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ABSTRACT

The Total Synthesis Problem (TSP) of linear multivariable control consists
of the Nominal Design Problem (NDP) and the Good Feedback Synthesis Problem
(GFSP). NDP can be understood as an abstract kernel problem on localized mod-
ules, and design freedom amounts to the choice of a single good tramnsfer func-
tion. Closed loop response constraints brought about by plants having zero
modules which are not good can be handled conceptually in terms of the inter-
section of the plant zero module with the pole module of the feedforward response.
These constraints are handled automatically by NDP.



1. INTRODUCTION

Synthesis of feedback control systems has had
different meanings for different investigaters. For
example, wricring on the subject of geometric mechoda
{1} in linear multivarlable concrol, Wonham [2] has
described Lt as “the process by which one establishes
the qualitative scructural poasibilities...such...as
noninteraction...,loop scabilicy, and regulation",

Bv comparison, almosr thirev-five vears ago, Guillemin
[3] proposed that synthesis of feedback control sys-
tems should {nvolve a determination of the closed

loop transfer funccion from specifications, followed
by construction of appropriate compenzation networks.
In 1955 Truxal [&, pp. J03-305] addressed some of

the standard cbjections to the Guillemin method, such
as left-half-plane cancellation of plant poles, im-
perfect cancellation, and controller complexity.

Studies of these ldeas have appeared in the mod-
ern linear mulcivariable control literature under the
general title of model matching problems., For ex-
aople, Morse [5] has studied model matching by means
of geometric methods. From the input/output point of
view, model matching has received considerable acten-
cion [6,7.8,9]. In chis case, focus was placed [6]
upon the equation

Zl(s) Z(s) = 22(5).

with 21(5)' {=1,2, being given rational matrices

and with Z2(s) to be determined. A principal issue
was the fact that 2(s) might be trequired to have
certain properties, such as being stable or proper,

while Zl(s) or Zz(a) might not be so restricted.

This led to the idea of studying the model matching
equation over rings {10,11].

With the work of Bengtsson [12], the idea of a
feedback realization could be naturally linked with
the solution of the open loop or feedforward model
matching equation. Generalized by Pernebo [13],
these ideas have presented a number of new possibili-
ties in the area of model matching.

In 1979, Peczkowski, Sain, and Leake introduced
a generalizacion [14] of the model mactching problem,
The character of this generalization differs by re-
garding Z(s) to be given, with Zl(s) and Zz(s)

to be determined. Studies have been made [14,15,16)
to determine the features of this concept in appli-
cation to alrcraft gas turbine engine control,

This paper presents the algebraic foundations of
this generalized viewpoint, which we call total syn-
thesis. The results are closest in spirit to the
work of Pernebo [13], but differ in three important
wvays, First, only 2Z(a) 43 asaumed to be given,
whereas Pernebo's treatment regards Zl(s) and zz(s)

to be given. Second, the treatment takes place in the
original rings, where Pernebo's treatment makes a ring
transformarion. Third, the presentation is coordinate-
free, whereas Petrnebo’s work involves only matrices.

After Section 2 on Notation and Preliminaries,
Section J defines the Nominal Design Problem, the
Feedback Synthesis Problem, and the Total Synthesis
Problem, Section 4 addresses the Nominal Design Prob-
lem as a module theoretic kernel problem and resolves
the 1issues with the use of localization. Section 5
presents a coordinate-free treatment of the effeccs
of non-minimum-phase plants.

Because of paper length limfcacions, we have had
to delete the proofs of two key results, one in Sec-
tion 4 and one in Section 5. For the same reason, we
have had to omit the section on causality in nominal
design. These omissions will be added in a later re-~
port. The causality treatment will also take place in
the original ring, without transformacion.
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2, NOTATION AND PRELIMINARIES

Let k be an arbitrary Eleld. Then k{s] is
the principal {deal domain of polynomials in 8 with
coefficients in k. As a commutative ring with no
zero divisors, k[a] admits the quotient field k(s).
Intuitively, k{s) 1is just the set of rational trans-
fer functions having coefficlents {n k., Our system
functions are to be set up on k[s]-modules and on
k(s)-vector spaces, which we now define.

