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50.1 Introduction

Multi-input/multi-output systems are usually difficult for hu-
man operators to control directly, since changing any one input
generally affects many, if not all, outputs of the system. Asan
example, consider the vertical landing of a vertical take off and
landing jet or of a lunar landing rocket. Moving to a desired
landing point to the side of the current position requires tilting
the thrust vector to the side; but this reduces the vertical thrust
component, which was balancing the weight of the craft, Theair-
craft therefore starts to descend, which isnot desired. To moveto
the side at a constant height thus requires smooth, simultaneous
use of both attitude contro} and throttle. It would be simpler for
the pilot if a single control existed to do this maneuver; hence the
interest in control methods that make the original system behave
in a way that is easier to control manually. One example of such
technique is when a compensator is sought that makes the com-
pensated system diagonally dominant. If this can be achieved,
it is then possible to regard the system as, 0 first order, a set
of independent single-input/single-output systems, which is far
casier to control than the original plant. Another approach is
that of decoupling, where the system transfer matrix is made to
be exactly diagonal. Each output variable is therefore affected
by only one input signal, and each input/output pair can then
be controlled by an easier-to-design single-input/single-output
controller or manually by a human operator.

. This chapter studies the problem of making the transfer func-
tion matrix of the system diagonal using feedback control and,
in particular, state feedback, state feedback with dynamic prec-
ompensation, and constant output feedback control laws. This
problem is referred to as the dynamical decoupling problem, as it
leads to a compensated system where the input actions are decou-
pled; it is also called a noninteracting control problem for similar
reasons. Stability is an important issue and it also is examined
here. Conditions for decoupling with stability and algorithms
to determine such control laws are described. The problerns of
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block diagonal or triangular decoupling are also addressed. They
are of interest when full diagonal decoupling using a particular
form of feedback control, typically state feedback, is not pos-
sible. Note that the approach taken in this chapter follows the
development in [14}. Static decoupling is also briefly discussed;
references for approximate diagonal decoupling are provided in
“Further Reading.”

50.1.1 Diagonal Decoupling

Diagonal decoupling of a system with equal numbers of inputs
and outputs is the most straightforward type of problem in the
field of noninteracting control. The goal is to apply some form
of control law to the system so as to make the i-th output of the
closed-loop system independent of all but the i-th closed-loop
input signal. Each output can then be controlied by a dedicated
simpler single- input/single-output controller, or by a human op-
erator. The main questions to be answered when investigating
diagonal decoupling of a given system are

e Can it be decoupled at all?
o If 50, what form of controller is required to achieve
this?

Three classes of controllers that are customarily considered are

1. Constant output feedback u = Hy + Gr, where
the output y of the system is simply multiplied by 2
constant gain matrix H and this is fed back as the
control signal &, with 7 the new external input to the
system and G a constant gain matrix

2. Linear state feedbacku = Fx +Gr, where the con-
trol signal consists of a constant matrix F multiply-
ing the internal state variable vector x of the system

3. State feedback plus precompensation, where a feed-
forward dynamic control system is added to the state
feedback controller.
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Note that the compensator in class 3 corresponds to dynamic
output feedback, where the input and output signal vectors r
and y are multiplied by dynamic transfer function gain matrices
rather than constant ones.

The problem of diagonally decoupling a square system was the
first decoupling question to be studied, and it can be answered in
a fairly straightforward fashion. First of all, diagonal decoupling
by state feedback plus precompensation, or by dynamic output
feedback, amounts to finding a transfer matrix that, when the
open-loop transfer matrix is multiplied by it, produces adiagonal
closed-loop transfer matrix. This problem is therefore closely re-
lated to the problem of finding an inverse for the open-loop plant.
As a result of this, any square plant that has a full rank transfer
matrix can be diagonally decoupled by this type of control. This
result was proved by Rekasius [10]. A system that does not sat-
isfy this condition does not have linearly independent outputs,
so it follows that it is impossible to decouple by any form of con-
troller. It is of great practical interest to establish whether a given
plant can actually be decoupled by a simpler type of controller
than this. Falb and Wolovich [3] established the necessary and
sufficient condition under which diagonal decoupling by state
feedback alone is possible. This condition, which can be easily
tested from either a state-space or a transfer matrix model of the
plant, can be expressed as follows.

A square system can be diagonzlized by state feedback alone
if and only if the constant matrix B* is nonsingular, where this
matrix is defined below first from the state-space and then from
the transfer matrix description of the system.

State-space representation. Let the given system be X =
Ax + Bu, y = Cx + Du in the continuous-time case, or
x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) in the
discrete-time case; let A, B,C,Dbenxnnxp,pxnpxp
real matrices, respectively; and assume for simplicity that the sys-
tem is controllable and observable. Then the p x p matrix B is
constructed as follows: If the i-th row of the direct feedthrough
matrix D is nonzero, this becomes the i-th row of the constant
matrix B*. Otherwise, find the lowest integer, f;, for which the
i-th row of CAfi~1B is nonzero. This then becomes the i-th
row of the constant matrix B* .

