
techniques such as the Ramadge-Wonham (RW) [lo] synthesis. DES 
plants obtained in this way, however, are often nondeterministic, and 
the RW synthesis does not pertain to nondetemnistic DES’s. Earlier 
work [7], [8] extended an iterative supervisor synthesis algorithm 
[lo] to the design of HCS controllers. This paper follows a different 
approach in which a formula is derived to compute the supremal 
controllable sublanguage. The result is an extension of prior work 
in [ 1 I] to the class of nondeterministic DES plants found in hybrid 
control systems. 

The remainder of this paper is organized as follows. Secaon II 
discusses the HCS modeling framework and identifies the way in 
which nondeterministic DES’s arise in HCS. Section m introduces 
some necessary technical definitions which are used in the remainder 
of the paper. Section IV characterizes the supremal live sublanguage 
of a nondeterministic finite automaton associated with the DES 
plant. Section V derives the formula for the supremal controllable 
sublanguage of the DES plant. Section VI provides an example, and 
concluding remarks will be found in Section VII. 

11. HYBRID CONTROL SYSTEMS 

Hybrid control systems arise when a continuous-state (CSS) plant 
is controlled by a DES controller. An important HCS modeling 
framework was first discussed in [7] and [8]. In this modeling 
framework, a simplified interface is used to facilitate communication 
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Fig. 1. Hybrid control system. 

between the CSS plant and the DES controller. A block diagram 
of the assumed connection is shown in Fig. 1. The CSS plant 
accepts a continuous reference input trajectory, F ( t ) ,  and outputs the 
system state vector trajectory Z ( t ) .  The interface consists of two 
subsystems: the actuator and generator. The generator transforms 
the plant state trajectory, S ( t )  into a sequence of discrete output 
symbols denoted as It.[n]. The output sequence, z[n], draws its 
symbols from a finite alphabet, X ,  of output symbols. The DES 
controller uses this sequence of output symbols as inputs and outputs 
a sequence of control symbols, F[n] drawn from an alphabet R.  The 
interface actuator transforms this sequence of control symbols into the 
reference trajectory, T ( t ) .  Note that in the remainder of this paper, 
tilded small letters will denote symbols and barred letters will denote 
real vectors. 

The CSS plant is assumed to be represented by a differential 
equation 

where 2 E Rn, F E Rm, and f : R” x Rm + Rn. The hybrid 
modeling framework in 171 and [8] has the interface generator issue 
output symbols with respect to an assumed partition of the CSS 
plant’s state space. In particular, let B denote a collection of open 
sets which partition the CSS plant’s state space. This event partition, 
B, is denoted as 

where b, is an open subset of Rn (i = 1,. . . , N ) .  The set b, is 
referred to as the event set. Associated with each event set is a 
state symbol 5% (i = l,... , N )  drawn from a finite alphabet P .  
We will associate the output symbols X with the boundaries of the 
event sets The generator will issue the jth output symbol, G J ,  when 
the CSS plant’s state trajectory, S ( t ) ,  crosses the 3th boundary of 
an event set and enters into a new event set. The output symbol 
sequence, Z [ n ] ,  therefore marks the entrance of the CSS plant state 
into event sets. Fig. 2 illustrates the situation outlined above; this 
figure shows three event sets with associated state symbols, 171, $ 2 ,  

and $3.  Two CSS plant trajectories (labeled A and B) are shown. 
Both trajectories start in the event set marked by state symbol $1. 

The solid circles in the figure mark where these trajectories cross the 
event set boundaries. The resulting state symbol sequences $[n] and 
output symbol sequences Z[n] are shown for both trajectories. 
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Fig. 2. 
plant’s state space. 

