
2098 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995

On the Suprema1 Controllable Sublanguage
in the Discrete-Event Model of

Nondeterministic Hybrid Control Systems

Xiaojun Yang, Michael D. Lemmon, and Panos J. Antsaklis

Abstract-This paper is concerned with the logical control of hybrid
control systems (HCS). It is assumed that a discrete-event system PES)
plant model has already been extracted from the continuous-time plant.
The problem of hybrid control system design can then be solved by
applying logical DES controller synthesis techniques to the extracted DES
plant. Traditional DES synthesis methods, however, are not always ap-
plicable since the extracted plant DES will often exhibit nondeterministic
transitions. This paper presents an extension of certain DES controuer
synthesis techniques to the nondeterministic control automaton found in
NCS. In particular, this paper derives a formula computing the supremd
controllable sublanguage of a given specification language under the
assumption that the DES plant exhibits nondeterministic transitions.

I. INTRODUCTION
In many industrial applicafions, control systems can be represented

by a continuous-time plant controlled by a discrete-event system.
Such systems are called hybrid control systems (HCS). There has
recently been considerable activity investigating the modeling and
supervision of HCS’s [1]-[9]. This paper uses the HCS modeling
framework proposed by [7] and [8]. In this framework, a discrete-
event system (DES) is extracted from the continuous-state system
(CSS) plant. This DES is called the DES plant. Once such a logical
model of the plant has been extracted, a DES supervisor for the
system can be obtained using conventional DES controller synthesis
techniques such as the Ramadge-Wonham (RW) [lo] synthesis. DES
plants obtained in this way, however, are often nondeterministic, and
the RW synthesis does not pertain to nondetemnistic DES’s. Earlier
work [7], [8] extended an iterative supervisor synthesis algorithm
[lo] to the design of HCS controllers. This paper follows a different
approach in which a formula is derived to compute the supremal
controllable sublanguage. The result is an extension of prior work
in [1 I] to the class of nondeterministic DES plants found in hybrid
control systems.

The remainder of this paper is organized as follows. Secaon II
discusses the HCS modeling framework and identifies the way in
which nondeterministic DES’s arise in HCS. Section m introduces
some necessary technical definitions which are used in the remainder
of the paper. Section IV characterizes the supremal live sublanguage
of a nondeterministic finite automaton associated with the DES
plant. Section V derives the formula for the supremal controllable
sublanguage of the DES plant. Section VI provides an example, and
concluding remarks will be found in Section VII.

11. HYBRID CONTROL SYSTEMS

Hybrid control systems arise when a continuous-state (CSS) plant
is controlled by a DES controller. An important HCS modeling
framework was first discussed in [7] and [8]. In this modeling
framework, a simplified interface is used to facilitate communication

Manuscript received May 12, 1994; revised December 27, 1994 and July
8, 1995. This work was supported in part by National Science Foundation
Grant MSS92-16559.

The authors are with the Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN 46556 USA.

IEEE Log Number 9415791.

...........,.
~ [n l ’

DES Controller i I
Fig. 1. Hybrid control system.

between the CSS plant and the DES controller. A block diagram
of the assumed connection is shown in Fig. 1. The CSS plant
accepts a continuous reference input trajectory, F (t) , and outputs the
system state vector trajectory Z (t) . The interface consists of two
subsystems: the actuator and generator. The generator transforms
the plant state trajectory, S (t) into a sequence of discrete output
symbols denoted as It.[n]. The output sequence, z[n], draws its
symbols from a finite alphabet, X , of output symbols. The DES
controller uses this sequence of output symbols as inputs and outputs
a sequence of control symbols, F[n] drawn from an alphabet R. The
interface actuator transforms this sequence of control symbols into the
reference trajectory, T (t) . Note that in the remainder of this paper,
tilded small letters will denote symbols and barred letters will denote
real vectors.

The CSS plant is assumed to be represented by a differential
equation

where 2 E Rn, F E Rm, and f : R” x Rm + Rn. The hybrid
modeling framework in 171 and [8] has the interface generator issue
output symbols with respect to an assumed partition of the CSS
plant’s state space. In particular, let B denote a collection of open
sets which partition the CSS plant’s state space. This event partition,
B, is denoted as

where b, is an open subset of Rn (i = 1,. . . , N) . The set b, is
referred to as the event set. Associated with each event set is a
state symbol 5% (i = l,... , N) drawn from a finite alphabet P .
We will associate the output symbols X with the boundaries of the
event sets The generator will issue the jth output symbol, G J , when
the CSS plant’s state trajectory, S (t) , crosses the 3th boundary of
an event set and enters into a new event set. The output symbol
sequence, Z [n] , therefore marks the entrance of the CSS plant state
into event sets. Fig. 2 illustrates the situation outlined above; this
figure shows three event sets with associated state symbols, 171, $ 2 ,

and $3. Two CSS plant trajectories (labeled A and B) are shown.
Both trajectories start in the event set marked by state symbol $1.