Transfer matrix representation. Let T (s), with 5 the Laplace
transform variable, be the p x p transfer function matrix of the
continuous-time system; or T'(z), with z the Z-transform vari-
able, be the transfer function matrix of the discrete-time system.
Let D(s) [or D(z)] be the diagonal matrix D(s) = diag(.s'f")
where the nonnegative integers {f;} are so that all rows of
lim; .00 P(s)T(s) are constant and nonzero. This limit matrix
is B*; that is,

lim D{(s)T(s) = B* (50.1)
=00

The integers { f;} are known as the decoupling indices of the
system. They can be determined from either the state-space or
the transfer function descriptions as described above; note that
f; = Ocorresponds to the i-th row of D being nonzero. In either
case, of course, the resulting matrix B* is the same. It should be
noted that systems will generically satisfy the decoupling condi-
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tion; that is, if all entries of the A, B, C (and D) matrices ar
chosen at random, the resulting B* will have full rank, Diagona’i
decoupling by state feedback is therefore likely to be feasible for
a wide variety of systems.

EXAMPLE 50.1:
0 1 0 0 0
A= 0o o 1}, B=]| 0 o |,
-6 -—-11 =6 -1 2
3 6 1 ¢ 0
C‘(zoo)’ D‘(o 0)
o . -1 2 .
This gives fi = 1, fz =3,and B* = 2 4 . This ma-

trix is clearly singular; therefore, the system cannot be decoupled
by state feedback.

EXAMPLE 50.2:

T(s)= (
s+

1 2
0 8
f2 = 0. This system can therefore be diagonally decoupled by
state feedback.

|.M-: =

2
1

g7

§+4

) , with decoupling indices f; = I,

L

This gives B* = (

EXAMPLE 50.3:

;o
o=( 4 )
The same as previously, but with the (2, 2) entry dividedbys. We
now obtain B* = ( ; g ) , with decoupling indicesfi = L

f» = 1. B" is now singular, so this system cannot be diagonally
decoupled by state feedback alone.

50.1.2 Diagona} Decoupling with Internal
Stability

A question of great practical interest is whether the closed-
system that is obtained after decoupling can be made stable. It
can be shown constructively (for instance, by use of the algo-
rithm given below) that all of the poles that are evident from the
diagonal closed-loop transfer matrix can be assigned any desired
values. The question therefore becomes: Can the closed-[ooE
system be made internally stable, where there are no “hidden

cancellations between unstable poles and zeros? Such unstable
modes are particularly dangerous in practice, as they will not
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y an examination of the transfer matrix. However,
the hidden unstable state behavior they represent will very likely
cause problems, such as burnout of internal electronic compo-
pents of the system. It was shown by Gilbert 5] that a given
lant may indeed have hidden fixed modes when it is diagonally
decoupled by state feedback, with or without precompensation.
. wolovich and Falb [15] then showed that these modes are the
* same for both cases; furthermaore, they are a subset of the trans-
mission zeros of the plant. In fact, they are those transmission
geros z; that do not make any of the rows of the transfer matrix
T(s) equal to zero when evaluating T (z;}; they are called diago-
nal coupling Zeros. Thus, any plant with square, full-rank transfer
matrix for which all the diagonal coupling zeros are in the left
half-plane can be diagonally decoupled with internal stability by
state feedback plus precompensation; or by state feedback alone
if B* is nonsingular. Therefore, there will never be any prob-
lems with internal stability when decoupling a minimum-phase
system, as all of its transmission zeros are in the left half-plane.
An algorithm to diagonally decouple a system, when B* has
full rank, using state feedback is now presented. This algorithm
is based on a procedure to obtain a stable inverse of a system
that is described below. This procedure is applied to the system
DT (s) = T(s), where D(s) = di ag(sf" } asin Equation 50.1,
that can be shown to have a state-space realization {A, B, ¢, by
In fact D = B*, which is assumed to have full rank p; and this
implies that a proper right inverse of the system T (s) exists. Here
it is assumed that the system has the same number of inputs and
outputs, and this simplifies the selection of F, G as in this case
they are unique; see the algorithm for the inverse below for the
nonsquare case. In particular, if the state feedbacku = Fx +Gr
with

be revealed b

F=—(B%"1¢, G=BY" (50.2)
isapplied tothe system % = Ax+Bu,y = Cx+ B*u, thenitcan
be shown that Tr.g(s) = D(s)TF,(s) = Ip. This implies that
if the state feedback u = Fx 4 Gr with F, G as in Equation 50.2
is applied to the given system X = Ax + Bu, y = Cx + Du with
transfer matrix T (s), then

