M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

Inductive Inference of Logical DES Controllers

using the L* Algorithm

Xiaojun Yang, Michael Lemmon, and Panos Antsaklis *
Department of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556

September 15, 1994

Abstract

Discrete event system (DES) controller synthesis requires that the plant deterministic finite
antomaton (DFA) be known. There are many situations when prior knowledge of the plant DFA
is not realistic. The impracticality of knowing the plant DFA is particularly evident if the DFA
is derived from examples of the plant’s legal behaviours. [t is well known that the problem of
inferring a minimal DFA from positive examples is NP-complete, thereby casting doubt on the
utility of traditional DES controller synthesis methods. Recently, however, an algorithm known
as the L* algorithm has been proposed for DFA inference. This algorithm has been shown to
have polynomial computational complexity. This paper demonstrates how a modification of the
L” algorithm can be used for the on-line synthesis of DES controllers.

1 Introduction

Discrete event system (DES) controller synthesis methods as proposed by Ramadge and Wonham
[1] require that the state transition model of the desired legal behaviours be known. LaFortune has
pointed out [2] that this requirement is often unreasonable. First, the number of states in the DFA
may grow exponentially in the number of constituent processes [3]. This situtation is observed in
manufacturing systems when the machines and workpieces are modelled separately. Second, when it
is impossible to determine when and where processes are terminated and initiated[4], the DES plant
may be time-varying. The railway scheduling system is a typical instance of this situation. Third,
the controlled DES model may not be known completely as is the case in DES plants derived from
hybrid control systems [3]. Fourth, when legal behaviours are expressed as quasi-formal language
specifications then construction of the associated DFA may be difficult if not impossible [6].

*The partial financial support. of the National Science Foundation (MSS5-9216559) is gratefully acknowledged

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

This paper uses an on-line inductive learning algorithm to synthesize the DES controller. In-
ductive inference [7] is a machine learning protocol which determines the minimal Boolean function
consistent with a set of input-output pairs of that function. These input-output pairs are called
“examples”, so that inductive inference is sometimes referred to as learning by example. Inductive
inference procedures provide a method for identifying DES controllers from given examples of the
desired legal behaviours of the plant. In the context of the Ramadge-Wonham (RW) synthesis pro-
cedure, inductive inference algorithms identify the minimal deterministic finite autornaton {DFA)
consistent with examples of the plant’s desired legal behaviours. Note that since the DFA is learned
by “example”, no explicit representation of the plant’s legal behaviours is needed. Inductive learning
methods simply require a reliable method for identifying whether or not a given string is legal.

The class of inductive learning methods being used are applicable to the inference of regular sets.
There are two types of learning methods, passive and active. Passtve learning methods “passively”
observe examples of the regular set and base their determination on those observations. Active
learning methods “actively™ select certain strings and test their membership in the target set. An-
gluin [13] and Gold [15] have shown that the inference of minimal DFA’s by passive observation of
examples is NP-complete. See [14] for a recent survey of results on the inference of regular sets.
These results were applied by Tsitsiklis [3] to show that the RW-synthesis is often impractical when

the legal behaviours become extremely complex.

Recently, however, a learning procedure combining passive and active observation has been shown
to have a computational complexity which is polynomial. The L™-algorithm is a learning procedure
proposed by Angluin [8] which uses passive examples and actively generated counterexamples to
infer the minimal DFA for a regular set. This algorithm has been shown to be polynomial in the size
of the minimal DFA and the length of the required counterexamples. This paper proposes using the
L*-procedure for the on-line synthesis of DES controllers. Because of the L*-algorithm’s polynomial
complexity, it is expected that this procedure will provide a practical method for DES controller
synthesis which answers some of the issues raised by Tsitsiklis [3] concerning the complexity of the
RW-synthesis method.

The synthesis method introduced in this paper is an on-line synthesis procedure. On-line control
of DES has been discussed previously in {9] [10] [L1] [17] {16]. In the context of manufacturing
systems. on-line schemes have been developed to solve deadlock avoidance problem([12]. This idea
was developed into an on-line control scheme based on “limited lookahead control policies” [2]. That
scheme determines the control action at each exectution based on an ¥-step ahead prediction of the
controlled system’s behaviour. Schapire [17] and R.. Rivest [16] have used the L* learning algorithm
to infer finite antomatons in robotic grid worlds. This work is related to ours in its use of the
L* algorithm. It does not, however, address controllability issues in the generation of the DES
controller.

The objective of this paper is to show how the L™ algorithm can be used for the on-line synthesis
of DES controllers. Because of the polynomial complexity of this algorithm, it may provide a com-
putationally feasible approach to DES controller synthests. The results in this paper are preliminary
results providing examples of the proposed synthesis procedure. The remainder of this paper is

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

organized as follows. Section 2 summarizes the L* learning algorithm as originally introduced by
Angluin [8]. Section 3 discusses the modified L* algorithm as we've used it. Section 4 presents
examples drawn from problems first discussed in [1]. The examples provide concrete examples of
the L* learning algorithm’s application in finding the supremal controllable sublanguage.

