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Abstract 
This paper describes a method for constructing a Petri 

net feedback controller for a discrete event system mod- 
eled by a Petri net. The controller enforces a set. of linear 
const,raints on the plant and consists of places and arcs. 
It is computed using the concept of Petri net place in- 
variants. The size of the controller is proportional to 
the number of constraints which mnst be satisfied. The 
method is very attractive computationally, and it makes 
possihle t,he systematic design of Petri net controllers for 
complex industrial systems. 

1 Introduction 
Petri nets are an appropriate tool for the study of 

discrete-event dynamical systems because of their power 
and flexibility. They have been used extensively to model 
and simulate many kinds of systems. Their use in control 
is somewhat limit,ed and only recent,ly some studies have 
been contluct,ed towards this direction. 

Holloway and Iirogh [4] used controlled Petri nets to 
control systems that can be modeled as cyclic controlled 
marked graphs, which is a special class of Petri neb. 
They have shown how to synthesize a maximally permis- 
sive feedhack controller which guarantees that none of 
the forbidden stat,es will occur. Their method does not 
require an exhaustive search of t,he system’s stat,e space, 
is cornputat,ionally effective and polynomial in the num- 
ber of forbidden conditions and in the number of places 
of t,he net,. The drawback is t,hat it is applicable t,o a 
limit,ed class of systems. 

Yamalidou [I 1) formulated the control problem of 
discrete-event chemical processes as a linear opt,imiza- 
t,ion problem based on the Pet,ri net model of the pro- 
cess. The cont.rol actions which bring the syst,em from 
its initial state to a desired final stat,e are computed over 
a t,irne horizon, while a set of constmink are sat,isfied and 
a cost funct,ion is minimized. The constraints are written 
as Boolean expressions which are t.hen transformed into 
sets of linear inequalities. 

Boissel [I] used simulated annealing t.o compute a Pet,ri 
net controller for a discrete-event, syst,em modeled by a 
Pet.ri net. The method can be applied to any system 
modeled by uncolored Petri nets and can also handle 
time. Although successful in producing a maximally per- 
missive optimal cont,roUer, t.he method is comput.at,ion- 
ally unattract.ive for large syst,enls since it. involves the 
construction of the reachability tree several times during 
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the execution of the algorithm. 
More recently Li and Wonham [6] have extended t,he 

work of Ramadge and Wonham on discrete event sys- 
tem (DES) control, see [9,  71, to vector DES’s (Petri 
nets). The method given in [6] shows how to reduce the 
problem of controller construction to a linear integer pro- 
gramming problem under certain assumptions about the 
plant structure. The method is used to  enforce linear 
constraints, of t,he type described in this paper, and is 
extended t,o handle certain formal language realizat,ion 
problems. Giua and DiCesare [2] have also done recent 
work on language control and realization with Petri nets. 
An informative study of Petri net control issues can be 
found in [3]. 

The method presented here computes a Petri net con- 
troller for a discrete-event system modeled by an unt,imed 
Petri net and is based on the net’s place invariants. The 
controller consists of places which are connected t.o the 
transitions of t,he process Petri net in such a way t,hat it, 
is guaranteed that the system does not enter a forbidden 
state. The combined process/controller net possesses the 
necessary place invariants to insure that the set of con- 
straints is not violated. 

The controller is not necessarily optimal in size, but 
it. is Fasily computed (involving only matrix mult,ipli- 
cations) and its size is proportional to the number of 
constraints of the process. The controller is maximally 
permissive in that it forces the set of constraints to  be 
obeyed, while allowing any act,ion that is not directly or 
indirectly forbidden by the Constraints. If the constraint,s 
on a net’s performance are written in t,erms of the firing 
vector, then there are situations in which the maximal 
permissiveness of the cont,rol method can only be guar- 
ant.eed if the net is safe [lo]. 