The solid circles in the figure mark where these trajectories cross the
event set boundaries. The resulting state symbol sequences $[n] and
output symbol sequences Z[n] are shown for both trajectories.

0018-9286/95$04.00 0 1995 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore. Restrictions apply.

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995 2099

ij3 trajectory B

/ T[n] = TI

ab]= F, a 2

Fig. 2.
plant’s state space.

Output symbols are generated with respect to a partition of the CSS

The output symbols are used as inputs to the DES controller.
In response to these symbolic inputs, the DES controller outputs
a control symbol, r X . The interface actuator maps this symbol onto
a specific control reference input vector, F . Assume that the DES
controller outputs the symbol Fz, and assume that the actuator maps
this onto a control reference vector f , E 8”. The CSS plant’s
state equation under the direction of control policy F, is therefore
given by the differential equation k = f (3 , F ,) , The behavior of the
hybrid system can therefore be viewed as a system that switches
between different constant reference inputs. The “switching” be-
tween multiple controllers is a distinctive feature of the hybrid
systems found in [7] and [8]. The following results are therefore
of general interest in the use and design of switched multiple
controllers.

The symbolic behavior of the plant is explicitly seen from the
DES controller’s perspective. In particular, Fig. 1 shows that, from
the controller’s perspective, the plant is a discrete-event system. The
combination of CSS plant and interface accepts the control symbol
sequence F[n] as an input and outputs the output symbol sequence
?[,I. It is therefore possible to define a DES plant whose language
represents the symbolic behavior of the CSS plant. To define such a
DES plant, note that the state symbol sequence, p[n], represents the
symbolic evolution of the CSS plant over the state-space partition
B. It therefore makes sense to model the DES plant as a controlled
finite automaton. The automaton states consist of the state symbols in
P , the automaton’s output is a language generated over the alphabet
of output symbols, X, and the controlled inputs are drawn from the
control symbol alphabet R.

An interesting aspect of the DES plant’s behavior is that it is
distinctly nondeterministic. This fact is illustrated in Fig. 2. The figure
shows two trajectories generated by the same control reference input.
Both trajectories originate in the same DES plant state, $1. Precisely
to which DES states are transitioned will depend upon where the CSS
plant state, 3, is when the control symbol is issued. Fig. 2 shows
that for a given control symbol, there are at least two possible plant
states that the given trajectory can reach from DES plant state PI.
Nondeterminism in the DES plant therefore arises due to uncertainty
in the DES states reached under a controlled transition. This type of
nondeterminism is characteristic of HCS. In fact, transitions within
a DES plant will usually be nondeterministic unless the boundaries
of the event sets correspond to invariant manifolds of the CSS plant.
This fact is significant with regard to the “logical stability” of HCS.
See [9] for related discussions.

On the basis of the preceding discussion, it is apparent that the
DES plant can be modeled as a nondeterministic controlled finite
automaton. In particular, t_he DES pLant, G, will be represented as the
fije-tuple, G = { P , X , R , f , $ } . P is the %et of DES plant states,
X is the alphabet of output symbols, a:d R-is the control symbol
alphabet, The enabling fun_ction is-[: P x 5 ---f Px where Pz is
the power set of alphabet X . q : P x X -+ P is the state transition

function. Note that the DES plant’s nondeterminism arises through
the enabling function.

There have been many prior papers dealing with nondeterministic
logical DES [12]-[19], and it is appropriate to place this paper’s
work in the context of that earlier research. Most prior works
[12]-[16], [18] treat nondeterministic DES’s in which one event
may transition the DES from one state to one of many states. This
type of nondeterminism has been dealt with in discussing event
observability issues. This prior work, however, does not explicitly
deal with nondeterministic control problems which arise when one
control signal cannot enable events individually so that one control
signal may cause several potential discrete state transitions. Cases
in which the controller depends on the language generated by the
DES plant do not require a separate consideration of nondeterminism
as any language which can be accepted by a nondeterministic finite
automaton (NFA) is also accepted by deterministic finite automaton
(DFA) [20]. References [17] and [19] address issues associated with
nondeterministic controllers. There has been relatively little work,
however, pertaining to nondeterminism in the DES plant as it arises in
HCS. In our systems we are concerned with nondeterministic control
mechanism in which one control command may lead to several
discrete state transitions. In our framework, the enabling function
is fixed by the HCS’s state space partition, B, and the dynamics
of the CSS plant. The enabling function is state dependent in the
sense that it may vary with different DES plant states. This form
of nondeterminism arises in a natural manner in HCS and does not
appear to have been studied in detail by previous DES researchers.