2 [* Learning Algorithm

Let £ denote the finite event alphabet, £* denote all the finite event strings defined over I,
and K denote the unknown regular set defined on , K C I*. Assume that we are given a set of
examples, £ = {s;} (i = 1,2....) which are known to be element of K. It is well known [13] [15]
[3] that to construct the minimal acceptor (DFA) consistent with these examples is NP-complete.
Essentially this means that the problem of inductively inferring a regular language on the basis of
passive examples is computationally intractable. This type of inference is sometimes referred to
as “passive” learning since the learning system passively observes examples and takes no action to
generate additional examples,

In [8]. it was shown that a combination of active and passive learning will have a computational
complexity that is polynomial in the size of the alphabet, the number of states in the minimal
acceptor. and the length of the “counterexamples” which the learning system actively generates
to probe the system. This type of learning process is “active”™ because the algorithm actively
constructs counterexamples to the acceptor derived from the passively observed examples. The
learning procedure introduced by Angluin was called the L* learning procedure. Recent variations
of this algorithm have suggested modifications improving the original method’s convergence rate

[17).

L* learning is a procedure which methodically builds up an observafion table from examples and
counterexamples. The observation table is built up from strings s € £, It is assumed that the
algorithin is capable of determining whether or not a given string s is in the set . The observation
table consists of 3 parts, a non-empty finite prefix-closed set 5 of strings over £, a nonempty finite
suffix-closed set £ of strings over £, and a function T : (S U SE)E — {0, 1}. The function T takes
strings in s € (S SE) onto () if they are not in K, otherwise the function T returns 1. This function
is often called a membership oracle. The cbservation table is therefore characterized by the 3-tuple
(S5, E,T). The ith observation table constructed by the L™ algorithm will be denoted as T;. It is a
2-dimensional array whose rows are labeled by strings s € §U ST and whose columns are labeled
by symbols o € E. The entries in the labeled rows and columns are given by T(sc).

Let row(s) denote the table entries in the row labeled by string s. An observation table is said
to be closed if for all £ € SE, there exists an s € S such that row(f) = row(s). An observation
table is said to be consistent if there exist strings 5, and so in S such that row(s;) = row(ss), and
for all ¢ € T, row(s;¢) = row(s2c). An observation table is said to be compleie if it is closed and
consistent. It has been shown [8] that a DFA M (S, E.T) = {Q. g0, F, §} can be constructed from
the observation table by the following procedure.

Q = {row(s):s€ 8§} (1)

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

go = row(e) {2)
F = {row(s):(s€S)A(T(s) =1)} (3)
d(row(s), o) = row({so) (4)

It is further known that this constructed DFA is the smallest acceptor for the regular set consistent
with the positive examples of I used in the table.

The L" learning procedure constructs the observation table for the minimal acceptor of K in the

following manner. See [8] for more details.

L* Learning Algorithm [8]

1. Form initial observation table, Ty
Let S=¢and £ ==
Use the membership oracle to evaluate T; = (S5, E, T') where i = 0.

2. Repeat: While T; = (S, E,T) is not complete:

{a) If T; is not consistent,
then find 51,50 € §, ¢ € T, ¢ € E such that row(s;) = row(s2) and T{s,ce) £ T(s2c¢),
add ae to F,
extend T to (5 ST)E using queries to the membership oracle.

{b) If T; is not closed,
then find s; € 5, ¢ € X such that
row(s o) is different from all row(s), s € 5,
add 5,0 to S,
extend T to (SUSE)E using queries to the membership oracle.

3. Once T; is complete, let M; = M(T;).
Make the conjecture that M; is the minimal acceptor of K.
Ask the countererample oracle about the conjecture’s validity.
The oracle returns a counterexample, t € L* if the oracle declares the conjecture to be false.

(a) Add ¢t and all its prefixes to S.
(b) Extend T to (S USE)FE using queries to the membership oracle.

4. Set ¢ = i+ 1 and return to Repeat until the conjecture is declared true.

5. Halt and output AM;.

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

The running time of the L* algorithm has been shown to be polynomial. Let n denote the
minimal size for K', m the maximal length of a counterexample, and I = |E|. Then L* can make at
most n — 1 incorrect conjectures. The maximum length of strings in £ is n — 1. The total number of
strings in E is less than n. The maximum length of strings in S is m + n — 1. The total number of
strings in .S can not exceed n+m(n—1). The maximum length of strings in (SUSE)E is m+2n—1.
The maximum cardinality of (SUSZ)E is therefore at most (! + 1){n + m{n - 1))n. This last result
bounds the size of the observation table as a polynomial in m and n (see {8] for details).

3 L"-Synthesis of DES Controller

Assume that the plant language, L({F) and control specification, K, are described by regular
languages and hence can be realized by finite automatons G and M(R'), respectively. The event
symbols ¥ are assumed to bhe partitioned into controllable ¥, and uncontrollable event sets T, both
of which are known. The plant event traces are assumed to be observable. Since G and M () are
not assumed to be known, the L™ learning algorithm has been proposed as a method for inductively
synthesizing the optimal DES controller. The following subsections discuss the components of the
proposed on-line DES synthesis method. Subsection 3.1 discusses the use of N-step lookahead
windows. Subsections 3.2 and 3.3 discuss the membership and counterexample oracles, respectively.
Subsection 3.4 discusses the on-line algorithm in which Angluin’s L* procedure is used to identify
the optimal DES controller.