Tr.g(s) = D7Y(s) (50.3)

which is diagonal with entries s—fi. Note that here the state
feedback matrix F assigns all the n closed-loop eigenvalues at
the locations of the n zeros of f'(s); that is, at the zeros of
T(s) and of D(s). The closed-loop eigenvectors are also ap-
propriately assigned so the eigenvalues cancel all the zeros to
give D(s)Tr,g(s) = Ip. This explains the control mechanism
at work here and also makes quite apparent the changes nec-
essary to ensure internal stability. Simply instead of D(s) use
D(s) = diag(pi(s)} with p;(s) stable polynomials of degree
sfi: thatis, pi(s) = s7i + lower-degree terms. Then it can be
shown that limy eo D(s)T{s) = B* and that {4, B, C, B*}is
a realization of D(s)T(s) = T(s). State feedback with
G=( Bt)—l

F=—(B9"C, (50.4)
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gives

Tr.g(s) = D™'(s) = diaglp] () (50.5)

which is stable. Note that in this case the closed-loop eigenvalues
are at the assumed stable zeros of T{s) and at the selected stable

zeros of the polynomials pi(s), i=1.,p.
EXAMPLE 50.4:
s+l 0
Let T(S) = "l -1 .
G- -1
Here

fim D(s)T(s) = lim diag(s..s')T(s)=( 10 ):B*.
§—+00 $—+00 0 -1

Since B* has full rank, the system can be decoupled using state
feedback u = Fx + Gr. The system has one transmission zero
at -1 and there are no diagonal coupling zeros, so it can be de-

coupled with internal stability. Let D(s) = ( § 'g 1 ] -?- , ) )

A minimal (controllgble and observable) realization of T(s) =
D(s)T(s)is{A, B, C, B*} where

0 10 00
A"—- 0 0 0 ' B= l 0 >
-1 0 1 01
- 1 2 0
C‘“(s 1 —3)‘

In view now of Equations 50.4 and 50.5, for
= -1 =2 0
= (BN =
F=—-(B")"'C ( 3 1 -3 )

and

G

i

~~
]
N
L
il

N
o -
| o
—

—’

1
Tegs) = f)(s)"l = ( s+1 ? ) .
0

The closed-loop eigenvalues are in this case located at the trans-
mission zero of the plant at -1 and at the selected locations -1 and
-2, the poles of 15(.s)‘l . Note that it is not necessary to cancel the
transmission zero at -1 in order to decouple the system since it
is not a coupling zero; it could appear as a zero in the decoupled
system instead. ‘To illustrate this, consider Example 50.5 where
T(s) is the same except that the zero is now unstable at +1.

EXAMPLE 50.5:
-“%_1. 0
Let T(s) = 5 _; | whereagain
-1 -1

0 *
[

,-l_‘E.‘o DT (s) = S%diag(s.s)T(s) = ( (l)
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Since B* has full rank, the system can be decoupled using state
feedback. Since there are no diagonal coupling zeros, the sys-
tem can be decoupled with internal stability. Write T'(s) =
( § ; ! ? ) T (s) and apply the algorithm to diagonally de-

52

couple Ty (s). Now Dy(s) = ( 0 g ) and take

ﬁN(s)=( (s+2)0("+3) s_?_l )

A minimal (contro]labli and observable) realization of Ty (s) =
D) Tn(s)is{A, B, Cn, B;,} where

and

(1 0 Y_ pe
B}, = ( o -1 ) = B*.
In view now of Equations 50.4 and 50.5, for F = —(B*) Cy =

-6 -5 0
(2 1 —2)"“’"

. =1 _ 1 0
¢ =G “(o —1)'
a 1 0
(TWFcG) = Dy =( rﬁ_is+z)0s+3 L )
s+

If now this state feeback is applied to the minimal realization
{4, B, C} of T(s)—note that A, B are the same as above—then
Tro(s) = (““1 o )f),;i - ( ey O )
0 1 0 =1
Note that the unstable noncoupling transmission zero at +1 ap-
pears on the diagonal of the compensated system; the closed-loop
eigenvalues are at the arbitrarily chosen stable locations - 1,-2 and
-3.

Algorithm to Obtain a Proper Stable Right
Inverse Using State Feedback

Leti = Ax+ Bu,y =Cx+DuwithA, B,C,Dnx
n,n X m, p % n, p X m real matrices, respectively, and assume
that the system is controllable and observable. Let T'(s) be its
transfer function matrix. It is known that there exists a proper
right inverse Tg(s), such that T(s)Tr (s) = Ip, if and only if
rankD = p. If, in addition, all the zeros of T'(s) (that is, the
transmission zetos of the system) are stable, then a stable right
inverse of order n can be constructed with k(< n) of its poles
equal to the k stable zeros of T (s) with the remaining n — k poles
arbitrarily assignable. This can be accomplished as follows:

» PP-
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Let g = F[sI — (A + BF)]"'BG + G where F, G are
n x m,m x p, respectively, and note that
T(s)Teqls) = [CGsI-A)"'B+ D]
[FlsI —-(A+ BF)]"'BG+G]
(C+ DF)[sI — (A+BF)|"'BG + DG
= Trg(s) (50.6)
which is the transfer matrix one obtains when the state feedback
control law u = Fx + Gr is applied to the given system. Note
that the second line of Equation 50.6 results from application of

a well-known formula for the matrix inverse. If now F, G are
such that

C+DF=0, DG=I, (50.7)
then Tr.g(s) = Ip and Teq is a proper right inverse Tg(s).
The additional freedom in the choice of F when p < m is now
used to derive a stable inverse; when p = m, F, G are uniquely
determined from F = -D~'C,G = D™\,