The paper is structured as follows. First. the t,heory 
concerning the place invariants of Petri net.s is briefly dis- 
cussed in sect,ion 2. Then the method itself is present,ed 
in section 3. Different kinds of constraints are discussed 
in section 4. Examples are used to illustrate the method 
in section 5. Conclusions and further research directions 
are given in section 6. 

2 Place Invariants 
One of the st,roct.ural properties of Petri nets, i.e. prop- 

e h e s  t,hat. depend only on t,he t.opological structure of the 
Pet,ri net and not, on the net’s initial marking, are the net 
invariants. Here we are interested in place invariants; 
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Pet,ri net,s may also cont,ain t.ransit,ion invariants, see [8 ] .  
Place invariants are sets of places whose token count, 

remains constant. They are represented by an n-column 
vect,or i. where n is the number of places of the Petri 
net, whose non-zero entries correspond t,o t,he places that. 
belong t,o the particular invariant and zeros everywhere 
else. A place invariant is defined as every int,eger vector 
1: which satisfies 

p T 2  = p:z (1 )  
where p.0 is the net’s initial marking, and p represents 
any subsequent. marking. Equation (1) means that the 
weighted sum of t,he tokens in t,he places of t,he invariant 
remains constant at all markings and this sum is det,er- 
mined by t,he initial marking of the Pet,ri net. The place 
invarianh of a net can be computed by finding the integer 
solutions to  

r T D  = 0 (2) 
where D is the n x m composite change matrix of t.he 
Pet,ri net with n being t,he number of places and m the 
number of transitions of the net. It is easily shown t.hat 
every linear combination of place invariants is also a place 
invariant for t,he net. 

Invariants are important means for analyzing Petri 
nets since they allow for the net’s st,ruct.iire t,o be investmi- 
gated independently of any dynamic process [ 5 ] .  Invari- 
ant. analysis can be performed on local snbnets without. 
considering the whole system and can be used for model 
verification. 

3 Description of the Method 
The  system to  be controlled is modeled by a Petri net 

wit,h R places and m transitions. The control goal is t o  
force the process to  obey constraints of the following form 

(3) 

where p,  and p, are the markings of places p ,  and p, of 
the process net, and 11, 12,  and bl are integer constants. 
If, for example, 11 = 12 = bl = 1, then equation (3) 
means that a t  most one of the two places p ,  and p, can 
be marked, or, in other words, both places cannot be 
marked at the same time. 

This inequality constraint can be transformed into an 
equality by introducing a slack variable p s  into it. The 
constraint then becomes 

11 i t t  + 1 2 ~ 3  + ps = bl (4) 

The slack variable in this case represents a new place 
p c  which holds t,he extra tokens required to  meet the 
equality. It insures that  the weighted sum of tokens in 
places p ,  and p, is always less than or equal to  b l .  This 
place belongs to  the controller net. The structure of this 
net will be computed by observing that the introduction 
of the slack variable introduces a place invariant for the 
overall controlled syst,em defined by equation (4). It is 
obvious that  there will be as many controller places as 
there are constraint,s of the type (3), so the size of the 
controller is proportional to  the number of constraints of 

Since a new place has been added to  the net, the com- 
posite change mat,rix D of the controlled system is the 

type (3) .  

original n x m matrix D ,  of the syst,em increased by a 
row corresponding t.o the place introduced by the slack 
variable. This new row belongs to t,he composite change 
matrix of the controller, called D,.  The arcs connecting 
the cont.roller place to  t.he original Petri net of the svs- 
t.em will be computed by t,he place invariant equat,ion (2 )  
where the unknowns are the elements of the new row of 
matrix D while t,he vector z, is the place invariant. de- 
fined by eqnat,ion (4). These compntat,ions are described 
below. 