111. PRELIMINARY DEFINITIONS

X* denotes the set of all finite strings of the output symbols in X
including the empty string e. A subset L X * is called a language
defined on X . The closure of a language, E , is the set of all prefixes
of strings in L. L is closed if L = 1. The closure of a string s E L
generates a prefix closed sublanguage, S, in E . The behavLor of the
DES plant, G, is represented by the language, L(G) C X * . Since
L(G) is generated by a finite automaton it is known to be prefix
closed and regular.

To deal with nondeterminism induced by the controlled DES
plant’s enabling function, we will introduce two other automatons,
G, and G,. The automaton G, is a deterministic finite automaton
(DFA) describing the DES plant’s output behavior. The automaton G,
is a nondeterministic finite automaton (NFA) describing the plant’s
response to input commands. These two automatons explicitly show
how nondeterminism enters the hybrid control system. G, describes
how the plant symbol behavior is generated from the plant automaton,
while G, is the control mechanism embedded in the dynamics of the
controlled system. The use of these two automatons allow explicit
representations for the enabling sets and provides physical insight
into the hybrid control system’s internal operation. That insight is
instrumental in deriving the results presented below.

The automaton G, is given by the four-tuple

(3)

where P is the plant state alphabet, X is the-alphabet of output
symbols, PO is an initial plant state, and li, : P x X -+ P is the
state transition function. The language generated by G, is denoted
as L(G,) C X * .

The automaton, G,, is an NFA whose_language is over an “exten-
sion” of the control symbol alphabet R. R is extended so that the
dependence of the enabling function on the DES plant state can be
explicitly noted. In particular, let i denote the index of the zth symbol

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore. Restrictions apply.

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.

2100 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995

in P , and let j denote the index of the j t h symbol in 2% The extended
control alphabet, R,, consists of a set of symbols, f ; j such that

Re = {TZJ li : state index, and j : control symbol index}. (4)

The symbol T X t 3 therefore means that the control symbol f, E 2 was
issued when the plant state was 5% E P. The automaton G, is given
by the four-tuple

Gr 1 (p>Re>v , j j '~) (5)

where P is the plant state alphabet, R, is the extended controI symbol
alphabet, and Po is the initial state. The state transition function is a
mapping v : P x R, t Pp where Pp is the power set of alphabet
P and

This function maps the DES plant's current state and extended control
symbol onto a collection of possible next plant states.

The following sections will need to map strings in L(G,) onto
strings generated by G,. In particular, we define this operator,
TG : L(G,) --+ L(G,), by the relation

where k denotes sequence index, ik discrete state index, and j k
control symbol index. For all F p s E e, TG (f p s) represents all the
output symbol strings generated by F p s in G. The inverse image of
a string Zs E L(G,) onto the domain of TG will be denoted as
T G ' (? ~) . In particular

TG1(Zc,) represents all the control symbol strings which possibly
generate Zs in G. If s E X * , then the pre-image of s under TG will
sometimes be denoted as ?, E TG1 (s) .

IV. SUPREMAL LIVE SUBLANGUAGES
Deadlocks occur in an automaton when it fails to generate any

more output symbols. An automaton without deadlocks will be said
to be live. Live sublanguages are important in the characterization ot
maximally permissive behaviors in controlled DES's. For this reason,
a characterization of the live sublanguages of G, will be needed. The
following definition provides just such a characterization.

Definition I : Consider a sublanguage L of L(G,) and a string
s E L. Let R,lS be a subset of control symbols in Re such that

Aels = {TiJ E Re : sf,, E L(G,)}. (10)

The set Reis is called realizable controls from string s.

there exists T2, in the realizable set, Reis, such that s fZJ E L.

not live with respect to G,.

A string s E L is said to be live with respect to G, if and only if

A string s in a sublanguage L of L(G,) causes deadlock if it is

A sublanguage L of L(G,) is said to be live with respect to G,
if it contains no strings causing deadlock.

Note that the notion of liveness defined above is somewhat more
involved than similar notions found in deterministic finite automatons
[21]. This additional complexity arises due to G, 's nondetemnism.
In our systems, nondeterminism allows a string s E L(G,) to
terminate in several different DES plant states. To ensure that the
string s is live, we need to ensure that all of these realized plant
states are not deadlocked. That is precisely what the above definition
accomplishes. It first uses Re, , to identify those DES plant states
which are reached (realized) by a string s. It then defines liveness
with regard to those realizable controls.

The principal result of this section concerns the existence and
characterization of the supremal live sublanguage of L(G,). These
results are used later to derive a formula for the supremal controllable
sublanguage of G. The following two lemmas have well-known
analogues in deterministic DES's [Ill. The first lemma is stated
without proof, and the second is stated with proof.