Ifthe nonsingular m x m matrix M is such that DM = (I, 0},

thenC+DF=C+DMM™'F=C+ () 0)( ’;‘ )=o
2

) with £ arbitrary. Also, from

from which F = M ( _AC
R

Ip

DG = DMM™'G = I, G = M( é )with G2 arbi-
2

trary. The eigenvalues of A + BF = A + BM( },C ) =
2

A+ B éz)( ;T-f ) = A = B|C + By F; are the poles of
Tr(s). It can be shown that the uncontrollable eigenvalues of
(A — BiC B) are exactly the (k) zeros of the system; they
cannot be changed via F3. The remaining n - k controllable
eigenvalues can be arbitrarily assigned using F3. In summary,
the steps to derive a stable proper inverse are
Step 1. Findnonsingularm x m matrix M such that DM =
(I, 0).
Step 2. Calculate (B By) = BM,and A — BiC.
Step 3. Find F3 that assigns the controllable eigenvalues
of (A — B, C B;) to the desired locations. The
remaining uncontrollable eigenvalues are the stable
zeros of the system.

Step 4.
a+m| BM( Ip )
5 ) G2

-C I )] 50.8)
M( B )M( G2 (

where Gz, a (n — p) x p arbitrary real matrix, is 2
stable right inverse.
T,q(s) aboveis the open-loop equivalent to the st

control law. In view of Equations 50.6 and 50.7 the d
rithm selects F, G in a state feedback control lawu =

ate feedback
bove alge~
Fx+Gr
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so that the closed-loop transfer matrix T¢,g(s) = Ip and the
cosed-loop system is internally stable; that is, all the n eigenval-
uesof A+ BF are stable. Note that when p = m, then F, G are
uniquely given by F = —D-1C, G = D! the eigenvalues of
A+BF arethen the n zeros of the system. In this development of
stable inverses via state feedback, the approach in [1] was taken;
gec also [12] and [7].

In order to implement decoupling by state feedback in prac-
tice, it is often necessary to estimate the internal state variables
by means of an observer. Certain plants can be decoupled by
constant output feedback, avoiding the need for an observer. The
necessary and sufficient conditions under which this is possible
were proved by Wolovich [ 18): itisthat B* not onlybe nonsingu-
{ar, but also that the modified inverse transfer matrix B*TY(s)
have only constant off-diagonal elements. This appears to be
a very stringent condition, so diagonal decoupling by means of
constant output feedback is not likely to be possible for any but
a relatively small class of plants. This is in clear contrast with
the state feedback case, as mentioned previously. If diagonal de-
coupling by output feedback is possible, any gain matrix H that
achieves it must give all off-diagonal entries of B*H equal to
those of B*T~1(s). It can therefore be seen that any constant
matrix of the form (B*) "1 Z canbe added to 4, where Z isanar-
bitrary diagonal matrix, and still give a gain matrix that satisfies
the required condition. There is thus 2 small amount of con-
troller design freedom available, which can be used, for instance,
to assign closed-loop poles to some extent. However, it does not
appear possible to quantify this pole-placement freedom in any
straightforward manner.

50.1.3 Block Decoupling

If diagonal decoupling by linear state feedback is not possible,
an alternative to applying precompensation may still exist. It
may be possible to use state feedback, or perhaps even output
feedback, to reduce the system to a set of smaller subsystems
that are independent; that is, decoupled. Controlling each of
these small systems can then be performed in isolation from all
the others, thus reducing the original plant control problem to
several simpler ones. This is the idea behind block decoupling,
where the goal is to transform the plant transfer matrix to one
that is block diagonal rather than strictly diagonal. For square
plants, each of these k diagonal blocks will also be square: thei-th
will be taken to have p; inputs and p; outputs, with Y. pi=p-

One question associated with block decoupling can be an-
swered immediately: namely, anyplant with nonsingular transfer
matrix can be block decoupled by linear state feedback plus pre-
compensation. This follows from the fact that any such system
can be diagonally decoupled by this form of compensation and so
is trivially of any desired block diagonal form. The two types of
compensation that have to be addressed here are therefore state
feedback and constant output feedback.