First not,e that. t.he problem can be st.at,ed in general, 
as follows. All const,raint,s of t,ype (3) can be grouped and 
writ,t,en in matxix form as 

( 5 )  

where pp is the marking vect,or of the Petri net. modeling 
t,he process, L is an n, x n. integer matrix, b is an R ,  x 
1 int,eger vector and nc  is the number of constraints of 
t.ype (3). Note that t,he inequality is with respect to  the 
individual elements of the two vect,ors Llr, and b.  

Similarly all place invariant equat,ions of t,ype ( 4 ) .  gen- 
erated aft,er the int.roduction of the slack variables, can 
be grouped in matrix form as follows 

Lpp + pc = b ( 6 )  

where p c  is an n, x 1 int,eger vector which represents the 
marking of t,he cont.roller places. 

(6) mnst. 
satisfy equation (2): 

Each place invariant defined by equation. 

0 

L D p + D c  = 0 

where I is an n, x n, identity matrix since the coefficients 
of the slack variables in the constraints are all equal to  
1. The matrix D, cont,ains the arcs that  connect t.he 
controller places to the transitions of the process net. 
So, given the Petri net model of the process ( D p )  and 
the constraints that  the process must satisfy (L and b ) ,  
the Petri net controller (0,) is defined by 

Dc = - L D p  (7)  

The initial marking of the controller Petri net should 
also be calculated. The  initial marking of the controller 
places pco must be such that the place invariant equations 
(6) are satisfied and depends on the initial marking of the 
places of the process Petri net. which participat,e in t,he 
place invariants. Given equation (l), equation (6) can be 
written for the initial marking vector: 

L P P O  + P C ,  = b 
~ c o  = b - L11po (8)  

3.1 Example Controller Construction 

la .  The composite change mat,rix of t.his net is 
A s  an example consider the simple Pet,ri net of fignre 

D p =  [ -: -! i ]  
0 -1 1 -1 
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Figure 1: Pet r i  nets for 
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b) Controlled Net 

the example of section 3.1 

while its initial marking is 

P P o =  [ s i ]  = [ i ]  
D, is of rank 2, thus it has one place invariant which in- 
cludes the entire net, i.e., xTD, = 0 where zT = [l 1 11. 
The objective is to control the net so that places pz and 
p3 never contain more than one token, i.e. we wish to 
enforce the constraint 

P2 + 113 I 1 (9) 

Using the matrix notation of equation (5) we have 

L = [ o  1 1 1  

b = l  

The uncontrolled net does not satisfy the desired con- 
straint since [0 1 1IT is not a place invariant of the net. 
A slack variable p s  is introduced and the inequality (9) 
becomes an equality 

PZ + P3 + Ps = 1 

The slack variable p s  denotes the marking of the place ps 
which belongs to the controller. Equation (10) represents 
the desired invariant xT = [0 1 1 11 which will be forced 
on the controlled Petri net. The composite change matrix 
of the controller net is computed with equation (7): 

(10) 

D , = - L D , =  [ -1 0 0 1 ] 
The initial marking of the controller place is computed 
from equation (8): 

/ I s o  = 1 - Lppo = 1 

The Pet,ri net graph of the controlled system is shown in 
figure Ib.  

3.2 Maximal Permissiveness 
The control method can be shown t,o be maximally 

permissive by examining the place invariant,s of the con- 
t,rolled net. Let X, be an integer matrix of linearly inde- 
pendent columns representing a basis for the place invari- 
ants of the (uncontrolled) process net,. Then A-, satisfies 
the following equation: 

XFD, = 0 

where the columns of X ,  are linearly independent, and 
the number of columns of X, (and thus the number of 
invariants) is equal to n - rank D, since D, is an n x m 
matrix and X ,  forms a basis for the null space of D,. 
Note that if rank D, = n then the uncontrolled plant 
has no place invariants. 