Output symbols are generated with respect to a partition of the CSS 

The output symbols are used as inputs to the DES controller. 
In response to these symbolic inputs, the DES controller outputs 
a control symbol, r X .  The interface actuator maps this symbol onto 
a specific control reference input vector, F .  Assume that the DES 
controller outputs the symbol Fz, and assume that the actuator maps 
this onto a control reference vector f ,  E 8”. The CSS plant’s 
state equation under the direction of control policy F, is therefore 
given by the differential equation k = f ( 3 ,  F , ) ,  The behavior of the 
hybrid system can therefore be viewed as a system that switches 
between different constant reference inputs. The “switching” be- 
tween multiple controllers is a distinctive feature of the hybrid 
systems found in [7] and [8]. The following results are therefore 
of general interest in the use and design of switched multiple 
controllers. 

The symbolic behavior of the plant is explicitly seen from the 
DES controller’s perspective. In particular, Fig. 1 shows that, from 
the controller’s perspective, the plant is a discrete-event system. The 
combination of CSS plant and interface accepts the control symbol 
sequence F[n] as an input and outputs the output symbol sequence 
?[,I. It is therefore possible to define a DES plant whose language 
represents the symbolic behavior of the CSS plant. To define such a 
DES plant, note that the state symbol sequence, p[n], represents the 
symbolic evolution of the CSS plant over the state-space partition 
B. It therefore makes sense to model the DES plant as a controlled 
finite automaton. The automaton states consist of the state symbols in 
P ,  the automaton’s output is a language generated over the alphabet 
of output symbols, X, and the controlled inputs are drawn from the 
control symbol alphabet R. 

An interesting aspect of the DES plant’s behavior is that it is 
distinctly nondeterministic. This fact is illustrated in Fig. 2. The figure 
shows two trajectories generated by the same control reference input. 
Both trajectories originate in the same DES plant state, $1.  Precisely 
to which DES states are transitioned will depend upon where the CSS 
plant state, 3,  is when the control symbol is issued. Fig. 2 shows 
that for a given control symbol, there are at least two possible plant 
states that the given trajectory can reach from DES plant state PI. 
Nondeterminism in the DES plant therefore arises due to uncertainty 
in the DES states reached under a controlled transition. This type of 
nondeterminism is characteristic of HCS. In fact, transitions within 
a DES plant will usually be nondeterministic unless the boundaries 
of the event sets correspond to invariant manifolds of the CSS plant. 
This fact is significant with regard to the “logical stability” of HCS. 
See [9] for related discussions. 

On the basis of the preceding discussion, it is apparent that the 
DES plant can be modeled as a nondeterministic controlled finite 
automaton. In particular, t_he DES pLant, G, will be represented as the 
fije-tuple, G = { P , X ,  R , f , $ } .  P is the %et of DES plant states, 
X is the alphabet of output symbols, a:d R-is the control symbol 
alphabet, The enabling fun_ction is-[ : P x 5 ---f Px where Pz is 
the power set of alphabet X .  q : P x X -+ P is the state transition 

function. Note that the DES plant’s nondeterminism arises through 
the enabling function. 

There have been many prior papers dealing with nondeterministic 
logical DES [12]-[19], and it is appropriate to place this paper’s 
work in the context of that earlier research. Most prior works 
[12]-[16], [18] treat nondeterministic DES’s in which one event 
may transition the DES from one state to one of many states. This 
type of nondeterminism has been dealt with in discussing event 
observability issues. This prior work, however, does not explicitly 
deal with nondeterministic control problems which arise when one 
control signal cannot enable events individually so that one control 
signal may cause several potential discrete state transitions. Cases 
in which the controller depends on the language generated by the 
DES plant do not require a separate consideration of nondeterminism 
as any language which can be accepted by a nondeterministic finite 
automaton (NFA) is also accepted by deterministic finite automaton 
(DFA) [20]. References [17] and [19] address issues associated with 
nondeterministic controllers. There has been relatively little work, 
however, pertaining to nondeterminism in the DES plant as it arises in 
HCS. In our systems we are concerned with nondeterministic control 
mechanism in which one control command may lead to several 
discrete state transitions. In our framework, the enabling function 
is fixed by the HCS’s state space partition, B, and the dynamics 
of the CSS plant. The enabling function is state dependent in the 
sense that it may vary with different DES plant states. This form 
of nondeterminism arises in a natural manner in HCS and does not 
appear to have been studied in detail by previous DES researchers. 