3.1 Lookahead Window

Rather than assuming that the plant automaton G is known, this paper assumes that plant
knowledge is confined to a limited lookahead window of behaviours. This type of plant knowledge
was used in [2]. Let L(G,N,s) denote all strings of length not longer than N generated by the
plant, GG, after an observed trace s. Let L,(G, N,s) denote the set of uncontrollable traces and
let L.(G5,N,s) denote controllable traces in L(G, N,s). Those traces in L(G,N,s) N K whose
controllability cannot be decided will be tagged as pending. The set of pending traces in L(G, N, 5)
will be denoted as L,(G, N, s).

The preceding remarks partitioned L(G, ¥, s) into three mutually exclusive sets. The following
propositions characterize the controllable traces, L.{(G, V. s) and uncontrollable traces, L, (G, N, s)
in the prediction window. Pending traces are given by L,(G, N, s) = L(G, N,s}NK — L,(G, N, s) —
L.(G,N,s). These propositions are stated without proof.

Proposition 1 If there exisis t € L(G, N, s} — K. and if can be wrilen as t = tjoty, where ¢ € I,
t € L(G,N,s)NK, ta € Ty, then ty € L,(G, N, s).

Proposition 2 Gwen t € (L{(G,N,s) = L(G,N — 1,s))N K, Vt; € T}, s.t. |u} < Ny (L{G)). where
ty = Dy(itu, if tt) € K, thent € L(G, N, s).

Givent € L(GN—-Ls)NK, Vi €Z, —e sl 1, € L(G,N,s), ifiy e L(GN-1,s)NKU
LG, N, s)N(L(G, N, 8) = LIG,N — 1,5)), thent € L(C. N, s).

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

3.2 Membership Oracle

The control specification A is a prefix-closed regular set. Rather than knowing its acceptor,
M(R'), this paper assumes that there exists a Boolean function T : ©* — {0,1} which declares
whether or not a given string is a legal system behaviour. This mapping is called the membership
oracle. It will be discussed in greater detail below. No specific assumptions are made about the
implementation of T since specified behaviours may only be described by a quasi-formal set of
“rules”.

The basic membership oracle is a Boolean function mapping strings ¢ € £* onto {0.1}. If a
string is is illegal or uncontrellable, then its value is 0, otherwise its value is 1. A formal algorithmic
description of the membership oracle’s outputs is given below. For + € T*, let T(¢|N,s) denote
membership oracle.

0 iftg KNorte LG, N,s)
i otherwise

T(t|N, s) = { (5)

Note that the membership oracle is defined with respect to the current prediction window,
E(G, N, s}). The dependence of the membership oracle on the prediction window represents a major
difference between the traditional L* algorithm and our use of that algorithm. The dependence
of the oracle on the prediction window is a reflection of the fact that the oracle cannot always
decide string membership in the event of uncontrollable events. The introduction of the lockahead
window helps reduce this uncertainty, but it does not remove it. The membership oracle therefore
changes in a dynamic manner as the system evolves. Essentially it improves as the system evolves
over time, being able to correctly declare set memberhsip for a larger and larger set of strings.
This fact means that in implementations of the L* procedure, the entries of the observation table
will always have to be re-evaluated every time a new prediction window is generated. This dynamic
aspect of the L* implementation presented below represents a fundmental departure from traditional

implementations of the algorithm.

3.3 Counterexample Oracle

Once the L* algorithm has constructed a complete observation table, the procedure generates
counterexamples to modify that table. The counterexample oracle is responsible for finding coun-
terexamples to a given acceptor. Prior work [8] in L* learning has used a sampling oracle to generate
counterexamples. The counterexample oracle used in this paper is essentially a search procedure for
efficiently exploring the acceptor’s and the plant’s behaviours.

The counterexample oracle is an algorithm which searches the acceptor and plant for illegal or
uncontrollable and controllable behaviours. There are two ways in which a counterexample can be
generated. First, searching acceptor generates counterexamples. When a string is illegal, but it can
be generated by the acceptor, it is a counterexample. Second, searching prediction window generates
counterexamples. If a uncontrollable string can be generated by the controller or a controllable string
never be accepted by the controller, it should be used as counterexamples. The following procedure
provides a systematic method for obtaining these strings. Counterexamples will be generated in

6

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

three different instances. These instances and their associated protocols are itemized below.

1. CE Protocol 1
Generating counterexamples from an examination of the acceptor M(T).
Let Ny = (L{G)+ 1} (|K]+ L) and let i = 1. Any ¢ € L{M.i.5) -~ L(M,i — 1, 5) such that
t¢ Kfori=1,..., N is a counterexample.

2. CE Protocol 2
Generating counterexamples from an examination of uncontrollable strings in the current pre-
diction window.
Any string t € L,{G. N,s) will be a counterexample if ¢t € M(T)

3. CE Protocol 3
(Generating counterexamples from an examination of controllable strings in the current predic-
tion window.

Any string t € L.(G, N, s) will be a counterexample if £ € M (T).