Suppose that Vi 13 a k-vector space, for 1 =

1, 2. Then V) A Vo i3 the tensor product of Vi
with V1, and may be denoted by Vy # Vy to em-
phasize the fact that V) and V3 are

regarded as k-vector spaces, Observe that k(s]

admits the structure of a k-vector space; and choose
¥, to be k[s]. Let V be a k-vector space of

1
V. Define

finite dimension; and choose Vz to be

the k-vecror space
kis] nk v

of polynomials in 3 with coefficients in V. It
rurns out that thla k-vector space admits the struc-
ture of a k{s]-module, To see this, write

n
{p,(s) v, }
i§l 1) & vy

to represent a vector. Then scalar multiplication

by a polynomial p(s) in k{s] is understood in
the manner
n o
{ -
o{s) L (p,(s) & v} 121 {Ip(sip ()] @ v,) .

e shall wrice V{s] for this k[s]-module. 1In an
entirely similar way, we may develop the k-vector
space

k{s) “k v

and 2quip 1t to be a k(s)-vector gspace, which car-
ries the symbal V{s). Clearly, V[s] C V(s} 1in a
natural way: and there i3 an insertion

{ : V[s] = Vv(s) ,

which is a morphism of k[s]-modules.

Now let W be another k-vector space of finite
dimension, with W([s] and W(s) the corresponding
k(s ]-module and k{s)-vector space, respectively. Let

p 1 Wis) = W(s)/W[s]
be the projection morphism from W(s), regarded as a

%{s)-module, onto the quotient module W{s)/W[s].
By 2 transfer function, we shall mean a morphism

L{a} : V{(s) -~ W(s)

of k{s)-vector spaces. Notice that L{s) 13 not a

matrix, as we ate yet in a coordinate~-free mode.

For specific calculations, basea in V and W may

be chosen; in turn, these choices induce bases in

¥(s) and W(a); and then a matrix for L(s) may

be defined. This matrix will be denoted by [L{s)].
Because V{(s) and W(s) may be regarded as

L{s} can be regarded as a morphism of
Thus the composition

k[g]-modules,
k[s]~medules,

sy ¢ vis] » W) M(s)
given by
) mp oL * 1,

is a morphism of k[s)-modules, which we will call the
Kalman input/output map associated with L(s). By
the pole module of L{s), we shall mean the torsion
k[8]-module

Vv([sl/ker L”(s).
denoted by X(L). Outo the pple module there is a

controllabilicy epimorphism from V(s], while
inte W(s)/W[s] there Is an observability moncmor-

phism from X(L), as shown in the realizaction
diagram, Figure 1. Denote by
L
V(s) (s) 3 W(s)
1 \.
Lﬂ(s)
V[s] 3 W(a)/u[a)
X(L)
Figure 1. Realization Diagram.

m(L)} the minimal polynomial of X(L). Let

SS C kls}

be closed under multiplicacion in k[s], exclude the
zero polynomial, and include the polynomial 1. We
shall say chat p(s) ¢ k[s] 1is a good polynomial if

p(s) € Sg' Moreover, we shall say that L(s) 1s a
good morphism of k(s)-vector spaces if m(L) € Sg'

Alternacively, we can say that L(s) 1s a good trans-

fer function.
3. PROBLEM STATEMENT

In this section, we define in a coordinate-free
way the problem of designing, simultanecusly, the com-
plete set of controlled outputs desired from a plant
and the corresponding complete set of inputs. The ap-
proach will be to characterize these two sets in terms
of morphisms of k(s)-vector spaces, with each morphism
acting upon a space of exogenocus requests or commands.
Because these morphisms must possess certain "good"
qualities, as for example setability, which may not
necessarily be shared by the plant, it is desirable
at the outset to clarify carefully just what founda-
tion can be taken as adequate for the task at hand.
This requires a basis-independent definition of the
issues.

Let R be 2 g-dimensional k-vector space of



exogenous vectors; let U be an m-dimensional k-vec—
tor space of contral vectors; and let Y be a p-di-
mensional k-vector space of plant cutput vectors. On
these spaces, develop the k[s]-modules

R{s] = k[s] ﬂk R
Ulal = kis]) nk 1]

Y[s] = k[s] L Y

and the k(s)-vector spaces
k(=) = k(s) 8 R
U(s) = k(s) ﬂk u

Y(s) « k(s} @ Y.