111. PRELIMINARY DEFINITIONS 

X* denotes the set of all finite strings of the output symbols in X 
including the empty string e. A subset L X *  is called a language 
defined on X .  The closure of a language, E ,  is the set of all prefixes 
of strings in L. L is closed if L = 1. The closure of a string s E L 
generates a prefix closed sublanguage, S, in E .  The behavLor of the 
DES plant, G, is represented by the language, L(G) C X * .  Since 
L(G) is generated by a finite automaton it is known to be prefix 
closed and regular. 

To deal with nondeterminism induced by the controlled DES 
plant’s enabling function, we will introduce two other automatons, 
G, and G,. The automaton G, is a deterministic finite automaton 
(DFA) describing the DES plant’s output behavior. The automaton G, 
is a nondeterministic finite automaton (NFA) describing the plant’s 
response to input commands. These two automatons explicitly show 
how nondeterminism enters the hybrid control system. G, describes 
how the plant symbol behavior is generated from the plant automaton, 
while G, is the control mechanism embedded in the dynamics of the 
controlled system. The use of these two automatons allow explicit 
representations for the enabling sets and provides physical insight 
into the hybrid control system’s internal operation. That insight is 
instrumental in deriving the results presented below. 

The automaton G, is given by the four-tuple 

(3) 

where P is the plant state alphabet, X is the-alphabet of output 
symbols, PO is an initial plant state, and li, : P x X -+ P is the 
state transition function. The language generated by G, is denoted 
as L(G,) C X * .  

The automaton, G,, is an NFA whose_language is over an “exten- 
sion” of the control symbol alphabet R. R is extended so that the 
dependence of the enabling function on the DES plant state can be 
explicitly noted. In particular, let i denote the index of the zth symbol 
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in P ,  and let j denote the index of the j t h  symbol in 2% The extended 
control alphabet, R,, consists of a set of symbols, f ; j  such that 

Re = {TZJ li : state index, and j : control symbol index}. (4) 

The symbol T X t 3  therefore means that the control symbol f, E 2 was 
issued when the plant state was 5% E P. The automaton G, is given 
by the four-tuple 

Gr 1 (p>Re>v , j j '~ )  (5)  

where P is the plant state alphabet, R, is the extended controI symbol 
alphabet, and Po is the initial state. The state transition function is a 
mapping v : P x R, t Pp where Pp is the power set of alphabet 
P and 

This function maps the DES plant's current state and extended control 
symbol onto a collection of possible next plant states. 

The following sections will need to map strings in L(G,) onto 
strings generated by G,. In particular, we define this operator, 
TG : L(G,) --+ L(G,), by the relation 

where k denotes sequence index, ik discrete state index, and j k  
control symbol index. For all F p s  E e, TG ( f p s )  represents all the 
output symbol strings generated by F p s  in G. The inverse image of 
a string Zs E L(G,) onto the domain of TG will be denoted as 
T G ' ( ? ~ ) .  In particular 

TG1(Zc,) represents all the control symbol strings which possibly 
generate Zs in G. If s E X * ,  then the pre-image of s under TG will 
sometimes be denoted as ?, E TG1 ( s )  . 

IV. SUPREMAL LIVE SUBLANGUAGES 
Deadlocks occur in an automaton when it fails to generate any 

more output symbols. An automaton without deadlocks will be said 
to be live. Live sublanguages are important in the characterization ot 
maximally permissive behaviors in controlled DES's. For this reason, 
a characterization of the live sublanguages of G, will be needed. The 
following definition provides just such a characterization. 

Definition I :  Consider a sublanguage L of L(G,) and a string 
s E L. Let R,lS be a subset of control symbols in Re such that 

Aels = {TiJ E Re : sf,, E L(G,)}. (10) 

The set Reis is called realizable controls from string s. 

there exists T2, in the realizable set, Reis, such that s fZJ  E L. 

not live with respect to G,. 

A string s E L is said to be live with respect to G, if and only if 

A string s in a sublanguage L of L(G,) causes deadlock if it is 

A sublanguage L of L(G,) is said to be live with respect to G, 
if it contains no strings causing deadlock. 