The controller is constructed using equation (7). The 
transition matrix of the controlled net is then 

D = [  2 ] = [  -%,I 
Note that since the rows of D, are linear combinations of 
the rows of D,, rank D = rank D,. Thus the number of 
invariants of the controlled system is equal to n + nc - 
rank D,. All of these invariants are accounted for by the 
uncontrolled plant invariants and the forced constraint 
invariants as shown below. First note that 

[ X T  O ] [ ~ ] = X ~ D , = O  

Thus the invariants of the uncontrolled plant are also 
invariants of the controlled plant. This is true for any 
Petri net control scheme that only adds places and arcs 
in order to control the plant. From the construction of 
the control law y e  also know that 

[ L I ] [  ~ ] = L D p + D c = L D , - L D , = O  

and thus all n + n, - rankD, invariants of the controlled 
net are given by 

T 
X T D = [  XP L I ]  D=O 

The rank (and number of columns) of X, is n + nc - 
rankD,, since X, is rank n - rankD, and I is a n, x nc 
identity matrix. 

There are no new or unexpected invariants forced on 
the system as a result of the control law. The control 
law is maximally permissive since no action is prohibited 
which is not a result of the plant structure itself or the 
constraints forced on the plant. 

4 Constraint Transformations 
Constraints of the form Lp, 5 b are useful for repre- 

senting a large variety of forbidden state problems and 
are the same type of constraints discussed by Li and 
Wonham in [GI. It is possible to transform many sys- 
tem constraints into the form of equation (5) so that the 
control method presented here can be used to solve the 
problem. Yamalidou and Kantor have shown in [ll] that 
constraints written as well formed boolean formulas in 
a “product of sums” form can be transformed into al- 
gebraic constraints in the form of equation (5) for safe 
Petri nets. Some systems may require resource reserve 
constraints, for example, consider a multiprocessor com- 
puter with processor allocation modeled by a Petri net. 
One constraint on the system might be that two proces- 
sors must always be available to handle user I/O. The 
constraint coiild be written / I ,  2 2 which is equivalent 
to -11, 5 -2 and is in the form of equation (5).  Thus 
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“greater than or equal to” constraints are handled easily 
by the existing control method. The  rest of this sec- 
tion det,ails the special cases of equalit,y constraint,s and 
constraints that  involve elements of t,he Petri net firing 
vector. 

4.1 Equality Constraints 
Equality constraints have the form 

Ep,  = k (11) 

where E and k serve the same functions as L and b in 
equation (5). Equation (11) defines place invariants on 
the original process net. This is really a specification for 
the system and should have been incorporated into the 
Petri net model. If this invariant is not already part of the 
Petri net model, it  should become one a t  this point. This 
is done by modifying the composite change matrix D, of 
the Petri net so that equation (2) holds, where z = E 
in equation (11). The  new elements of D, represent the 
arcs which should be added to  the Petri net so that the 
place invariants are enforced. 

Note that it is possible to use the method from section 
3 t o  force E p ,  5 k and E p p  2 k in order t o  achieve the 
constraint of equation (11), however this may result in 
undesired dead-locks in the process net. 

4.2 Constraints Involving the Firing Vector 
Certain control goals may involve the firing vector of 

the Petri net a s  well as the places. For example one might 
want to insure that two transitions do not fire simultane- 
ously or that  a certain transition is never allowed to fire 
when a certain place holds a token. Algebraic schemes 
for transforming these kind of constraints into constraints 
that  only involve places can be found in [lo]. The method 
presented here is based on a transformation performed on 
the Pet,ri net, model itself. 

Assume that the process net must satisfy the con- 
s t r aint 

P t + q ,  5 1  (12) 
where q, is the jth element of the firing vector q. This 
means that transition t ,  cannot fire if place p ,  is marked 
and vice versa. In order t o  bring this constraint to a form 
which contains elements of the marking vector only, the 
following transformation is done to  the process Petri net. 
Transition t, is replaced by two transitions and a place 
between them, as shown in figure 2. 

tj 4‘ tj‘ 

Figure 2: Tra.nsformation of a Transition. 