If we are interested in block decoupling a given system by state
feedback, this implies that it was not fully diagonalizable by state
feedback. Hence, the matrix B* must have been singular. As
the inverse of this matrix played a significant role in the develop-
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ment of diagonal decoupling compensators, it seems likely that
overcoming this singularity may lead toward designing block de-
coupling compensators for systems that cannot be diagonalized
by state feedback. An equivalent way of stating that B* is sin-
gular is to note that, although all rows of limy o0 D(s)T (s) are
certainly finite and nonzero, some of these rows must have been
linearly dependent on the preceding ones. Suppose thei-throwis
one such. Itisthen possible to add multiplesofrows 1, ..., i—1to
rowi in order to zero out thei-th rowin B*; that s, to make what
had been the leading coefficient vector of this row of D(s)T (s)
zero. If the new leading term in this row is now of order s7%,
multiplying the row by s yields a new finite and nonzero limit as
s goes to infinity. If this row vector is independent of the preced-
ing ones, we have now increased the rank of the modified B*-like
matrix; if not, the same process can be repeated until successful.
This basic procedure leads to the following definition, which has
proved to be very useful for studying block decoupling problems.

The interactor X (s) of T (s) is the unique polynomial 1:11&trix
of the form X7(s) = H(s)A(s), where As) = diag(sf") and
H(s) is a lower triangular polynomial matrix with 1s on the
diagonal and the nonzero off-diagonal elements divisible by s,
for which

slgréo X)) T =K1 (50.9)

is finite and full rank. The interactor can be found from the
transfer matrix of the system [16]; from a state-space represen-
tation [4]; or from a polynomial matrix fraction description for
it [13]. The basic procedure can be illustrated by applying it to
two examples discussed previously.

EXAMPLE 50.6:
1 2
T(.s‘) = i séi.-'l
3 sH

w
L

. (12
. This gives B _(0 8

1, fr=0 B"is nonsingular, so it satisfies the definition of the

1 2
0 8)I'xcrc,a.nd

). with decoupling indices f =

desired matrix Kr. Thus, K7 = B* = (

Xr(s) = diag(sh,s7) = ( ; ? )

EXAMPLE 50.7:

l.pnq_
wl

2
T(s) - ( s«gl )
5+ s+4

B* = ( l ?8- ) , which is singular, with decoupling indices

hA=1LA=1 Subtracting 4 times row 1 of d:'ag(sf" YT (5)
from row 2 eliminates the linearly dependent leading coefficient
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vector. The resulting lower-degree polynomial row vector can
then be multiplied by s, so as to again obtain a finite limit as s
goes to infinity. We then have

- 1 0 1 0 s 0
i) = (o .s‘)(—4 1)(0 s)
! g
T(s) = (-—m —2457 )

T+ GHEDGED

Unfortunately, Ti (s) has limit as 5 goes to infinity of

| 2
~-12 24 /°

which is still singular. We therefore have to repeat the procedure,
this time adding 12 times row I to row 2 to eliminate the leading
coefficients and multiplying the resulting row by s to give it a

e . . 1 0 I I Y
finite limit. Wtetheno[:vta.m(0 .s)(lz 1)1"1(5)—

1 s
( 368 ;;i ) which has limit as 5 goes to infin-
3 GFDGT)
ity of ( 315 925 ) This is clearly nonsingular, so Kr =

36 96
10 1 0\/1 0

XT(’)‘(O s)(lZl)(O s)

1 0 s 0

-4 1 /00 s

s 0

—45% 41252 3

_ 1 0
- —4s2 +125 |

which is of the desired form H(s)A(s).

It can be seen that, if B* is nonsingular, no additional row
operations are needed to modify it to give the nonsingular K7.
Thus, in this case B* = X7 and D(s) = X7(s). But we already
know that diagonal decoupling by state feedback is possible in
this case; that is, diagonalization by state feedback is possible if
and only if the interactor of the system is diagonal. This suggests
the following general result.

A square system can be block decoupled by state feedback if and
only if its interactor is of this same block diagonal structure,

A proof of this result is based on the fact that state feedback
matrices F, G can always be found that make the closed-loop
transfer matrix equal to the inverse of its interactor; see the algo-
rithms discussed previously and [6), [2). Thus, if this matrix is
block diagonal, so is the closed-loop transfer matrix. The state
feedback that achieves this form can be found in an analogous
manner to the state feedback matrices determined above that
diagonally decouple the system.

Note that the structure algorithm of Silverman [11] is quite
closely related to the interactor. This method determines a poly-
nomial matrix X (s) such that lim;_, o, X (s)T{s) is finite and

( 12 ) for this system. The interactor is then -
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nonsingular; however, X (s) is not of any particular structure,
unlike the interactor. This makes X' T (5) better suited to obtain-
ing clear block decoupling results.

Another question that generalizes naturally from the diagonal
case is that of stability. The only fixed modes when diagonalizing
were the diagonal coupling zeros, which were all zeros of the
original plant that were not also zeros of any of the rows of the
plant transfer matrix, In the case of block decoupling, the only
fixed poles are the block coupling zeros, which are all zeros of the
plant that are not also zeros of one of the (pi x m) row blocks of
T(s). Asin the diagonal case, these zeros must be cancelled by
closed-loop poles in the decoupled transfer matrix, so creating
unobservable modes; all other poles can be assigned arbitrarily.