Note that the notion of liveness defined above is somewhat more 
involved than similar notions found in deterministic finite automatons 
[21]. This additional complexity arises due to G, 's nondetemnism. 
In our systems, nondeterminism allows a string s E L(G,) to 
terminate in several different DES plant states. To ensure that the 
string s is live, we need to ensure that all of these realized plant 
states are not deadlocked. That is precisely what the above definition 
accomplishes. It first uses Re, ,  to identify those DES plant states 
which are reached (realized) by a string s. It then defines liveness 
with regard to those realizable controls. 

The principal result of this section concerns the existence and 
characterization of the supremal live sublanguage of L(G,). These 
results are used later to derive a formula for the supremal controllable 
sublanguage of G. The following two lemmas have well-known 
analogues in deterministic DES's [Ill. The first lemma is stated 
without proof, and the second is stated with proof. 

LRmma 1: If L1,  LZ are closed live languages, then LI U LZ is 
also a closed live language. 

Lemma 2: For a given closed language L 5 L(G,), there exists 
a supremal closed and live sublanguage of L.  

L and Lz C L such that L1 and La are 
closed live languages, then L1 U LZ L C L(G,). According to 
Lemma 1, L1 U LZ is also a closed and live language. Therefore 
closed and live languages are closed under disjunction, and we can 
conclude that the disjunction of all the closed live sublanguages of 

0 
Lemma 2 establishes the existence of a supremal live sublanguage 

of L(G,). Let Lllve denote this supremal sublanguage. To character- 
ize Ll,,,, it will be convenient to define the following operator 

D,[(L) = { s  E L which are deadlocked 

Prooj For all L1 

L is the supremal closed and live sublanguage of L. 

with respect to GT} (11) 
D ( L )  = L - Dnl(L)A: (12) 

D 2 ( L )  = D [ D ( L ) ]  (13) 

~ l ~ ~ k ( ~ )  = lim D ~ ( L ) .  (14) 
k + m  

The operator D,l(L) picks out all strings in L which cause deadlock 
in L (i.e., string which are not live in L). The operator D ( L )  is there- 
fore used to remove strings that cause deadlock in L. The following 
lemmas show that D ( L )  and Dlock(L) are closed languages. These 
lemmas are then used to prove the main result of this section which 
states that Dlock(L) is the supremd live sublanguage, Lllve. 

Lemma 3: L C L(G,) and ~ L = 1. If D ( L )  is given by (11)-(12), 
then D ( L )  C L,  D ( L )  = D ( L ) .  

= L,  D ( L )  is 

If h , c k  is given by (11)-(14), 
then Dlock(L) = Dlock(L). 

Pro@ l k s  is easily derived from Lemma 3 by mathematical 
induction. 0 

Theorem 1: L C L ( G r ) ,  L = L and L is regular. If Dlock is 
given by (11)-(14), then Dlock(L) = Lllve. 

Pro03 Lemma 4 guarantees that &&(L) is closed. It therefore 
remains to show that Dlock(L) is live and supremal. The proof is 
divided into two parts. The first part proves that the language is live, 
and the second part shows that it is supremal. 

Part 1: Assume that Dlock(L) is not live language. This means 
3s E Dnt[Dlock(L)]. Since G, is a finite automaton and by our 
prior definition on operator &&, there is a minimal finite n 
such that Dlock(L) = D " ( L )  = Dn+'(L).  Since D("+')(L) = 
D"(L)  - D,r[D"(L)]k: and s E Dnl[Dlock(L)],  then D("+l)(L)  

Prooj Since D ( L )  = L - Dnl(L)R; and 
closed [ll], and D ( L )  L. 0 

Lemma 4: L C L(G,.) and L = 
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= D l o c k ( L )  - D n l [ D l o c k ( L ) ] f i z .  S O  D"+'(L) c D l o c k ( L ) ,  which 
contradicts with D l o c k ( L )  = (L ) .  Therefore the language, 
Dlock(L/)  must be live. 