Dafine the plant by the morphism
P(s) : U{s) - Y(s)

of k{s)-vector spaces. As a transfer function, P(s)
mav be good or it may not. Define the desired plant
response o exogenous vectors by the morphism

T{s) : R(s) = Y{(s)

of k(s)-vector spaces; and define cthe controls needed
to generate such response by the morphism

M(3) : R{s) - U{a)

of k(s)-vector spaces. Though P(3) i3 not required
to be a good transfer funccion, it {3 required thac
T{s) and M{s) have that property. Further, since
M({s) produces the control action which drives the
plant P(s), 1t is of course not independent of the
desired plant response T(s). This leads to the
firsc of two basic sub-problema to be diascussed.

The Nominal Design Problem (NDP) is to find
pairs of good cransfer functions (M{s)},T(s)) such
that the diagram of Figure 2 commutes.

R(s)

U{(s) Y(s)
P(s) <

Figure 2. The Neminal Design Problem.
Notice thac WDP Is not an exact model macching prob-
lem [ 3, 4, 5 ) or a minimal design problem (&, 7,
8, 9], whose commutative diagrams would be that of
Figure 3. In both these diagrams, of course, solid
arrows are given morphismg, whereas dashed arrows
are to be found.

Consider next cthe question of output feedback.
By output feedback in the present context we shall
mean a morphism

R(s)

U(S) ~ Y(s)
Fd

Figure 3. Model Matching.

C(a) : R(s) & Y(s) ~ U(s)

of k{s)-vector spaces, Here R(s) & Y(s) 1is the k(s)
-vector (biproduct} space constructed in the usual
way from R(s) x Y(s). WNotice that any feedback
scheme which 1s required co be a morphism R(s) =+ U(s)
when the loop ls broken and a morphism Y(s) + U(s}
when there {s no exogenous signal must be of this
form, according to the following result,

Proposition 1 [ 17 , p. 212]
If U(s) 1s a k(a)-vector space and
CR t R{s) + U{s}

CY : Y{(s) = U(s)

are morphisms of k{s)~vector spaces, then there iz a
unique morphism C(s) : R{s) @ Y(s) =~ U(s) of k(s)-

vector spacés such that the diagram of Figure 4 com~
mutes.

e e
R(s) ~——— P R(s) ® Y(8) e L ¥(s)

: |
| c{s)
¢ | ¢
R ! Y
v
U(s)

Figure 4, "Linear" Feedback.

See [ 17].

actions given by

Proof: The morphisms e, and e, have

R

eR(r(S)) = (r(s),0) ; eY(y(S)) = (0,y(s)).

Moreover, an output feedback morphism C{s), when
given, can always be used to define morphisms CR and

CY’ as seen in Filgure 5, according to the methed



Problem (GFSP).

CR » C(g) o ep

C, = C(s) o e

Y Y

e e
R(s) —F  SR(s) @ Y(s)e}____z__*__Y(s)

N\ /
AN /
S\ c(s) /S

N\ /
Ve
N /
N v v
u{s)
Figure 5.

From these facts, Lt follows that

y(s) = P(s)u(s)
= P(s) {CRr(s) + CYy(S)).
or

(lY(s) - P(3) o CY)y(s) =(P(s) » CR) els) .

Under the technical assumption that

¢ - PGs) e €7t H(s) + Y(e)

1Y(s)
exists, we have

v(s) = - p() o 7t e Bie) o rta)

(lY(s)
= P(s)  (Lyyy = Gy = PN e v(e)

which permits the identification

¢, e PN e c

T(s) = P(s) » (IU(S) - G

R

This leads to the second of the two basic sub-problems.

The Feedback Synthesis Problem (FSP) 1is to find
an ocutput feedback morphism C(s) such chat

¢, » pe))t e g,

M(g) = (lU(s) - ¢ R

By ltself, FSP 1s rrivial, because of the cholce

Cy = o,

Thus we shall focus on the Good Feedback Svnthesis
By way of example, if k =R and if
sK is the set of strictly Hurwicz polynomials, then

CR = M(s}.

GFSP may be understood as the Feedback Synthesis Prob~
lem with Internal Stability (FSP1S). Of course, even
when k = R, GFSP and FSPIS are not always the same,
becausge Sg does not have to be the set of grriccly

Hurvitz polynomials, It may, for Llluscration, be a
subset of thcse.