Finally, it may be possible to achieve block decoupling by the
simpler constant output feedback compensation. Itcanbe shown
that the interactor also allows a simple test for this question. In
fact, block decoupling by constant output feedback is possible
if and only if the interactor of the system is block diagonal and
the modified inverse system K7~ (s) has only constant entries
outside the diagonal blocks. The output feedback gain matrix 5
that achieves block decoupling is such that X TH isequal to the
constant term in K77~ (5) outside the diagonal blocks. This is
very similar to the diagonal decoupling result. As there, a certain
degree of flexibility exists in the design of H, due to the fact
that the diagonal blocks of K771 (s) are essentially arbitrary;
this can be used to provide a small amount of pole assignment
flexibility when decoupling.

50.1.4 Decoupling Nonsquare Systems

The previous development has been primarily for plants with
equal numbers of inputs and outputs. Plants that are not square
presentadditional complications when studying decoupling. For
instance, if there are more outputs than inputs, it is clearly im-
possible to assign a separate input to control each output indi-
vidually; diagonal decoupling in its standard form is therefore
not feasible. Similarly, decoupling the system into several in-
dependent square subsystems is also impossible. On the other
hand, plants with more inputs than outputs present the opposite
difficulty: there are now more input variables than are required
to control each output individually.

Fortunately, the classical decoupling problem can be general-
ized in a straightforward fashion to cover nonsquare plants as
well as square ones. In view of the preceding remarks, it is clear
that systems with more outputs than inputs (p > m) must be

analyzed separately from those with more inputs than outputs ;

(p < m). The former case leads to decoupling results that :
barely more complicated than those for the square case; the

ditional design freedom available in the latter case means that =

conditions that were necessary and sufficient for p = m become
only sufficient for p < m. the

Taking the case of more inputs than outputs (p < M)lli.n
following results can be shown to hold for djagonal‘ dccoum
First, any such plant that is right-invertible (that is, for D
the transfer matrix is of full rank, p) can be dccoqujolz ooy
feedback plus precompensation; this follows from the
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nections between this type of decoupling control law and finding
a right inverse of the system. If we restrict ourselves to state feed-
back, two sufficient conditions for diagonal decoupling can be
stated. First, the plant can be diagonalized by state feedback if its
matrix B* is of full row rank, p. This is extremely easy to test,
but can be somewhat conservative. A tighter sufficient condition
is as follows: The plant can be diagonalized by state feedback if a
constant (m X p) matrix G can be found for which the B* matrix
of the square-modified transfer matrix T (s)G is nonsingular.

It may be thought that these two sufficient conditions are iden-
tical. To see that they are not, consider the following simple ex-

1 L1 10 1
ample: T(s) = o5 9 hasB‘:( ),
e T@ =z 3 § 101

which has only rank 1. The first sufficient condition for diago-
nal decoupling is therefore violated. However, post-multiplying
T'(5) by the matrix

gives
L7001
T(’)G"s_z(z 1)'

which clearly has nonsingular B* matrix of ( g : ) . Therole

of the G matrix is basically to cancel those higher-power terms
in 5 in T'(s) that give rise to linearly dependent rows in B*; in
the example, the first column of G, (1 0 — 1)7, can be seen to be
orthogonal to the repeated row vector [1 0 1] in the original B*,
Lower-power terms in T{s) then become the leading terms, so
their coefficients contribute to the new B*; these terms may well
be independent of the first ones. An algorithm that goes into the
details of constructing sucha G, if it exists, for any right-invertible
T (s} is given by Williams [13).

Very similar results apply to the problem of block decoupling
a system with more inputs than outputs (p < m) by means of
state feedback. The more conservative sufficient condition states
that the plant can be block decoupled if its interactor matrix has
the desired block diagonal structure. This can then be tightened
somewhat by proving that the plant T.(s) can be block decoupled
if there exists some (m x p) constant matrix G that has interactor
of the desired block diagonal form. Furthermore, the algorithm
described previously for block decoupling of square plants can
be applied equally in this case, either to T'(s) or T{s)G. Theonly
distinction of significance between the square caseand p < m
is that the algorithm was proved to use decoupling precompen-
sation of lowest possible order in the square case; for nonsquare
plants, minimality of this order cannot be proven.

In the case of plants with more cutpats than inputs (p > m),
the main complication is in modifying the definition of a “decou-
pled” closed-loop structure. Once this is done, the actual tech-
nical results are rather straightforward. As already noted, itis no
longer possible to assign a single input to each individual output,
as is required in the classical diagonal decoupling problem. The
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closest analog to this problem is one where the closed-loop sys-
tem is decoupled into a set of m independent single-input/multi-
output subsystems; each closed-loop control input influences a
set of outputs, but does not affect any of the others. Similarly, it is
not possible to assign equal numbers of independent inputs and
outputs to each decoupled subsystem, as holds for square block
decoupling. What we must do instead is to define decoupled
subsystems that generally have more outputs than inputs; that
is, they are of dimensions p; x m;, where p; < m;; of course,
pi=p<Imi=m

It can be shown that a very simple rank condition on the
plant transfer matrix determines whether or not these decou-
pling problems have a solution. The simplest question to answer
is whether the desired decoupled structure is achievable by means
of a combination of state feedback and precompensation. The
test is as follows:

Take the p; rows of the plant transfer function correspond-
ing to the outputs that are to be assigned to the i-th decoupled
subsystem. If this p; x m transfer matrix has rank m;, and this
holds for each i, then the plant can be decoupled into p; x m;
subsystems by means of state feedback plus precompensation.