Purt2: Assume that D J o & ( L )  is not supremal. This means that 
D l o c k ( L )  C Llive. Therefore there must exist a string s E h i v e  such 
that s $! D l o c k ( L ) .  Clearly, s E c L,  so there exists a finite 
mo such that s E D""((L3 and s $! Dma+'(L)  with D"O+l(L)_= 
Dmo ( L )  -Dnl[Dmo (L)]R;. This implies that s E D,j [Dm0 (L)]R;. 
Hence, there exists t s.t. t E S such that t E D,1[Dm0 ( L ) ] .  Therefore 
t causes deadlock in Dmo ( L ) .  This means that for all k there exists i 
such that '?tk E fi+ and t causes deadlock (i.e., t F z k  $! Dmo (L ) ) .  Let 
i l  be the "state" index on this control symbol resulting in deadlock. 
Since t E S c h i v e ,  we can conclude that t E Llive. More precisely, 
this means that for all i there exists j such that i , j  E fie,, (realizable) 
and t f i j  E h i v e .  Since this holds for all i ,  we can conclude that there 
exists IC such that tr"alk E Llive. 

The above discussion concludes that there exists string so = t F i j  

such that SO E h i v e  L and SO 6 D m 0 ( L ) .  Since so E L,  there 
exists 7rLl < mo such that SO 6 Dml+'(L)  and so E D"'(L) .  
Reasoning as was done in the preceding paragraph, a string SI can 
be constructed such that SI E Llive and SI 6 Dml ( L ) .  Proceeding as 
before, we can construct a monotone decreasing sequence of integers 
m k  which eventually converge to zero after N finite steps. This 
implies that there exists a string SN E Llive such that S N  $! Do ( L )  = 
L which is a clear contradiction since Llive c L. It is therefore 
concluded that Llive is indeed the supremal live sublanguage. 0. 

This theorem indicates that the supremal closed and live sub- 
language of a given closed language defined on f i e  in HCS can 
be computed by using the Dlock operator. Since Dlock is a finite 
recursion on the simple D operator and since all computations 
involving D are basic language operations, Dlock can be determined 
using a well-defined computational procedure. 

v. FORMULA FOR THE SUPREMAL CONTROLLABLE SUBLANGUAGE 
As described above, the DES plant differs significantly from the 

traditional logical DES. Since it is generally impossible to enable 
DES plant events individually, the traditional formal definition of 
DES controllability is no longer appropriate. The following definition 
extends the concept of a specified sublanguage's controllability to the 
nondeterministic DES plants arising in hybrid control systems. Early 
versions of this definition first appeared in [22]. 

Definition 2: A language, I -  C L (G) , generated by the DES plant 
is controllable if for all w E I?: 

There exists r" E R such that w [ ( $ ( ? J ~ , w ) , r " )  C K', and 
If w = W b a  ( a  E x),  then there exists '?b E R such that 

This definition for controllability consists of two specific parts. 
The first part obviously requires that there exist control symbols 
which ensure that no deadlocked strings are generated. As noted 
earlier in our discussion on live sublanguages for G,, however, it 
will also be necessary to ensure that the strings in Ii are generated by 
control symbol strings which do not generate illegal behaviors. This 
is precisely what the second condition ensures. It guarantees that a 
string in I<* is indeed realized by a switching control policy in our 
nondeterministic plant. Early definitions of DES plant controllability 
[22] only considered the first part of the above definition. 

Since the disjunction of the controllable languages with respect to 
the same DES plant is still controllable with respect to the plant, we 
can infer that the supremal controllable sublanguage of the given 
language exists. The critical problem in designing the controller 
is to obtain the supremal controllable sublanguage of the given 
specification language. Let 1- denote the specification language of 

o? E [('@(fiO, w b ) ,  F b )  and wbE(dJ(fi0,  w b ) ,  f b )  c I?. 

G. L = L(G,), IC L ,  K = E .  KT is the supremal, closed, 
controllable sublanguage of K .  The following discussion first proves 
two technical lemmas. We then state and prove the main result of 
this paper which provides a formula for the supremal controllable 
sublanguage, ICT, of the DES plant behavior. This result is an 
extension of earlier formulas obtained in [Ill.  