3.4 On-Line Synthesis Procedure

This section summarizes our implementation of the L™ algorithm when using the time-varying
memberhsip oracle discussed in subsection 3.2. The following procedure also explicitly shows how
we use the three cases itemized in subsection 3.3 to search for counterexamples of a conjectured
acceptor.

Since we obtain examples on-line and improve membership oracle on-line too, L* algorithm can
not be directly used in on-line controller synthesis. However, we do make use of the basic idea of L*
algorithm, by which complete observation table is constructed efficiently and counterexamples are
used to derive a correct conjecture so that the corresponding minimal constructure of the regular
set is learned. In the following, the on-line controller synthesis algorithm is given.

1. Given initial prediction window L(G. N, ¢), search for L,(G, N,¢), then build initial observa-
tion table according to membership oracle T(t|V,¢). Let s=¢

2. When the table is not complete, make the table complete as L* algorithm does according to
current membership oracle.

3. When the acceptor is derived from the complete table, search CE-protocol 1 in this acceptor
for the shortest one. Add it into 5 to get a new complete table in the same way as 2.
Repeat searching with CE-protocol 1 to obtain the new acceptor. Continue until no more

counterexamples are found.

4. Use CE-protocol 2 to search the acceptor for the shortest counterexample. If ¢ is the returned
counterexample, add Dy (%) into S to get a new complete table in the same way as 2. Repeat
until no more counterexamples are found.

=]

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

o

=1

3.5

Figure 1: Automatons of L(G) and K (example 1)

Compute L.(G, N, s) and use CE-protocol 3 to search the acceptor for the shortest counterex-
ample, t. Add ¢ into § to get a new complete table in the same way as 2. Repeat until no
more counterexamples are found.

. Using the acceptor as a controller, denote the enabled event set as ¢' = L(M,1,5). If CN

L(G,1,8) =0, or|s| > (JL{G) + 1)(| K]+ 1). reset the system to the initial state, then generate
a new path according to ' = L(M, 1, £). Otherwise, randomly choose one event o € ', assume
the system execute o. Let 5 <= so, getting new prediction window.

. Computing new uncontrollable string in L(G, N,s), update membership oracle accordingly.

That is, if there exists t € SEN L, (G, N,7), s.t. T(f) = 1, then it is changed into T(¢) = 0.
Go to 2 to repeat the algorithm.

. When no more counterexamples are found or the system has generated encugh events, then

the algorithm ends.

Simple Example

This is a simple example used to illustrate how the on-line controller synthesis algorithm works. In

this example, the DES plant and specification are shown in figure 1. The event set is & = {a, a2, 8}
and the uncontrollable event set, £, = {8}. For this example, L(G) = (&% + a2)8* and the
control specification is K = 8% + a»3*. Initially, of course, these automatons are not known to

the controller.

The specification is assumed to be given as a set of gquasi-formal rules. In this example, the

specification rules are;

1.

If @1 occurs first, then, at most, two 3 events are allowed to be generated.

2. If a9 occurs first, then any finite 3 events are allowed to be generated.

In addition to these rules, it is assumed that the plant’s future behaviour can be predicted for up

to N = 2 steps in the future.

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

B

\ B

_—
Figure 2: L(G, 2,¢) for example]

To illustrate the generation of the plant’s predicted behaviour, assume that the system starts in
its initial state. The first observed transition is therefore the null trace, . The language L(G,2,¢)
is represented by the tree shown in figure 2. Note that in this tree, all of the predicted behaviours
are legal (with respect to our aforementioned rules), but that they all terminate in an uncontroliable
event. 3. The controllability of these events in the window therefore cannot be decided. Consequently
all predicted traces in the window are pending except € (L,(G,2,6) = L{G,2.5) — ¢).

Using the fact that all predicted traces are legal, the initial observation table Ty and its acceptor
M(Ty) are readily written down as shown in the first row of figure 3. Figure 3 shows all of the
complete observalion tables T; and their associated acceptors M; = M(T;) generated by the L~
algorithm for this particular example.

Note that while trace ryx2 can be generated by My, this trace clearly fails to satisfy . Therefore
a1 as i5 a counterexample. The counterexample is used to medify Ty by first adding o) to 5. The
resulting table, however, is not consistent because row(z) = row(e;) and T{ce} = L, T{a1ay) = 0.
The event o therefore has to be added into E. The resulting table. T} is now complete. This table
and its acceptor are shown in figure 3.

The process is repeated by attempting to generate another counterexample. Note that o, 38/ ¢
K but it is accepted by M (T7). This trace is therefore a counterexample. The traces o1 5 and o 53
are added into §. To force consistency, # and 3@ are added to E. The complete observation table,
Ty and its acceptor are shown in figure 3.