The significance of this result is easiest to see for the special
case where m; = 1 for each i, the closest analog to diagonal
decoupling for systems with p > m. If decoupling is to be
possible, we must have that each p; % m transfer matrix of thei-th
subsystem is of rank 1, This implies that the rows of this transfer
matrix are all polynomial multiples of some common factor row
vector. In other words, the p; outputs of this subsystem are all
made up of combinations of derivatives of a single “underlying”
output variable. Similarly, decoupling into p; x m; subsystems is
possibleifand only if the p; outputs making up thei-th subsystem
are actually made up of some combinations of m; “underlying”
output variables.

In practice, applying these rank conditions to the plant transfer
matrix dictates what block dimensions are possible as closed-loop
block decoupled structure. They also show which outputs must
be taken as members of the same decoupled subsystem. For in-
stance, if we wish to achieve p; x 1 decoupling and two rows of the
plant transfer matrix are linearly dependent, the corresponding
outputs must clearly be placed in the same subsystem.

But this approach also has one further very important im-
plication. Consider a system that satisfies these submatrix rank
conditions. If we take the m; “underlying™ output variables for
each of the r subsystems, write down the corresponding m; x m
transfer matrix, and then concatenate these, we obtain a new
m x m transfer matrix, denoted by Tp (s). It can then be shown
{see [13]) that a controller will decouple T (5) into p; x m; blocks
if and only if it also decouples T (5) into square m; x m; blocks.
We can therefore take all of the decoupling results derived pre-
viously for square plants and use them to solve the problem of
decoupling systems with more outputs than inputs. In particu-
lar, T'(5) can be decoupled into p; x m; blocks by state feedback
if and only if it satisfies the submatrix rank conditions and the
interactor matrix of Tr, (s) is m; x m; block diagonal. Also, it
can be shown that T;;(s) has precisely the same zeros as T(s).
The two systems therefore clearly also have the same coupling
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zeros, so the fixed poles when decoupling T'(s) are the same as
the fixed poles when decoupling T, (s). Finally, decoupling by
means of output feedback can also be studied by applying the
existing results for square systems to the associated T (5).

EXAMPLE 50.8:

The state-space model

has transfer matrix

1 s(s+ 1) 5
T(s) = D2 s+1 .
© C+DE2~s5-1) g j_. 1;2 ssz

Clearly, the first two rows are linearly dependent, so this sys-

* 0
tem can be decoupled into the block diagonal form ( * 0 )
0 «
by state feedback plus precompensation. In fact, the associated
invertible transfer function for this system is

_ 1 s+1 1
Tn() = G+ DEs2—-5-1) ( (s+1)2 52 )'

2
which has interactor ( g 2) diagonal [with Kt =

0

( : ? )], Thus, block decoupling is actually possible for this

system using state feedback alone.

As a final point on general block decoupling, note that this
problem can also be studied using the geometric approach; see
[19]. This state-space technique is based on considering the
supremal (A, B)-invariant subspaces contained in the kernels
of the various subsystems formed by deleting the outputs cor-
responding to each desired block in turn. The ranges of these
subspaces determine whether decoupling is possible by state feed-
back. Ifitis not, the related “efficient extension” approach allows
a precompensator of relatively low order to be found that will
produce the desired block diagonal structure. This approach is
somewhat involved, and the interested reader is referred to Morse
and Wonham [8] for further details.

50.1.5 Triangular Decoupling

Thereisa form of “partially decoupled” system that can be of par-
ticular value for certain plants. This is the triangularized form,
where all entries of the closed-loop transfer matrix above its lead-
ing diagonal are made zero. The first closed-loop output, yy, is
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therefore affected only by the first input ry; the second, y,, is
influenced only by inputs r; and rs: etc. This type of transfer
matrix can be used in the following sequential control scheme.
First, input r is adjusted until output y; is as desired, and the
control is then frozen. Output variable y, is then affected onlyby
r2 and the fixed r, so r; can be adjusted until this output is also
as desired. The third input, r3, can then be used to set output ys,
etc, This scheme can be seen to be less powerful than diagonal
decoupling, as the outputs must be adjusted sequentially rather
than fully independently. However, it has one strong point in its
favor: any right-invertible plant can be triangularized by state feed-
back alone, regardless of whether additional precompensation is
required to make it diagonally decoupled. Proof of this follows
directly from the fact that there always exists some state feedback
gains F, G for which Trg(s) = Xz 1(:.'), and the interactor is,
by definition, lower triangular. OFf course, simjlar results apply
for generalized rather than standard interactors also. Therefore,
it can be shown, as originally proved by Morse and Wonham (9],
that all closed-loop poles of the triangularly decoupled system
can be arbitrarily assigned.