Finally, we define the Total Svnthesis Problem

(TSP} as the combination of NDP and GFSP. In this

paper, we shall focus upon NDP,
4, NDP: THE ABSTRACT KERMEL PROBLEM

In this section, the set of all solution pairs
(M(9),T(a)) to NDP will be described as the kernel
of an abstract morphism. This treatment screamlines
and extends that given by Gejji [ 18 ]. Some care
must be taken to examine the distinction between
"polynomial" solutions, "good" solutions, and "arbi-
trary rational" solutions, because we do not wish to
require P(s} to be a good transfer function.

A few additional nectations are required. In
particular, we need to introduce the localizacion
[19 } Sg'lkIs] of the ring k{s]. This i3 done by

establishing an equivalence relation 2 on SB 4

k[g], by a means analeogous to that used in develop-
ing the quotient field k(s)} [ 17]. Sg'lk[s] is a

commutative ring, which satisfies
-1
k(s] C 5, ksl C k(s).

Regarded as rings, each of these three sets admits
the structure of a k[s]-module, Consider the k[s]~
module V(s]. V[s] can be localized as well, by the
conatruction

- -1
s Wis) « (s, " k(s1) & VEs].

Then & morphism J{3) : V[s] + W{s] of k[s]-modules

has a localization

SB-IJ(s) :

53—1V[s] - Sg-lW[sl
by the action

-1 a
S, (s {121 (py(a),a (a)) @\ v (s))
n
- 1§1 (p;(s}.q,(s)) @ K(s) (BIvy(8).
Some properties of lecalizacion, which are very
useful {n TSP, should be mentioned. Suppose that
Jl(s) : Vlls] - V2[s]
Jz(s) : Vzls] - V3[sl

Then the sequence
Jz(s)

>V, [s]

are morphisme of kf[s]-modules.
Jl(s)

>V, [s)

v,(s]
is exact when

ker Jz(s) = im Jl(s).

In such a case, the localized sequence
s "1 (a) s 7Ly (s)
-1 e 1 -1 g 2 -1
sg vilsl (3 s8 v,ls] — S, Vyls]
When applied to the sequences
Jl(s)
ker J, (8) 3V, (8] eV, (3],

1s exact also,



Jz(s)
Vz[s]—_.> v3[sl._>v3[s]/1m.12(s).

this Iimplies that

ker Sg-lJ(s) - sg'l ker J(s),

1

-1 -
im Ss J(3) Ss im J(s).

k(s},
a face which

Further, 1f the kf[s]-module V[s] 13 free over
then Sg' V[s) 1is free over Ss'lk[s],

follows from the relation of the tensor product to
the direct sum.
Next, examins !DP. Denote by Homk(R.U) the

k-vector space of morphisms R + U of k-vector

spaces. For simplicicy, write
B(R,U) = Homk(R.U).
Similarly, write
H(R,B)[sT = k[s] & H(R,U)
= Hom r ) (R{s],U(s]),

H(R,U)(s) = k(a) a8, H{R,U)

= Homk(s) (R(s),U(s)),

which are a k[s]-module and a k(s)-vector space, re-
spectively. Notice that we have identified some
naturally isomorphic tensor product structures. Now
define

. -1
d(R.U)(s)g 5g H(R,U}{s),

and observe that

HR, U (s] C H(R.U)(s)B C H(R,U)(s).

Given bases in R and U, a morphism X(a) 1in
H(R.U)(s)g can be expregsed as an mxq matrix with

alements in Ss-lk[s]. In an exactly analogous way,

and H(U,Y). Then similar
Given the plant P(s), define

we can set up H(R,Y)
developments follow.
a morphism

F : H(R,U) (s} ® H(R,Y)(s) ~ H(R,Y){s)
of k(s)-vector spaces by the action
F(M(s),T{a)) » P(a) « M(3) - T(a),

satisfies the diagram of Fig-
ure 2 if and only if (M(s),T(s)) 1s in ker F.
Furthermore, since F{(0,-T(s)) = T(s), F {is epic,
with rank pq. Therefore ker F 1s an mq-dimension-
al k{s)=vector space.

F can be restticted to submodules of {ts domain.
In particular, write

Clearly, (M(s8},T{(s))

K(s) = ker F
K(s)g- ker FiH(R.U)(s)g (] H(R,Y)(s)g

Kls]) = ker F|H(R,U)[s] & H(R,Y)[s]) .