LRmma 1: If L1, LZ are closed live languages, then LI U LZ is
also a closed live language.

Lemma 2: For a given closed language L 5 L(G,), there exists
a supremal closed and live sublanguage of L.

L and Lz C L such that L1 and La are
closed live languages, then L1 U LZ L C L(G,). According to
Lemma 1, L1 U LZ is also a closed and live language. Therefore
closed and live languages are closed under disjunction, and we can
conclude that the disjunction of all the closed live sublanguages of

0
Lemma 2 establishes the existence of a supremal live sublanguage

of L(G,). Let Lllve denote this supremal sublanguage. To character-
ize Ll,,,, it will be convenient to define the following operator

D,[(L) = { s E L which are deadlocked

Prooj For all L1

L is the supremal closed and live sublanguage of L.

with respect to GT} (11)
D (L) = L - Dnl(L)A: (12)

D 2 (L) = D [D (L)] (13)

~ l ~ ~ k (~) = lim D ~ (L) . (14)
k + m

The operator D,l(L) picks out all strings in L which cause deadlock
in L (i.e., string which are not live in L). The operator D (L) is there-
fore used to remove strings that cause deadlock in L. The following
lemmas show that D (L) and Dlock(L) are closed languages. These
lemmas are then used to prove the main result of this section which
states that Dlock(L) is the supremd live sublanguage, Lllve.

Lemma 3: L C L(G,) and ~ L = 1. If D (L) is given by (11)-(12),
then D (L) C L, D (L) = D (L) .

= L, D (L) is

If h , c k is given by (11)-(14),
then Dlock(L) = Dlock(L).

Pro@ l k s is easily derived from Lemma 3 by mathematical
induction. 0

Theorem 1: L C L (G r) , L = L and L is regular. If Dlock is
given by (11)-(14), then Dlock(L) = Lllve.

Pro03 Lemma 4 guarantees that &&(L) is closed. It therefore
remains to show that Dlock(L) is live and supremal. The proof is
divided into two parts. The first part proves that the language is live,
and the second part shows that it is supremal.

Part 1: Assume that Dlock(L) is not live language. This means
3s E Dnt[Dlock(L)]. Since G, is a finite automaton and by our
prior definition on operator &&, there is a minimal finite n
such that Dlock(L) = D " (L) = Dn+'(L). Since D("+')(L) =
D"(L) - D,r[D"(L)]k: and s E Dnl[Dlock(L)], then D("+l)(L)

Prooj Since D (L) = L - Dnl(L)R; and
closed [ll], and D (L) L. 0

Lemma 4: L C L(G,.) and L =

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore. Restrictions apply.

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995 2101

= D l o c k (L) - D n l [D l o c k (L)] f i z . S O D"+'(L) c D l o c k (L) , which
contradicts with D l o c k (L) = (L) . Therefore the language,
Dlock(L/) must be live.

Purt2: Assume that D J o & (L) is not supremal. This means that
D l o c k (L) C Llive. Therefore there must exist a string s E h i v e such
that s $! D l o c k (L) . Clearly, s E c L, so there exists a finite
mo such that s E D""((L3 and s $! Dma+'(L) with D"O+l(L)_=
Dmo (L) -Dnl[Dmo (L)]R;. This implies that s E D,j [Dm0 (L)]R;.
Hence, there exists t s.t. t E S such that t E D,1[Dm0 (L)] . Therefore
t causes deadlock in Dmo (L) . This means that for all k there exists i
such that '?tk E fi+ and t causes deadlock (i.e., t F z k $! Dmo (L)) . Let
i l be the "state" index on this control symbol resulting in deadlock.
Since t E S c h i v e , we can conclude that t E Llive. More precisely,
this means that for all i there exists j such that i , j E fie,, (realizable)
and t f i j E h i v e . Since this holds for all i , we can conclude that there
exists IC such that tr"alk E Llive.

The above discussion concludes that there exists string so = t F i j

such that SO E h i v e L and SO 6 D m 0 (L) . Since so E L, there
exists 7rLl < mo such that SO 6 Dml+'(L) and so E D"'(L) .
Reasoning as was done in the preceding paragraph, a string SI can
be constructed such that SI E Llive and SI 6 Dml (L) . Proceeding as
before, we can construct a monotone decreasing sequence of integers
m k which eventually converge to zero after N finite steps. This
implies that there exists a string SN E Llive such that S N $! Do (L) =
L which is a clear contradiction since Llive c L. It is therefore
concluded that Llive is indeed the supremal live sublanguage. 0.