Finally, it may also be possible to triangularize a system by
means of the simpler constant output feedback. If the original
plant is square and strictly proper (D = 0), it can be shown that
this is possible if and only if all entries of the modified inverse
transfer matrix K77~ (s) that lie above the leading diagonal
are constant. This is quite a simple condition to test and is very
similar to the test for diagonal decoupling by output feedback.
The required gain matrix H is given from the fact that the upper
triangular part of K7 H is precisely the upper triangular constant
part of KrT~(s). It can be noted that there is therefore some
non-uniqueness in the choice of the gain H: in particular, we
can add a term of the form Ky 1Z to H, where Z is any lower
triangular constant matrix, and still get a suitable output gain
matrix. If it is possible to triangularize a given system by output
feedback, there is consequently some freedom to assign closed-
loop poles also. However, it is difficult to quantify this freedom
in any concrete way.

50.1.6 Static Decoupling

Static decoupling, as opposed to dynamic decoupling already
described, is much easier to achieve. A system is statically decou-
pled if a step change in the (static) steady-state level of the i-th
input is reflected by a change in the steady-state level of the i-th
output and only that output. To derive the conditions for static
decoupling, assume that the system is described by a p x p trans-
fer matrix T (s) that is bounded-input/bounded-output stable;
that is, all of its poles are in the open left half of the s-plane and
none is on the imaginary axis. Note that stability is necessary for
the steady-state values of the outputs to be well defined. Assume
now that the p inputs are step functions described by ui(s) = %"-,
i = 1,.., p. The steady-state value of the output vector ¥, Yss,
can then be found using the final value theorem, as follows:
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50.2. DEFINING TERMS

ki ki
i imsT)s| =7
Yss = 210, y(@) = lim sT(s)~ = ) :
kp kp
(50.10)

It is now clear that T (s) is statically decoupled if and only if
T(0) is a diagonal nonsingular matrix; that is, all the off-diagonal
entries of T'(s) must be divisible by 5, while the entries on the
diagonal should not be divisible by s. It can be shown easily thata
system described bya p x p transfer matrix T (s) that is bounded-
input/bounded-outputstable can be statically decoupled, viau =
Gr, ifand only if

rankT(0) = p
that is, if and only if there is no transmission zero at s = 0. Note

that this condition, if a controllable and observable state-space
description is given, is

A B
rank(c D)_n+p

Ifthis is the case, any feedforward constant gain G, inu = Gr,
such that T(0)G is a diagonal and nonsingular matrix will stat-
ically decouple the system. To illustrate, consider the following
example:

(50.11)

(50.12)

EXAMPLE 50.9:
+2 2
)= r=n =
- S(s+1 ; 1
G+ s+

2
Here T(0) = ( g -;' ) » which has full rank; therefore, it can
be statically decoupled. Let T(0)G = ( ; ? ) ; then G =
! -Tl Note that
¢ 1 )
42 —s{s—1
_ s+1 Ms+H1(s+3
T()G = ( SH)  —risi1seay )
(s+3) 3(s+1)(s+3)

where all the off-diagonal entries of T(s) are divisible by 5, while
the entries on the diagonal are not divisible by s. If now the

input % ( ’;; ) is applied to T (s)G, the steady-state output is
k 2k
T(O)G(k; )=( kz‘ )

50.2 Defining Terms

Decoupling: Separating the system into a number of in-
dependent subsystems.

Non-interacting control: The control inputs and the out-
puts can be partitioned into disjoint subsets; each
subset of outputs is controlled by only one subset
of inputs, and each subset of inputs affects only one
subset of outputs. From an input/output viewpoint,
the system is split into independent subsystems; it is
called decoupled.
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Further Reading

Making the system diagonally dominant is a powerful de-
sign approach. Details on how to achieve diagonal dom-
inance using Rosenbrock’s Inverse Nyquist Array method
can be found in Rosenbrock, H.H. 1974. Computer-Aided
Control System Design, Academic Press, New York.

A good introduction to the geometric approach and to the
decoupling problem using that approach can be found in
Wohnam, W.M. 1985. Linear Multivariable Control: A Geo-
metric Approach, Springer-Verlag, New York. The problem
of disturbance decoupling or disturbance rejection, where
a disturbance in the state equations must become unob-
servable from the output, is also studied there using the
geometric approach.

A geometric approach has also been used to study non-
interacting control in nonlinear systems; see, for example,
Battilotti, S. 1994. Noninteracting Control with Stability for
Nonlinear Systems, Springer-Verlag, New York.

For the decoupling of singular systems see, for example
Paraskevopoulos, P.N. and Koumboulis, EN. 1992. The de-
coupling of generalized state-space systems with state feed-
back, IEEE Trans. Autom. Control, pp. 148-152, vol.37.

The following journals report advances in all areas of decou-
pling including diagonal, block and triangular decoupling:
IEEE Transactions on Automatic Contrel, International Jour-
nal of Control and Automatica,
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