Note that since My C K, no counterexamples can be generated from the acceptor. To search
for additional counterexamples, traces {rom the plant need to be examined. This is done by using
the current controller M(T2) and observing the plant’s resulting behaviour. Assume, for example,
that the application of M- generates the trace ay. Let G| M4 denote the plant DES & controlled by
acceptor Mz. The controlled lookahead language, L(G|Ma, N, a2), consists of a single trace, a2/30.
This trace is accepted by M> and hence is legal (i.e. not a counterexample). Letting the system evolve
one more step, the observed trace becomes a23. The two step ahead prediction once again consists
of a single trace, a20%. Once again, this string accepted by M and hence is not a counterexample.
Note that by continuing in this manner, all further traces generated by the controlled plant would
be legal. The preceding discussion highlights a specific point about using these learning methods for
on-line DES synthesis. It is quite possible that these languages are “non-ergodic”. In other words,
for a given initial trace, it is possible that certain legal traces will never be generated by the plant.
These other legal traces would only have been generated if the plant had started with a different

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)

Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

TD [
€ 1
(s3] 1
%)} 1
T1 £ [£3}
€ Il 1
o 1 0
&9 L 0
L]0
» e |m | 8|58
£ Ly 1]0f 0
oy 110 |1 1
o 1{0 (1710
a1l o]ofo
o 110 (1] 1
T Je|a | B 88
£ 1111010
oz 110 11) 1
Cl’zﬁ 1 0 1 1

0 R

90

94

> B

Figure 3: Completed Observation Tables and their Acceptors (example 1)

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

Cz—b cat
2

- Mo C3

! M3 —- I"""1 v

<1
AV °
7
I ca
mg —
Ma

3 | 4

-— m5 c
o Fl (=

Sl

mouse

Figure 4: Cat and Mouse Problem

initial event string. This fact can be easily seen in 1, where the first event is either a; or aa. The
initial testing of M, was done assuming an initial event as. Now assume that a8 was the first
event generated by the plant. In this case, the two step-ahead trace will be a16%. This behaviour
is illegal and can therefore be used as a counterexample to update 7. The completed observation
table, T3, and its acceptor are shown in figure 3.

Note that this last acceptor M3 is the supremal controllable sublanguage for this problem as
computed in {1]. Any further attempts, therefore, to generate counterexamples would be futile.

4 Examples

This section demonstrates L* learning on two different problems drawn from [1]. The first
problem is the well-known cat and mouse problem. The second problem is based on a manufacturing
application.

4.1 Cat and Mouse Problem

This classic example provides another complex problem which the L* learning algorithm is able
to solve. The event set of the system is L = {¢y,¢2, €3, ¢4, €5, C. C7, My, M3, M3, My, M5, Mg}, Where
Tu = {cr}. The events mark the entry/exit of the cat {c) or mouse (m) from a room. The underlying
structure of the rooms and the labeled transitions are shown in figure 4. The control specification
is to find that control scheme which permits the cat and the mouse the greatest possible freedom of
movement while guaranteeing that (1) the cat and mouse never occupy the same room simultaneously
and that (2) both are able to return to the initial state. In this example, we assume a prediction
window, N, of size 2. Let (i, j) denote that the cat and mouse are in rooms i and j, respectively.
The initial state is (2, 4).

To construct the initial observation table, first construct the tree representing L(G,2,¢) and

11

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

(3.4)

(0.,3)

(0, 3)

(2,3

O (2,0

Figure 5: Prediction Window L{{, 2,¢) (example 2)

0 (1‘3) O (2,4)
{(3.4)
{3,3)
(1,3)
(4.4
(0.0} c
o—2 O (1,4)
{0,0) (2.4) (0.4) ™y 7
0-"5.p —0(22) o votte
4 @3 mg GO !
my (0.3) 0 (3,3)
(2,4) mg
0(0.0)

Figure 6: Prediction Windows L{{G|Aq, 2, ms) and L{G|Mp, 2, ¢3) (example 2)

examine its traces. This tree is shown in figure 5. In this window, ¢, c3, and ms are controllable
strings. The other strings are all pending. The entries in the initial table are decided according to
our quasi-formal specification. The resulting ohservation table, T; and its acceptor are shown in

figure 7.

Note that this acceptor will generate no illegal behaviours and accepts all observed controllable
strings. My is therefore used as a controller in an attempt to generate system behaviours. Suppose
the first generated event is that the mouse moves, ms. The prediction window L{G|My,2,ms) is
shown in figure 6. In this window, msmyg is controllable but not accepted by Mjy. This string is used
as a counter-example to modify Tp, and thereby obtain the observation table Tj. This table and its
acceptor are shown in figure 7. Note that this control strategy works by allowing the cat to move
to one room and then trapping him there.

Now use M, as a controller and see what happens if the cat moves first, 1.e. the event ¢3 is
issured. In this case the prediction window is shown in figure 6. At first glance, there are no
counterexamples in this window. Note, however, that it is possible to have an uninterrupted string
of ¢s transitions. Note that if this occurs then the cat and mouse always occupy separate reoms.

12

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

The strings cacierer and czeacrcd should therefore be treated as controllable. In other words, ¢zcy
and cgeq are counterexamples for Tp. This is the first set of sufficient conditions for identifying
uncontrollable traces in proposition 2 of subsection 3.1. The counterexample cze; modifies the
observation table T} to obtain T5. This observation table and its acceptor are shown in figure 7

Note that c3cq is accepted by M,. Using M, as a controller shows that if traces mscacs or
mscgeier occur, then the system arrives at the illegal state (3.3). Furthermore ¢; is uncontrollable
so that mscze; is an uncontrellable string. Therefore mscacy, mscacy should not be generated.
In addition, if the prefix msca of these previous strings is executed, then the cat and the mouse
never return to the initial state. So msgcs. czms should be used as counterexamples to generate
the observation table T3 and its associated acceptor (see figure 7). Proceeding as before using M3
as a controller, yields counterexample of controllable string czcqcr. Modifying T5 with this trace
produces a complete observation table 7. This table and its acceptor are shown in figure 7. Note
that the final controller is the supremal controllable sublanguage for this problem.