This theorem indicates that the supremal closed and live sub-
language of a given closed language defined on f i e in HCS can
be computed by using the Dlock operator. Since Dlock is a finite
recursion on the simple D operator and since all computations
involving D are basic language operations, Dlock can be determined
using a well-defined computational procedure.

v. FORMULA FOR THE SUPREMAL CONTROLLABLE SUBLANGUAGE
As described above, the DES plant differs significantly from the

traditional logical DES. Since it is generally impossible to enable
DES plant events individually, the traditional formal definition of
DES controllability is no longer appropriate. The following definition
extends the concept of a specified sublanguage's controllability to the
nondeterministic DES plants arising in hybrid control systems. Early
versions of this definition first appeared in [22].

Definition 2: A language, I - C L (G) , generated by the DES plant
is controllable if for all w E I?:

There exists r" E R such that w [($ (? J ~ , w) , r ") C K', and
If w = W b a (a E x), then there exists '?b E R such that

This definition for controllability consists of two specific parts.
The first part obviously requires that there exist control symbols
which ensure that no deadlocked strings are generated. As noted
earlier in our discussion on live sublanguages for G,, however, it
will also be necessary to ensure that the strings in Ii are generated by
control symbol strings which do not generate illegal behaviors. This
is precisely what the second condition ensures. It guarantees that a
string in I<* is indeed realized by a switching control policy in our
nondeterministic plant. Early definitions of DES plant controllability
[22] only considered the first part of the above definition.

Since the disjunction of the controllable languages with respect to
the same DES plant is still controllable with respect to the plant, we
can infer that the supremal controllable sublanguage of the given
language exists. The critical problem in designing the controller
is to obtain the supremal controllable sublanguage of the given
specification language. Let 1- denote the specification language of

o? E [('@(fiO, w b) , F b) and wbE(dJ(fi0, w b) , f b) c I?.

G. L = L(G,), IC L , K = E . KT is the supremal, closed,
controllable sublanguage of K . The following discussion first proves
two technical lemmas. We then state and prove the main result of
this paper which provides a formula for the supremal controllable
sublanguage, ICT, of the DES plant behavior. This result is an
extension of earlier formulas obtained in [Ill.

L(G,), and L, = E , , then TG(L,) = T'(L,).
Proof: Since Vw E TG(L,), 3r", E L,, such that w E TG(~",).

- - Since Vs E W - U , 3, E c, such that s E T G (~ ,) . r", E L,, --r.

TG(L,). Since s E T(FS), s E TG(L), =j TG(L,) = TG(L,).

Lemma 5: L,

f w C LT, * E c Lr (LT = c). so, r"s E Lr, --r' TG(r"s) c
0

Lemma 6: Let TG{*} = TG{TG'L - [TG1(L - K)] f i : } . L =
L(G,) and I<

Pro08 V w E TG{*}, 3f, E {*}, such that w E T(i,).
Obviously, f, E T i ' L and i, @ [TG1(L - IC)]& j f, @
TG (L - A-). This implies that TG (fw) n (L - IC) = 0 (according
to the meaning of TG1). Since L = L(G,), * T G (~ ,) L , -----)
TG(~",) C K. Since w E TG(T",), * w E K. S O , T G { * } I-.

0

Proof: Denote {*} = {TG'L - [TG1(L - K)] f i ; } . First,
we need to prove TG{Dlock{*}} C K . Dlock{*} {*},
* TG{Diock{*}} TG{*}. TG{*} & K (Lemma 6),
TG{Dlock{*}} C Ii. This means TG{Dlock{*}} is the sublanguage
of K .

Next, we need to prove TG{Dlock{*}} is closed. Since L =
L(G,), it is clear TG'L is the control symbol behavior of the DES
plant, L (GT) . So TG L is closed. Clearly, TG L - [TG ' (L - K)] fi:
is closed; according to Lemma 4, Dlock{*} is also closed. Hence,
TG{&ck{*}} is closed by Lemma 5.

In the following, we will prove TG{&ck{*}} is controllable.
For all W E TG{Dlock{*}}, 3r", E Diock{*}, such that E
TG(~ ,) . Since Dlock{*} is closed, Tc(Z) c TG{Dlock{*}}.
Denote f i i = $ (& , U) . Since f, E Dloc_k{*}, there exists i such
that f,T";j E Dlo&{*}, where T ; j E Re (Theorem 1). Clearly,
T~(7,T"ij) T G { D J ~ ~ ~ { * } } . Since r",r",j is defined on R e , we know
that T ~ (f , f i ~) = w T ~ (f i j) . SO, w T ~ (f ; j) g TG{Dlock{*}}, and
w[[$ (Fo , w) , f i j] g TG{Dlock{*}} (according to the definition of
TG). Hence, TG{Dlock{*}} is controllable, i.e., T G { D ~ ~ ~ ~ { * } } &

Finally, we need to prove TG { &&{ *}} is the supremal control-
lable sublanguage of I(. Since we have shown that TG { Dlock { *}} &
KT, it suffices to show that KT C T G { D ~ ~ ~ ~ { * } } . Vs E KT there
exists r", E Rz such that s E TG(~",) and TG(E) C KT K L
(according to the definition of controllable language). It is therefore
concluded that F, E TG1(L). Since TG(~",) n (L - U-) = 8, then
f , $.! TG1(L - K) . Hence 7, E TG'L - T&' (L - I () ; or in other
words, r", E (*}.