The  composit,e change matrix D, of the process Petri 
net is increased by one column and one row since the 
overall number of transitions and places of the Petri net 
has each been increased by one. This transformation is 
artificial and will not effect the Petri net model of the pro- 
cess. I ts  sole purpose is to introduce the place p,’ which 
records the firing of the transition t,. After the controller 

has been computed the process net will be transformed 
back to it.s original form. 

The marking p l ’  of the place p,’ replaces qI in the 
constraint (12), which becomes 

ILi + 111‘ 5 1 (13)  

The const.raint now contains only p’s and t,he controller 
can be comput,ed as described in sect,ion 3. Since t,he 
method produces a controller consisting of places and 
arcs only, no part of the controller is connected directly to  
the place y,’ of the transformat,ion. Aft,er the cont,roller 
structure is comput,ed, the two t,ransitions and the place 
of t,he transformation collapse to  the original t r and ion  
thus restoring the original form of the process net while 
dil l  maint,aining t.he enforcement of the new conshaint. 
The  same transformation is done t,o all the transitions 
which appear in t,he const,raint.s. Those const,raints t,hat, 
contain only 4’s are treated in the same way. 

5 Examples 

Two examples are used t.o illustrate the place invari- 
ant control method. The  first is the well known ‘‘cat, and 
mouse” problem [9]. The second is a flexible manufac- 
turing svstem used by Halloway and Krogh [4]. 

5.1 The Cat and Mouse Problem 
The “cat and mouse” problem, introduced by Wonham 

and Ramadge [9], is a popular example in the field of 
discret,e event system cont,rol. The  problem involves a 
maze of five rooms where a cat and a mouse can circulate. 
The  rooms are connected with doors through which the 
animals can pass. The  problem is to control the doors so 
that the cat and the mouse can never be in the same room 
at the same time. The  controller should be maximally 
permissive in the sense that it should grant maximum 
freedom of movement to both the cat and t,he mouse. 
The simple Petri net model of the cat and mouse problem 
is taken out of Boissel [l] and is shown in figure 3. The  
upper net concerns the cat while the lower net concerns 
the mouse. Each net has five places which model the five 
rooms of the maze. The  transitions model the ability of 
each animal to pass from one room to the other. Further 
details on this example can be found in [lo]. 

There is one token only in each of the nets since there 
is one cat and one mouse. The  presence of a token in 
a place indicates that  the animal modeled by the token 
is in the room modeled by the particular place. Initially 
the cat is in room 2 and the mouse is in room 4.  

Transitions c i  and cg are uncontrollable. The  control 
goal is to insure that the cat and mouse are never in t,he 
same room simultaneously, while allowing all moves that 
do not directly violate this constraint., that  could lead t,o 
the violation of the constraint because of uncontrollabil- 
ity, or that could lead to a dead-lock state. The  require- 
ments are translated into the following constraints: 
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Figure 3: The Petri Net Model of the Cat and Mouse 
Problem. 

The corresponding L and b are 

1 1 0 1 0 1 1 0 1 0  
1 0 0 0 0 0 0 0 1 0  
0 0 1 0 0 0 0 1 0 0  
0 0 0 0 1 0 0 0 0 1  

] b = [  i ]  L =  [ 
Note that  even though the second constraint in (14) is 
contained within the first, the constraint is still necessary 
to  insure that the controller works for all initial condi- 
tions. The controller has four places and its composite 
change matrix and initial conditions are computed as de- 
scribed in section 3: 

D, = -LDp = 
0 1 - 1 0  1 - 1 0 0  1 - 1 0  1 - 1 0  
1 0 - 1 1  0 - 1 0 0  0 
0 - 1  1 0  0 0 0 0 - 1  : :  :-::I 
o o 0 0 - 1  l o o  n 0 0 - 1  I O  

r 1 i  

5.2 Automated Guided Vehicle 
Coordination 

This example, concerning a flexible manufacturing 
cell has been used by Holloway and Krogh [4]. It in- 
cludes three workstations, two part-rewiving st ations 
and one completed parts station. There are five auto- 
mated guided vehicles (AGV's) which r a n  transport ma- 
terial between the stations. The routes of the vehicles 

cross on the floor of the plant and, consequently, there 
are zones in which two vehicles could be present a t  the 
same time. This is a forbidden situation. 