L(G,), and L,  = E , ,  then TG(L,) = T'(L,). 
Proof: Since Vw E TG(L,), 3r", E L,, such that w E TG(~",). 

- -  Since Vs E W - U ,  3, E c, such that s E T G ( ~ , ) .  r", E L,, --r. 

TG(L,). Since s E T(FS),  s E TG(L), =j TG(L,) = TG(L,). 

Lemma 5: L, 

f w  C LT, * E c Lr (LT = c). so, r"s E Lr,  --r' TG(r"s)  c 
0 

Lemma 6: Let TG{*} = TG{TG'L - [TG1(L - K ) ] f i : } .  L = 
L(G,) and I< 

Pro08 V w  E TG{*}, 3f, E {*}, such that w E T(i,). 
Obviously, f, E T i ' L  and i, @ [TG1(L - IC)]& j f, @ 
TG ( L  - A-). This implies that TG ( fw  ) n ( L  - IC) = 0 (according 
to the meaning of TG1). Since L = L(G,), * T G ( ~ , )  L ,  -----) 
TG(~",) C K. Since w E TG(T",), * w E K. S O ,  T G { * }  I-. 

0 

Proof: Denote {*} = {TG'L - [TG1(L - K ) ] f i ; } .  First, 
we need to prove TG{Dlock{*}}  C K .  Dlock{*} {*}, 
* TG{Diock{*}} TG{*}. TG{*} & K (Lemma 6), 
TG{Dlock{*}} C Ii. This means TG{Dlock{*}} is the sublanguage 
of K .  

Next, we need to prove TG{Dlock{*}} is closed. Since L = 
L(G,), it is clear TG'L is the control symbol behavior of the DES 
plant, L ( GT ) . So TG L is closed. Clearly, TG L - [TG ' ( L  - K)] fi: 
is closed; according to Lemma 4, Dlock{*} is also closed. Hence, 
TG{&ck{*}} is closed by Lemma 5. 

In the following, we will prove TG{&ck{*}} is controllable. 
For all W E TG{Dlock{*}}, 3r", E Diock{*}, such that E 
TG(~ , ) .  Since Dlock{*} is closed, Tc(Z)  c TG{Dlock{*}}. 
Denote f i i  = $ ( & , U ) .  Since f, E Dloc_k{*}, there exists i such 
that f,T";j E Dlo&{*},  where T ; j  E Re (Theorem 1). Clearly, 
T~(7,T"ij) T G { D J ~ ~ ~ { * } } .  Since r",r",j is defined on R e ,  we know 
that T ~ ( f , f i ~ )  = w T ~ ( f i j ) .  SO,  w T ~ ( f ; j )  g TG{Dlock{*}}, and 
w[ [$ (Fo ,  w ) ,  f i j ]  g TG{Dlock{*}}  (according to the definition of 
TG). Hence, TG{Dlock{*}} is controllable, i.e., T G { D ~ ~ ~ ~ { * } }  & 

Finally, we need to prove TG { &&{ *}} is the supremal control- 
lable sublanguage of I(. Since we have shown that TG { Dlock { *}} & 
KT, it suffices to show that KT C T G { D ~ ~ ~ ~ { * } } .  Vs E KT there 
exists r", E Rz such that s E TG(~",)  and TG(E) C KT K L 
(according to the definition of controllable language). It is therefore 
concluded that F, E TG1(L).  Since TG(~",)  n ( L  - U-) = 8, then 
f ,  $.! TG1(L - K ) .  Hence 7, E TG'L - T&' ( L  - I ( ) ;  or in other 
words, r", E (*}. 