Assume that f , $! Dlock(*) . Since r", E {*}, there exists mo
such that r", E Om"*} and r", 6 Dmo+'{*}. This means that
there exists f t E such that f t E Dnl{Dmo{*}}. Or in other
words, there exists i for all j such that Ftr";j $! Dm0{*} where
r " t f i j E L(G,). Since f t E K, however, and since T~(r" t) & KT,
there exists t E T G (~ ~) c Kr such that 13, = 4($0,t). According
to the definition of controllability, there exists IC such that r";k E Re
and t T G (T " ; k) IC'. In the same way as was done above, it can
therefore be inferred that f t f i k E {*}.

Now let f l , = f tT" i k . From the above results we know that
?I, E {*}, Pi, 6 Dmo{*}, and T ~ (r " l ~) C K T . So we can
assume that there exists ml < mo such that f l , E Om'{*} and
r"1, $! Dml+'{*}. Reasoning as was done in Theorem 1, it can
be concluded that there exists i z s $! Dml{*} , i z s E {*}, and

L , then TG{*} c K .

Theorem 2: ICvr = T G { D l o c k { T G I L - [TG1(L - k 7)] R ; } } .

K'T.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore. Restrictions apply.

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.

2102 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995

T G (? ~ ~) KT. Proceeding inductively, we construct a monotone
decreasing sequence of m k of length N such that m,v = 0 and
such that f ~ , 6 Do{*} = {*} and f r ~ ~ E {*}. This last result
generates a contradiction arising out of our assumption that F, was not
in Dlock{*}. It is therefore concluded that F, must be in Diock{*}.

By the definition of TG , this means that s E TG { Dlock { *}} which
implies that KT C_ T ~ { D l o c k { * } } . With our preceding result that
TG { Diock{ *}} & I C T , we can immediately infer the final formula of
the theorem. 0

Remark 1: This formula can be used to compute the suprema1
closed and controllable sublanguage of a given specification language.
Since the formula consists of some basic language and automaton
operations, it can be realized computationally. In addition to this, the
formula can be applied to nondeterministic control DES plants found
in HCS, hence the formula is helpful in the general synthesis of HCS
controllers. Furthermore, the formula clearly indicates the procedure
required to obtain the supremal closed and controllable sublanguage,
KT. This procedure first requires us to forbid all of the undesired
control symbol sequences which may generate illegal behaviors, and
then it requires us to delete those control sequences which may
lead to deadlock or make the desired control unrealizable due to
nondeterministic transition. So, in some cases, this formula may
guide us into directly finding the supremal closed and controllable
sublanguage KT by simply observing the structural features of L
and IC.

Remark 2: Since the DES plant is assumed to have been extracted
from a hybrid control system, it will generally be different from that
used in traditional logical DES. In the HCS framework, we need
to pay attention to nondeterministic control mechanisms and active
control functions. So in our framework, when an event occurs, at
least one control command is allowed to be issued. It is impossible
to confine the controlled logical behaviors to the desired region by
simply inhibiting all illegal behaviors. In contrast, the traditional
DES framework only considers that uncontrollable events cannot be
forbidden from occurring. This means that it will generally be easier
to handle controller synthesis for traditional DES than for DES plant
arising in a hybrid control context.

VI. EXAMPLE
This section presents an example of how the formula for KT can

be used in controller synthesis for DES plants. It is assumed that
the DES plant has been derived from a hybrid control system and is
given in Fig. 3. The DES plant's mathematical description is given
as follows

Fig. 3. DES model.

Fig. 4. Discarding undesired control sequences.

5. Realizable behaviors.

Here, a, are partial transition function and enabling function,

Suuuose we want to control the DES ulant so that it generates
respectively, of the DES plant.