K(s)

4
3 =1
g

Then K[s] 1{s a free k[s]-module of rank umq,
is the localization Sg_lx[s] which 13 a free
k[s]-module of rank mq, and

Kle] C () C K(a).

A k[g}-basis for K([s] gives a § ‘lk{s] basis for
K{a)} , so that computations may b8 done in k(s].

In fact, an explicit description of X(s] may
be given. Civen P(s), there exisc morphisms

D{(s} : U[a] =+ U[s]
H(a) : Uls] + Y{s]

of k[s]-modules, which induce morphisms U(s) =+ U(s)
and U(s) + Y(a) of k{s)-vector spaces, such that (a)
D(s) 1is invertible on U(s) = Ufa), (b) P(a) =
N(8) o D”l(s). and (c) there exist morphisms A(s)
: U{s] - U[s] and Bfs) : ¥Y(s] + U[s] of k{s]-mod-
ules such that

A(s) o D(3) + B(s) o N(3) = 1U[5].

The patr (N(s),D(s)) 1is called a right coprime fac-
torization { 6, 20 } for P(s). It is not unique,
but any one may serve for the discussion. Given
(N{s),D(s)), define a morphism

a : H(R,U)[s] -~ H(R,U)[s] & H(R,Y)[s)
of k[s]-modules by the action
a(X(s)) = (D{(s) o X(3),N(s8) « X(3)) .
Theorem 1

The morphism a is monic; and the image of a
is preciasely K[s].

The morphism o defined above can be localized;
and, since lecalizacion of exact sequences gives ex-

act sequences, we have the next resulc.

The morphism

-1
ss a : H(R.U)(s)g - H(R,U)(s)8 € H(R.Y)(s)s
defined by

ss-lﬂ (X(8)) = (D(s) * X(3),N(8) = X(s))
i3 monic and has image precisely equal to K(s)g.

With chis background, we can summarize the basic
character of NDP,

Theorem 2

The pair (M(s),T(s}} 1is a solution to the Nom-
inal Design Problem 1if and only if there exists a
good transfer function

X (3) . R(S) > U(S)
such thac

M(s) = D(a) » Xg(s)



T(s) = N(9) = XE(S).

wvhere (N{s),D(s})} is any right coprime factoriza-
tion of P(s).

The good transfer function xs(s) thus becomes

the crucial design parameter in NDP. The design ait-
vation, then, may be sketched as in Figure 6 . 1In
this figure, the viewpoint is at the "computacional"
level of Theorem 1 and the morphism o of k[s]-mod-
ules. Localization of the diagram in Figure 6

brings us to the

R[s]

/

4
X(s)
M{a) T(a)
Uls)
U(s Y{(s)
N

-~

P(s)
Figure 6. NDP at the k[s]-Module Level.

diagram of Figure 7, which is at the level of Theor-
em 2. Here we have written R(s)s for Sg' R{s],

R(s)g
Hg(s) Xg(s) Tg(s)
U(s)g
DB(S) Ns(s
G(s) Y(s)
Sy
P(s) -

Figure 7. XDP at the sg'lk[s]-uoduLe Level.
Hg(s) for qulﬂ(s). and so forth. Notice that

Sg-lv(s) - V(s),

are unchanged. Tha sub-
and N may be omitted,

so that L{s} and Y(s)
geripe g on M, X, T, D
when in context.

5. THE ZEROS OF T(s)
If k were equal to R, the real numbers, and
if Sg were the set of nonzero, strictly Hurwlitz po-

lynomials, then NDP consists in finding pairs (M(s),
T(s)) which satisfy the diagram of Figure 2 and
which are stable Iin the sense n(M) ¢ Sg and m(T) ¢

§ . In this case, because M(s) 13 a stable trans-

fer function, we expect that no right-half-plane zero
of P{s) can be cancelled by a pole of M(s} and
thus that the right-half-plane zeros of T(s) con-
tain those of P(s)., Such 2 statement was established
under racher stringent hypotheses in [ 21 ], and
related work can be found in [14 , 22 ]. Those re-
sults, however, are for the matrix case, and thus
are not coordinate-free. 1In this section, we present
a precise and general algebraic result which gives
earlier work as a special case. This resulct is co-
ordinate-free and makes use of the theory of the :zere
module introduced Iin [ 20 .