The constraints that the process must satisfy conccrn 
the presence of the vehicles in the dangerous zones and 
are expressed by the following inequalities 

lEZ4 

where Z, is the set of indices of places which make up 
zone j .  Slack variables are introduced and the inequali- 
ties become equalities 

t E Z 4  

The four slack variables define four places for the con- 
troller. Each place controls the access of a zone. The 
composite change matrix of the process is increased by 
four rows which correspond to  the four controller places 
and constitute the composite change matrix D, of the 
controller net. After computing D ,  and p,,, from equa- 
tions (7) and (8), the appropriate arcs are added to  con- 
nect the controller places to  the appropriate transitions 
of the Petri net of the process. The controlled Petri net is 
shown in figure 4. The shaded areas represent the danger- 
ous zones in which the vehicles' trajectories cross. The 
vehicles and the parts are modeled by tokens (see [4]). 
Arcs made of dashed lines are parts of the controller, not 
the original process net. The marking of the Petri net 
corresponds to  the current state of the system. 

6 Conclusions 
This paper has presented a particularly simple method 

for constructing feedback controllers for untimed Petri 
nets. The method is based on the idea that specifications 
representing desired plant behaviors can be enforced by 
making them invariants of the controlled net. In this pa- 
per, therefore, a technique was derived which used place 
invariants representative of logical design specifications. 
The resulting controller consists only of places and arcs 
and its size is proportional t o  the number of constraints. 

The significance of this particular approach to  Petri 
net controller design is that  the desired control net can 
he computed very efficiently by a single matrix multipli- 
cation (and some simple vector arithmetic to  determine 
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Figure 4: The Cont#rolled AGV Net. 

Ohe initial state of t,he controller). The resulting con- 
t,rolled system will generally not be optimal in terms of 
minimizing the number of its places in the controller net. 
However, the approach yields controllers whose size grows 
in a polynomial manner with the number of specifications 
and due to  the ease of computation can represent a good 
init,ial point in subsequent controller-size optimization. 
Consequently, the proposed approach appears to  possess 
significant potential for helping in the design of feedback 
cont,rollers for a relatively large class of Pet.ri nets. 

The t,ype of constraint,s t,hat can be written in the forin 
of equat,ion (5) cover a wide variet.y of forbidden stat,e 
problems. However const,raints in this form may be too 
cumbersome or even incapable of represcnting certain, 
more arbit,rarg, forbidden sta.te problems. Certain DES 
control goals such as formal language realization can not 
be achieved directly by t.he method present.ed here and 
require the addition of some supplemental cont,rol mech- 
anism such as a memory. This is a t,opic for fiiture re- 
search. 

There are several ot,her areas in which t,he control 
method is open for further research. The method should 

be expandd  to  deal wit,h timed Petri nets as these net- 
woIks are being used more and more often due t,o their 
added modeling power. Another important research gb:.’ 
is to deal with uncontrollability (and unobserva.bi1it.y) in 
a systematic wav, though many t.imes t,he uncontrollabil- 
ity problem can be dealt, with in an ad hoc fashion as in 
section 5.1. A syst,ematic method for dealing wit,h con- 
trollability and iinobservability could be based on trans- 
forming the set of conshaints into a set that  account,s for 
uncontrollable or unobservahle transitions. This t,rans- 
formation would be similar t,o t,he “suprema1 cont,rollable 
sublanguage” used by Ramadge and Wonham in their 
work on discret.e event. syst,em control [9, 71 and would 
require t,he prevent,ion of dead-lock st.ates as well as t,hose 
stat,es expressly prohibited by t,he design const.raints. 
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