A A "
the state paths (ljo$& + j % ~ $ ~ $ 2 @ 4) * . That is, given the control
specification K , K = (ade + abde)*. K is not controllable, since,
in Pz, there exists no f E R preventing the DES traces from entering
$3. According to the formula proposed in Theorem 2, the supremal
controllable sublanguage of K is KT = (d e) " . Since the control
symbol strings ?,I = (~ O I + FOZ)(~II + T x ~ a) (T x z ~ + f 2 3) and T1,z =
(f01 + F o ~) generate the forbidden output symbol strings abc and d we
should try to eliminate the sublanguage (Fsl +Fs~)R2 L(G,). This
is done by removing or relabeling arcs in the DES plant of Fig. 3. The
reduced automaton resulting from this operation is shown in Fig. 4.
The deadlock problem now has to be addressed to get a realizable

produces deadlocks in the state 52, we need to discard the arcs leading
to this deadlocked state. The reduced automaton resultmg from this
operation is shown in Fig. 5. The remaming automaton will generate
the supremal controllable language I<'.

sequence of control symbols. Since the language, F o z (F i l + Pn),

VII. CONCLUSION
This paper derived a formula calculating the supremal controllable

sublanguage for a class of nondeterministic control discrete-event
systems arising in the supervision of hybrid control systems. The
results show that the HCS modeling framework introduced in [7] and
[8] supports the synthesis of discrete controllers in HCS. The signif-
icance of this formula is that it provides a closed form expression

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore. Restrictions apply.

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 12, DECEMBER 1995 2103

for the supremal controllable sublanguage which provides significant
insight into how HCS supervisors can be efficiently designed.

REFERENCES

[l] P. J. Antsaklis, M. D. Lemmon, and J. A. Stiver, “Learning to be
autonomous: Intelligent supervisory control,” to appear in Intelligent
Control: Theory and Control.

[2] A. Benveniste and P. Le Guernic, “Hybrid dynamical systems and the
signal language,” IEEE Trans. Automat. Contr., vol. 35, no. 5, pp.
535-546, May 1990.

[3] A. Gollu and P. Varaiya, “Hybrid dynamical systems,” in Proc. 28th
Con$ Decis. Contr., Tampa, FL, Dec. 1989, pp. 2780-2712.

[4] L. Holloway and B. Krogh, “Properties of behavioral models for a class
of hybrid dynamical systems,” in Proc. 31st ConJ Deck Contr., Tucson,
AZ, Dec. 1992, pp. 3752-3757.

[5] W. Kohn and A. Nerode, “Multiple agent autonomous hybrid control
systems,” in Proc. 31st Con$ Decis. Contr., Tucson, AZ, Dec. 1992, pp.
2956-2966.

[6] P. J. Ramadge, “On the periodicity of symbolic observations of piece-
wise smooth discrete-time systems,” IEEE Trans. Automat. Contr., vol.
35, no. 7, pp. 807-812, 1990.

[7] J. A. Stiver, P. J. Antsaklis, and M. D. Lemmon, “A logic DES approach
to the design of hybrid control systems,” Univ. Notre Dame, Notre
Dame, IN, Tech. Rep. of the ISIS Group ISIS-94-011, Oct. 1994, revised
May 1995, to appear in Mathematical and Computer Modeling: Special
Issue on Discrete Event Systems.

[8] J. Stiver, “Analysis and design of hybrid control systems,” Ph.D.
dissertation, Dept. of Elec. Eng., Univ. Notre Dame, May 1995..

[9] M. D. Lemmon and P. J. Antsaklis, “Inductively inferring valid logical
models of continuous-state dynamical systems,” Theoretical Computer

[lo] P. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Contr. Optim., vol. 25, no. 1, pp.
206-230, Jan. 1987.

[l l] R. D. Brandt, V. Gary, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham, “Formulas for calculating supremal controllable and nor-
mal sublanges,” Syst. Contr. Lett., vol. 15, no. 1, pp. 111-117, Jan.
1990.

[12] P. J. Ramadge, “Observability of discrete event systems,” in Proc. 25th
Con$ Decis. Contr., Athens, Greece, Dec. 1986, pp. 1108-1112.

[13] C. M. Ozveren and A. S. Willsky, “Invertibility of discrete event
dynamic systems,” Math. Contr., Sig., Syst., vol. 5, no. 4, pp. 365-390,
1992.

[14] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory control
of discrete-event processes with partial observations,” IEEE Trans.
Automat. Contr., vol. 33, no. 3, pp. 249-260, 1988.

[15] H. Cho and S. I. Marcus, “On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with par-
tial observation,” Math. Contr., Sig., Syst., vol. 2, no. 1, pp. 47-69,
1989.

[16] T. Ushio, “A necessary and sufficient condition for the existence of
finite state supervisors in discrete event systems,” IEEE Trans. Automat.
Contr., vol. 38, no. 1, pp. 135-138, 1993.

[17] Y. Li and W, M. Wonham, “Strict concurrency and nondeterministic
control of discrete-event systems,” in Proc. 28th Con$ Deck Contr.,
Tampa, FL, Dec. 1989, pp. 2731-2736.