Assume that f ,  $! Dlock(* ) .  Since r", E {*}, there exists mo 
such that r", E Om"*} and r", 6 Dmo+'{*}. This means that 
there exists f t  E such that f t  E Dnl{Dmo{*}}.  Or in other 
words, there exists i for all j such that Ftr";j  $! Dm0{*} where 
r " t f i j  E L(G,). Since f t  E K, however, and since T~(r" t )  & KT, 
there exists t E T G ( ~ ~ )  c Kr such that 13, = 4($0,t). According 
to the definition of controllability, there exists IC such that r";k E Re 
and t T G ( T " ; k )  IC'. In the same way as was done above, it can 
therefore be inferred that f t f i k  E {*}. 

Now let f l ,  = f tT" i k .  From the above results we know that 
?I, E {*}, Pi, 6 Dmo{*},  and T ~ ( r " l ~ )  C K T .  So we can 
assume that there exists ml < mo such that f l ,  E Om'{*} and 
r"1, $! Dml+'{*}. Reasoning as was done in Theorem 1, it can 
be concluded that there exists i z s  $! Dml{*} ,  i z s  E {*}, and 

L ,  then TG{*} c K .  

Theorem 2: ICvr = T G { D l o c k { T G I L  - [TG1(L - k 7 ) ] R ; } } .  

K'T. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore.  Restrictions apply. 

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the 
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS 
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March 
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.



2102 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995 

T G ( ? ~ ~ )  KT. Proceeding inductively, we construct a monotone 
decreasing sequence of m k  of length N such that m,v = 0 and 
such that f ~ ,  6 Do{*} = {*} and f r ~ ~  E {*}. This last result 
generates a contradiction arising out of our assumption that F, was not 
in Dlock{*}. It is therefore concluded that F, must be in Diock{*}. 

By the definition of TG , this means that s E TG { Dlock { *}} which 
implies that KT C_ T ~ { D l o c k { * } } .  With our preceding result that 
TG { Diock{ *}} & I C T ,  we can immediately infer the final formula of 
the theorem. 0 

Remark 1: This formula can be used to compute the suprema1 
closed and controllable sublanguage of a given specification language. 
Since the formula consists of some basic language and automaton 
operations, it can be realized computationally. In addition to this, the 
formula can be applied to nondeterministic control DES plants found 
in HCS, hence the formula is helpful in the general synthesis of HCS 
controllers. Furthermore, the formula clearly indicates the procedure 
required to obtain the supremal closed and controllable sublanguage, 
KT. This procedure first requires us to forbid all of the undesired 
control symbol sequences which may generate illegal behaviors, and 
then it requires us to delete those control sequences which may 
lead to deadlock or make the desired control unrealizable due to 
nondeterministic transition. So, in some cases, this formula may 
guide us into directly finding the supremal closed and controllable 
sublanguage KT by simply observing the structural features of L 
and IC. 

Remark 2: Since the DES plant is assumed to have been extracted 
from a hybrid control system, it will generally be different from that 
used in traditional logical DES. In the HCS framework, we need 
to pay attention to nondeterministic control mechanisms and active 
control functions. So in our framework, when an event occurs, at 
least one control command is allowed to be issued. It is impossible 
to confine the controlled logical behaviors to the desired region by 
simply inhibiting all illegal behaviors. In contrast, the traditional 
DES framework only considers that uncontrollable events cannot be 
forbidden from occurring. This means that it will generally be easier 
to handle controller synthesis for traditional DES than for DES plant 
arising in a hybrid control context. 

VI. EXAMPLE 
This section presents an example of how the formula for KT can 

be used in controller synthesis for DES plants. It is assumed that 
the DES plant has been derived from a hybrid control system and is 
given in Fig. 3. The DES plant's mathematical description is given 
as follows 

Fig. 3.  DES model. 

Fig. 4. Discarding undesired control sequences. 

5. Realizable behaviors. 

Here, a,  are partial transition function and enabling function, 

Suuuose we want to control the DES ulant so that it generates 
respectively, of the DES plant. 