4.2 Manufacturing System Problem

In this example two machines are connected by a buffer. The event set and uncontrollable event
sets are & = {0, a0, f1, 2}, By = {H1.32}. Event o; means that machine i starts working, 3
means machine { finishes working. The automaton for L{G) is shown in figure 8. In this example,
the system states have the following interpretation. I; means machine i is idle and W; means machine
i is working. The buffer B has one slot with two states, E, empty and F, full. Initially the system
is in state (I, fa).

The control specification is to keep the buffer at o or 1 at all times. Let [a|(f) denote the
number of occurances of « in ¢, where a € I,¢ € L. The control specification can be expressed
as K = {u:u € Z°, |oa|(t) < |B1](f) < |eva|(¥) + 1,VE € &}. This means that as and f§y strictly
alternate and that f; occurs first. Note that K is not included in the system behaviour L{{). At
this point, it is different from the previous examples. Its model is shown in figure 8.

Since N, (L(G)) = 2, assume that the size of the prediction window is 3. In the initial step, the
current trace is s = €. The initial prediction window is shown in figure 9. Note that in this window
the events ¢, a1, o B are controllable, @2Z* and aasT" are iilegal. All other traces are pending.
There are no uncontrollable strings.

In the same way as above, we generate the initial observation table and its acceptor, as shown
in figure 11. Trace £, 5, is illegal, but it can be generated by the initial acceptor, so it is a coun-
terexample. [is added into the table T;. To make the table consistent, «s is added into E. The
resulting observation table T} is complete, This table and its acceptor are shown in figure 11.

This acceptor M is the model of control specification K, so no more counterexample is found by
searching this acceptor. Since the available controllable strings in the initial prediction window can
be generated by this acceptor, and no uncentrollable string is found, the acceptor can be used as a
contreller. Using M| to generate the enabled event set L{M),1,£)U X, , assume that the observed
event trace is 1. The 3-step ahead prediction window is shown in the figure 10. Note that c; 312} 3,

13

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

- O
R 1 q 0 Cytmg
c3 || 1
ms || 1
ms
el L s <3
z 1 0 1
g 1 1 1 Ay O & 91
M5 Me 1 0 0
c3 1 1] 0 my me
Mg Ca 1 0 0
TR TG g 1 0 1 w
92
T s | s | ea | g | 2
3 1 1] 1 3] 4]
Tte 1 1 1 0 4}
myg g 1 u 4] 4] 0
¢ 1 1) 0 1 0
cac 1 1) 4] 4] 1
M50 1 [1] [{] | [§]
I INEI, L Q0 L 1] Q
cary ! 0 0 0 0
cutts 1] 0 i 0
(- T K el 3 o] 1 Q Q0
c3CLeT ! 0 0 0 0
T3 €| meg | cale | ce
g 1 0 1 U 0
ms 1 { 1 0 0
mg Mg 1 0 0 0 0]
3 L 0 0 1 0
ae] l 0 0 0 |
Mg mging 1 0 t [4] 0
30y l 0 0 0 0
C3e1C 1 0)] 010
€3C1€67 1 0 0100
Ta gl mg | ea e | ra| g
£ 1 0 1 0 1] 4]
M5 TNe 1 0 0 0 0 1
c3 1 0 0 I 4] 0
cacy 1 0 00 1 0
raraq i 0 olo|o 0
cacqcy 1 0 0 0 1 0
M5 iMs My 1 0 1 0 [i] 0
301 Ca 1 0 1 0 0 0
€3C107 1 0 0 0 0 0
€3C4C7Cy 1 0 1 0 0 0
€3C4C7CT 1 0 0 0 0 0
CacqrTig 1 1 0 0 1 Q

Figure 7: Completed Observation Tables and Acceptors (Example 2)

14

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

@

G K

Figure 8: Automatons for L(G) and K (example 3)

Bz

Figure 9: First Prediction Window (L{(7, 3,¢)) (example 3)

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

B4
0.1 0-2
(=2
|31 s 0/1'o
—a—O
(11 B2
ot
—O
o p B1 5
(]
Pz B4
o
o

Figure 10: L{G|My, 3, o) (example 3)

is illegal and §; is uncontrollable. Therefore a1y is an uncontrollable trace which we don’t want
accepted by our controller. But this trace is accepted by M|, so it must be a counterexample. o,
oy 3) are added into S. a;, fy o are added into E to make the table consistent. The resulting table,

Ts. is still complete and is shown in figure 11.