[18] M. A. Shaymann and R. Kumar, “Supervisory control of nondeterminis-
tic discrete event dynamical systems,” in Proc. 33rd Con$ Decis. Contr.,
San Antonio, TX, Dec. 1993, pp. 1188-1193.

[19] C. H. Golaszewski and P. J. Ramadge, “Control of discrete event
processes with forced events,” in Proc. 26th Con& Decis. Contr., Los
Angeles, CA, Dec. 1987, pp. 247-251.

[20] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Language, and Computation.

[21] R. Kumar, V. K. Garg, and S. I. Marcus, “On supervisory control of

Piscataway, NJ: IEEE, 1995.

Sci., vol. 138, pp. 201-210, 1995.

Reading, MA: Addison-Wesley, 1979.

sequential behaviors,” IEEE Trans. Automat. Contr., vol. 37, no, 12, pp.
1978-1985, Dec. 1992.

[22] J. A. Stiver and P. J. Antsaklis, “On the controllability of hybrid control
systems,” in Proc. 32nd Con$ Decis. Contr., San Antonio, TX, Dec.
1993, pp. 294-299.

A Class of Multilinear Uncertain Polynomials
to Which the Edge Theorem Is Applicable

Weining Chen and Ian R. Petersen

Abstract-This paper gives a class of multilinear uncertain polynomials
to which the Edge Theorem is applicable. In the paper, a notion of
“symmetric uncertainty structure” is introduced. The main result is as
follows: If a multilinear uncertain polynomial has a symmetric nncer-
taiuty structure and the uncertain parameters are nonoverlapping, then
the corresponding value sets will be convex polygons. This means that
the use of the zero exclusion condition to test the robust stability of
such uncertain polynomials is feasible since we need only to calculate
the extreme points of the convex polygons. Furthermore, a version of the
Edge Theorem can be used to test the robust stability of such uncertain
polynomials.

I. INTRODUCTION
The presence of uncertainties in control systems gives rise to

robust control problems. Such system uncertainties are due to mod-
eling errors, simplifying assumptions in the modeling process, and
parameter variations. A commonly encountered problem in robust
control theory is the robust stability problem for uncertain linear
time-invariant systems. The connection between the stability of a
linear time-invariant system and its characteristic polynomial leads to
a corresponding problem: The robust stability problem for uncertain
polynomials. Moreover, many robust performance problems can
be transformed into equivalent robust stability problems; e.g., see
[11. Underlying all such robust stability problems is the following
question: How do the roots of a polynomial depend on its coefficients?
A seminal result relating to this problem is Kharitonov’s Theorem;
see [2].

The study of polynomial robustness results related to Kharitonov’s
Theorem is currently an active area of research in the robust control
field. Research in this area began with Kharitonov’s famous paper
published in 1978; see [2] . Kharitonov’s Theorem is a powerful
result which enables the robust stability of an interval polynomial
to be determined by checking only four fixed polynomials. For
more general polynomial families, however, such as a polytope of
polynomials, Kharitonov-like extreme point results do not hold. In
this case, the celebrated Edge Theorem due to Bartlett e t al. is an
important result for polytopes of polynomials; see [3]. The Edge
Theorem states that a polytope of polynomials is robustly D-stable
if and only if all edges of the polytope of polynomials are D-stable
(see [l] for definition of 23-stability).

Although Kharitonov’s Theorem and the Edge Theorem are power-
ful theoretical results, the uncertainty structures which arise in typical
applications usually do not allow these results to be applied directly.
Hence, it is desired to derive new results which are applicable to
wider classes of uncertain polynomials. Alternatively, the approach
taken in this paper is to find an enlarged polynomial family to which
the Edge Theorem is applicable.

Manuscript received August 3, 1994; revised July 6, 1995. This work was

W. Chen is with JRCASE, Macquarie University, Sydney NSW 2109,

I. R. Petersen is with the Department of Electrical Engineering, Australian

IEEE Log Number 9415790.

supported in part by the Australian Research Council.

Australia.

Defence Force Academy, Campbell, 2600, Australia.

0018-9286/95$04.00 0 1995 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on November 6, 2009 at 13:06 from IEEE Xplore. Restrictions apply.

Xiaojunun Yang, P. J. Antsaklis and M.D. Lemmon, "On the Supremal Controllable Sublanguage in the
Discrete Event Model of Nondeterministic Hybrid Control Systems,” Technical Report of the ISIS
(Interdisciplinary Studies of Intelligent Systems) Group, No. ISIS-94-004, Univ of Notre Dame, March
1994. In I EEE T rans A utomatic C ontro l , Vol 40, No 12, pp. 2098-2103, December 1995.