A A  " 
the state paths (ljo$& + j % ~ $ ~ $ 2 @ 4 ) * .  That is, given the control 
specification K ,  K = (ade  + abde)*. K is not controllable, since, 
in Pz, there exists no f E R preventing the DES traces from entering 
$3. According to the formula proposed in Theorem 2, the supremal 
controllable sublanguage of K is KT = ( d e ) " .  Since the control 
symbol strings ?,I = ( ~ O I  + FOZ)(~II + T x ~ a ) ( T x z ~  + f 2 3 )  and T1,z = 
(f01 + F o ~ )  generate the forbidden output symbol strings abc and d we 
should try to eliminate the sublanguage (Fsl +Fs~)R2 L(G,). This 
is done by removing or relabeling arcs in the DES plant of Fig. 3. The 
reduced automaton resulting from this operation is shown in Fig. 4. 
The deadlock problem now has to be addressed to get a realizable 

produces deadlocks in the state 52, we need to discard the arcs leading 
to this deadlocked state. The reduced automaton resultmg from this 
operation is shown in Fig. 5. The remaming automaton will generate 
the supremal controllable language I<'. 

sequence of control symbols. Since the language, F o z ( F i l  + Pn), 

VII. CONCLUSION 
This paper derived a formula calculating the supremal controllable 

sublanguage for a class of nondeterministic control discrete-event 
systems arising in the supervision of hybrid control systems. The 
results show that the HCS modeling framework introduced in [7] and 
[8] supports the synthesis of discrete controllers in HCS. The signif- 
icance of this formula is that it provides a closed form expression 
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for the supremal controllable sublanguage which provides significant 
insight into how HCS supervisors can be efficiently designed. 
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A Class of Multilinear Uncertain Polynomials 
to Which the Edge Theorem Is Applicable 

Weining Chen and Ian R. Petersen 

Abstract-This paper gives a class of multilinear uncertain polynomials 
to which the Edge Theorem is applicable. In the paper, a notion of 
“symmetric uncertainty structure” is introduced. The main result is as 
follows: If a multilinear uncertain polynomial has a symmetric nncer- 
taiuty structure and the uncertain parameters are nonoverlapping, then 
the corresponding value sets will be convex polygons. This means that 
the use of the zero exclusion condition to test the robust stability of 
such uncertain polynomials is feasible since we need only to calculate 
the extreme points of the convex polygons. Furthermore, a version of the 
Edge Theorem can be used to test the robust stability of such uncertain 
polynomials. 

I. INTRODUCTION 
The presence of uncertainties in control systems gives rise to 

robust control problems. Such system uncertainties are due to mod- 
eling errors, simplifying assumptions in the modeling process, and 
parameter variations. A commonly encountered problem in robust 
control theory is the robust stability problem for uncertain linear 
time-invariant systems. The connection between the stability of a 
linear time-invariant system and its characteristic polynomial leads to 
a corresponding problem: The robust stability problem for uncertain 
polynomials. Moreover, many robust performance problems can 
be transformed into equivalent robust stability problems; e.g., see 
[ 11. Underlying all such robust stability problems is the following 
question: How do the roots of a polynomial depend on its coefficients? 
A seminal result relating to this problem is Kharitonov’s Theorem; 
see [2]. 

The study of polynomial robustness results related to Kharitonov’s 
Theorem is currently an active area of research in the robust control 
field. Research in this area began with Kharitonov’s famous paper 
published in 1978; see [2] .  Kharitonov’s Theorem is a powerful 
result which enables the robust stability of an interval polynomial 
to be determined by checking only four fixed polynomials. For 
more general polynomial families, however, such as a polytope of 
polynomials, Kharitonov-like extreme point results do not hold. In 
this case, the celebrated Edge Theorem due to Bartlett e t  al. is an 
important result for polytopes of polynomials; see [3]. The Edge 
Theorem states that a polytope of polynomials is robustly D-stable 
if and only if all edges of the polytope of polynomials are D-stable 
(see [l] for definition of 23-stability). 

Although Kharitonov’s Theorem and the Edge Theorem are power- 
ful theoretical results, the uncertainty structures which arise in typical 
applications usually do not allow these results to be applied directly. 
Hence, it is desired to derive new results which are applicable to 
wider classes of uncertain polynomials. Alternatively, the approach 
taken in this paper is to find an enlarged polynomial family to which 
the Edge Theorem is applicable. 
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