The strings o Brasey. oy Faafacy, ayfiaen fiFaenaFa can be generated by Afs. From the
prediction windows for them, the following string o, Frevacy Frexy, a1 fiaafao frag and o Braaey B Bacao afr oy
are identified as uncontrollable strings. In addition to this observation, we can see from the prediction
windows of aF1asa 13 and o Fiaza P2, that the strings oy F 2o fr B0 and o Frz0 32510
are uncontrollable. These traces should therefore be used as counterexamples since they can be
generated by Aa, Therefore the strings afBioe, ayfFronay, o frasafy, oyfiasea 132 are added
into 5. The strings Zo31ory. yFaBiexy. Poery are put into £ to make the table consistent. The
table entries are now re-evaluated using the updated membership oracle The resulting complete

observation table T3 and its acceptor Af3 are shown in figure 11.

Since L(M3)NL(G) is equal to the supremal controllable language obtained in [1], so this acceptor
is the optimal controlier being learned. Although its structure is different from that in [1]. the
behaviour of closed-loop logic control system is identical. The reason for the difference is that the
set of legal non-system behaviours is not empty. Our procedure, however, allows these strings to be
accepted by the controller and so they will be learned. The consequence is that the learned DES

controller will not necessarily be the minimal optimal controller.

The preceding remarks suggest that our original procedure does not always generate the minimal
optimal controller. We therefore experimented with diflerent. strategies for controling the size of the
learned controller. The proposed strategy involves assigning values to table entries in a slightly
different way. In particular, we would assign table entries to distinguish between legal system and
non-system behaviours. In particular. if ¢ is illegal or uncontrollable its value is 0. If £ is a legal

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

To £
€ 1
(A5} 1 +
B]_]. * B] B 2
32 i
T g | evq
£ i1 ¢
B 1|1 B
ay 1 0
g 1] o v
Aoy || 1 1 “y.p, %8,
oz || L[D
33] 1
®2
[B ETRED
€ 1 [1 1
3 1 1 1 0
o 1 0 1 0
("1131 1 1 0 0
13 i 0 i 1
M 1 1 1 0
oo 1 0 1 1
313 1 1 1 0 1By
Cryevy 1 0 1 1
ﬂlﬂ'_) 1 8] L L
(\'|ﬁ| fa k) 1 0 1 1 o 2
a1 1 1 0
Ta ¢l o | diey | daheg | o dediag | e
£ t] o 1 {] t 1
A 1)1 1 0 0 0 1
2%} 1] 0 1 0 1 i 1
nh 1] 1 0 0 0 0 1
aydion 1] 0 1 1 1 0 1
ayFaa0, 110 1 0 0 1 1
ey Hevge) 1 1 0 0 0 0 0
aydyago diid 1] 1 0 0 0 0 1
i#a 1{o0 1 1 1 1 1
ELT L] 1 1 Q 0 1} 1
Baoe L]0 1 1 1 1 1
it 1] 1 1 0 0 1} 1
(13 T481 1 0 | 1 1 i l
vy idn 1] 0 1 | 1 1 1
w13 it 1 1 [} 0 0 1] 1
o deedh 111 1 0 0 0 l
minaite 110 l 1 1 1 |
gy o t] 0 1 1 1 1 1
il ey idp 1 \] 1 0 1 1 1
reydyeeane Fyeeg 1| o 1 1 l 1 1
mpdinengdiifana [1] O l 1 1 0 1
oy Fianeydideds | L[L | 0 0] 1

Figure 11: Completed observation tables and acceptors (example 3)

L7

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

system behaviour, its value is 1. When { is legal, but & non-sysiem behaviour, its value can be 1
or 0. This is because its acceptance by the controller does not influence the closed-loop system’s
logical behaviour. Such strings are assigned the value 1 to mark that they are legal non-system
behaviours. Later, if changing #1 to 0 can make the table complete, then the %1 entries are set to
0. This generates a smaller observation table because it doesn’t add additional strings to 5 and £
as our original procedure would have done. When a string is legal, but it cannot be determined
whether or not it is a system behaviour, we assign it the value 1. When future system behaviours
are examined, some of these {1 entries can be changed into 1 or «1 if the strings are legal system or
non-system behaviour, respectively.

Figure 12 shows the sequence of observation tables and acceptors that were generated by using
the proposed strategy. As can be seen, the first two tables. Tp and 7} are the same. However, table
T4 shown in figure 12 is much simpler than the corresponding table in figure 11. This is because our
marking strategy was able to avoid adding two additional columns to the table, thereby reducing
table size. Note that the final acceptor generated by our strategy is indeed the optimal controller

for this problem and corresponds to the minimal controller found in [1}.

5 Discussion

This paper has presented a method for on-line synthesis of DES controllers based on Angluin’s
L™ algorithm. Three specific examples were used to demonstrate that the proposed algorithm can
compute the optimal controtler. The motivation in using this method is three foid. First of all, the
method does not require full knowledge of the plant generator. Instead this algorithm only assumed
that finite lookahead behaviour of the system is known. In addition to this, the algorithm does not
require a formal description of the control specification. The algorithm appears to work when the
specification is stated as a quasi-formal specification. This is appropriate for cases in which control
specifications may have arisen from human operator guidelines. Finally, the approach is well known
to have a polynomial computational complexity, thereby answering initial reservations voiced [3]
about the NP-complete nature of DES controller synthesis.

The results in the paper, however, are preliminary and empirical. This paper has demonstrated
that in certain cases the L* algorithm can synthesize the optimal controller in an on-line manner.
How general this approach is, however, has yet to be rigorously proven.