Intuictively, we show that "the zeroc module of
T(s) maps onte the zero module of P(s) modulo the
intersection of the zercs of P(s} with the poles
of M{sa)".

The pole module of M(a) has the description

M{s)R[s] + U[s] cC U(s)

X = Uls) Uls] °

From { 20 ], we have char che zerc module of T(s)
can be deacribed by

28 » ECUfsD) + Ulal

ker P{s) + U[s]

Let

-1
P_(Y[s]) + ufs] U(sy .
Uls] : CU[s} '

2,(P) =

and write
LS ZO(P) - Z(P)

for the natural epimorphism defined by factoring out

ker P(s). Notice that
ker P(s) + U[s
———Llu{a, C 24P,
Now X(M) and Z. {P), as described above, are

both submodules of U(8)/Ufs]. Therefore, their in-
tersection X(M) M) ZO(P) can be formed, Moreover,

this Intersection produces a submodule

1(M,P) = n(x(M) M z,(p)) C Z(P),

under m,

which has the intuitive interpretation of "the inter-
section of the poles of HM(s) with the zeros of P(s)".

It 13 now possible to state a "pole-zero cancel-
lation theorem".

Theorem 3
of k(s)-vector

The morphism M(s) : R{s) -+ U(s)

spaces induces a morphism

u o Z(TY = Z(P)/1(M,P)
of k[s])-modules. The morphism u is epic if the rank
of T(s) equals the rank of P(sg).

This theorem shows in a coordinate-free way to
what extent the zeros of P(s) ‘“appear in" the zeros
of T{s).

Let us examine one detalled conaequence of the
theorem. Suppose N is any finitely generaced tor-
sion k[s]-module. Let Ty be the minimal polynomial



of N. The support of N, denoted supp(N), is the tion 4, The uge of the transfer function xg(s) as

set of all zeros of L These zerog need not be

L}

elements of k trself, They could lie in an exten-
gion field. For example, if k s B, the support
is a set of complex numbers, Note that this defini-
tien can be extended to modules over arbltrary rings
{ 19 ]. We shall say that an element in a sup- 6.
port is good If {t is the zero of some polynomial in
Sg. The support itself will be good if each of its

a design tool fully parameterizes all solutions to
NDP and fully respects the structural comstraints
arising from the fact that P{a) may have some zeros
which are not good.

CONCLUSTONS

The Total Syntheaisa Problem (TSP) has been de-
peribed. Intuitively introduced by Peczkowski, Sain,
and Leake in 1979 [ 14}, TSP conaiats of the Nominal
Design Problem {(NDP)} and the Good Feedback Synthesis
Problem (GFSP). It has been shown that NDP can be
understood as an abatract kernel problem on local-
ized modules, and that design freedom amounts to the
choice of a single morphism xg(s). Further, the idea

of plants with a zero module vhich 1s not good has
been discussed, and it has been shown in a coordinate
free way just what type of constraint this imposes on
T(s)}. This generalizes the comments [l4,21]. The
treatment is nearest in spirit to that of Pernebo [13],
but differs essentially {n that both control action
and plant response are considered at the same time~-=
a-departure from the model matching problem, in that
ne transformation of rings {3 used, and in being co-
ordinate-free. Space limitations here require thac
preofs be omitted; and there was no space at all for
discussions of causality of the pair (M(s),T{s)).
This will be treated in a subsequent work, and will
again be addressed withour a ring transformation.

elements is good.
The fundamental fact here needed about supports
is this: Suppose that

e
and
N

3 = NN

where N , 1 = 1,23, are each finitely penerated
torsion *[s]~modu1es; then

supp(Nl) C Supp(NZ)
and
supp(NJ) (::supp(Nz).
In fact,
supp(Nz) - supp(Nl) U supp(NJ).

Motice that supp(X(M)) 1s just the set of poles of

M(s), with multiplicities ignored, and that supp
(Z({T)}) 13 Just the set of multivariable zeros of 7.  ACKNOWLEDGEMENT
T(s), wich multiplicities ignored. In particular,
{f k =R, M{s) 13 (classically) stable when and This work was supported by the Office of Naval
only when supp (X(M)) 15 a subset of the open left~- Research under Contract NOQOQl4-79-C-0475, POOOOL.
half=-plane.
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