A particular feature of the approach is its handling of uncontrollable events and its use of a
dynamic membership oracle. This clearly distinguishes our work from that in traditional L* appli-
cations where the membership oracle is fixed. How the use of dynamic oracles affect convergence
rate and computational complexity is an issue for future study.

The examples provide considerable insight into how well-known machine learning protocols can be
modified for use in DES synthesis. How inclusive or general these strategies are, needs to be examined
in greater detail. We have a good understanding of the utility and generality of certain strategies
proposed in this paper. However, the strategy proposed for controlling controller complexity is
strictly ad hoc in nature and its utility still needs to be examined.

18

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

Ta £ +
£ 1 %y, By Bo
s3] 1
By || *1
Ba || *1
T £ | ag B1
£ i 0
8 | =1 «t +
oy i 0
g | +1] 0 %y, %18y
Bray || +1 | +1
Praa || L | 0
S5 || *1 | «l o,
Tg £ {xn
£ 0 B1
ﬁl *1 *1
(2 3] 1 0 +
o1y 111
s *1] 0 1 B
[31(!3 *1 0
B2 || #1 | #1
Qg *1{ 0
a3 *1{ 0 %o
(}1,6103 i 0
a3, || #1 | 1

Figure 12: Completed observation tables and acceptors (example 3)

19

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

References

f1] P. Ramadge and W.M. Wonham, “Supervisory control of a class of discrete event processes”,
SIAM Journal of Contrel and Optimization, Vol. 25, No. 1, pp. 206-230, Jan. 1937.

(2] Sheng-Luen Chung, Stéphane Lafortune, “Limited lookahead policies in supervisory control of
discrete event systems”, IEEE Trans. on Automafic Conirel, Vol. 37, No. 12, pp. 1921-1935,
Dec. 1992.

[3] J.N. Tsitsiklis, “On the control of discrete-event dynamical systems”, Mathemalics of Control,
Signals, and Systems, Vol. 2, No. 1, pp. 95-107, 1989.

[4] Z. Banaszak and B.H. Krogh, “Deadlock avoidance in flexible manufacturing systems with
concurrently competing process flows™, JEEE Trans. Robof. Aufomat., Vol. 6, No. 6, pp. 724~
734, Dec. 1990.

[5] M.D. Lemmeon, J.A. Stiver, and P.]. Antsaklis, “Learning to coordinate control policies of
hybrid systems”, Proceedings of the American Conirol Conference, pp. 31-35, San Francisco,
CA, June 1993.

[6] C.A. Brooks, R. Cieslak and P. Varaiya, “A method for specifying, implementing, and verifying
media access control protocols™, JEEE Conir. Syst. Mag., Vol. 10, No. 4, pp. 8§7-94, June 1990.

[7] D. Angluin, C.H. Smith, “Inductive Inference: Theory and Methods.” Compuiing Surveys,
15(3):237-269, September 1983.

[8] D. Angluin, “Learning regular sets from queries and counterexamples™, Inf. J. Information and
Computation, Vol. 75, No. 1, pp. 87-106, 1987.

[9] D.P. Bertsekas, Dynamic Programming: Delerministic and Siochastic Models, Englewood Cliffs,
NJ: Prentice-Hall, 1987.

[10] K.M. Passino and P.J. Antsaklis, “A system and control theoretic perspective on artificial
intelligence planning systems”, Ini. J. Appl. Artificial Intelligence, Vol. 3, No. 1, pp. 1-32,
1989.

[11] B.H. Krogh and D. Feng, “Dynamic generation of subgoals for autonomous mobile robots using
local feedback information”, [EEE Trans. Automat. Contr., Vol. 34, No. 5, pp. 483-493, May
1989.

[12] Y. Viswanadham, Y. Narahari and T.L. Johnson, “Deadlock prevention and deadlock avoidance

in flexible manufacturing systems using Petri net models™, IEEE Trans. Robot. Automat., Vol.
6, No. 6, pp. 7T13-723, Dec. 1990.

[L3] D. Angluin, “On the complexity of minimum inference of regular sets”, Int. J. Information and
Control, Vol. 39, pp.337-350, 1978.

[14] L. Pitt, “Inductive inference, DFAs, and computational complexity™, Lecture Nofes in Artifical
Intelligence, Vol. 397, J. Siekmann, 1990.

20

M.D. Lemmon, Xiaojun Yang and P. J. Antsaklis, "Inductive Inference of Logical DES Controllers
using the L* Algorithm,” Technical Report of the ISIS (Interdisciplinary Studies of Intelligent Systems)
Group, No. I1S1S-94-010, Univ of Notre Dame, September 1994.

[15] E. Mark Gold, “Complexity of automaton identification from given data”, Int. J. Information
and Control, Vol. 37, pp.302-320, 1978.

ft6] R. Rivest and R. Schapire, “ Diversity-based inference of finite automata”, In 28th Annual
Sympostum oen FOundalions of COmputer Science, pp. 78-87, Qctober 1987

[L7] R.Schapire, The Design and Analysis of Efficient Learning Algorithms, MIT Press , Cambridge,
Massachusetts, 1992.

21

