
Proceedings of the 34th
Conference on Decision 8, Control
New Orleans, LA - December 1995

Hybrid Control System Design
Based on Natural Invariants

James A. Stiver, Panos J. Antsaklis, and Michael D. Lemmon
Department of Electrical Engineering

University of Notre Dame, Notre Dame, IN 46556

Abstract

The hybrid control systems considered here consist
of a continuous plant under the control of a discrete
event system. Communication between the plant
and controller is provided by an interface that can
convert signals from the continuous domain to the
symbolic domain, and vise-versa. Hybrid control sys-
tem design generally involves designing a controller,
possibly designing some or all of the interface, and
in some cases, designing a continuous controller that
will become part of the continuous-time plant.

This paper examines the case where the interface
is partially given, along with the plant and a set of
control goals. A method is presented which designs
the symbol generating portion of the interface and
also yields a controller for the system. The method
is based on the natural invariants of the plant. This
technique is illustrated by an example in which the
design process is simulated via a computer program
for an unmanned underwater vehicle.

1 Hybrid Control System Modeling

A hybrid control system, can be divided into three
parts, the plant, interface, and controller as shown in
Figure 1.

The plant is a nonlinear, time-invariant system
represented by a set of ordinary differential equa-
tions,

q t) = f(x(t), r(t>), (1)

where x (t) E X and r(t) E R are the state and in-
put vectors respectively, and X c Rn, R C Rml with
t E (a, b) some time interval. For any r(t) E R, the
function f : X x R + X is continuous in x and
meets the conditions for existence and uniqueness
of solutions for initial states, xg E X. Note that the
plant input and state are continuous-time vector val-
ued signals. Boldface letters are used here to denote
vectors and vector valued signals.

The controller is a discrete event system
which is modeled as a deterministic automaton, (s,x, R, 6, 4) , where 3 is the set of states, is the

0-7803-2685-7/95 $4.00 0 1995 IEEE 1455

WP15 3:50

I 1
I Controller I

actuator Interface generatol mi
-1 Plant

Figure 1: Hybrid Control System

set of plant symbols, fi is the set of controller sym-
bols, d : 3 x -+ 3 is the state transition function,
and q5 : 3 + fi is the output function. The sym-
bols in set R are called controller symbols because
they are generated by the controller. Likewise, the
symbols in set 2 are called plant symbols and are
generated based on events in the plant. The action
of the controller is described by the equations

where a[n] E 8,Z[n] E 2, and .“[ti] E k. The index
n is analogous to a time index in that it specifies
the order of the symbols in the sequence. The input
and output signals associated with the controller are
sequences of symbols.

The interface consists of two simple subsystems,
the generator and the actuator. The generator con-
verts the continuous-time output (state) of the plant
to an asynchronous, symbolic input for the con-
troller. The set of plant events recognized by the
generator is determined by a set of smooth function-
ah, {hi : Rn -+ R , i E I), whose null spaces form

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:14 from IEEE Xplore. Restrictions apply.

n - 1 dimensional smooth hypersurfaces in the plant
state space. Whenever the plant state crosses one
of these hypersurfaces, a plant symbol is generated
according to

where i identifies the hypersurface which was crossed
and r,[n] is the time of the crossing.

The actuator converts the sequence of controller
symbols to a plant input signal, using the function
7 : ii + R, as follows.

m

(3)
n = O

where I (t , T ~ , T Z) is a characteristic function taking
on the value of unity over the time interval [T I , T ~)

and zero elsewhere. ~ ~ [n] is the time of the nth con-
trol symbol which is based on the sequence of plant
symbol instants,

where 7-d is the total delay associated with the inter-
face and controller.

2 Invariant Based Approach

Here a methodology is presented to design the con-
troller and the interface together based on the natu-
ral invariants of the plant. In particular, this section
discusses the design of the generator, which is part
of the interface, and also the design of the controller.
We assume that the plant is given, the set of avail-
able control policies is given, and the control goals
are specified as follows. Each control goal for the sys-
tem is given as a starting set and a target set, each of
which is an open subset of the plant state space. To
realize the goal, the controller must be able to drive
the plant state from anywhere in the starting set to
somewhere in the target set using the available con-
trol policies. Generally, a system will have multiple
control goals.

We propose the following solution to this design
problem. For a given target region, identify the
states which can be driven to that region by the ap-
plication of a single control policy. If the starting
region is contained within this set of states, the con-
trol goal is achievable via a single control policy. If
not, then this new set of states can be used as a tar-
get region and the process can be repeated. This will
result in a set of states which can be driven to the
original target region with no more than two control
policies applied in sequence. This process can be re-
peated until the set of states, for which a sequence
of control policies exists to drive them to the target

region, includes the entire starting region (prc ;ded
the set of control policies is adequate).

When the regions have been identified, the gener-
ator is designed to tell the controller, via plant sym-
bols, which region the plant state is currently in. The
controller will then call for the control policy which
drives the states in that region to the target region.

2.1 Generator Design
A common pow region (CFR), for given target re-

gion, is a set of states which can be driven to the
target region with the same control policy. The fol-
lowing definition is used.

Definition 1: For a plant given by Equation (1) and
a target region, T, the set B is a common flow region
for T if

Vx(0) E B, 3r' E A, t i , t a , ti < t z

such that
~ (t) E B, t 5 ti

and
~ (t) E T,ti < t < t z

subject to
w = f(W 7(r'))

To design the generator, it is necessary t o select
the set of hypersurfaces, {hi : X + R 1 i E I} and
the associated functions, (ai : n/(k) -+ k I i E I } ,
described above.

We present two propositions which can be used to
determine whether a given set of hypersurfaces iden-
tifies a common flow region. In different situations,
one of the propositions may be easier to apply than
the other. The following propositions give sufficient
conditions for the hypersurfaces bounding B and T
to ensure that all state trajectories in B will reach
T.

Proposition 1 Given the following:

1. A flow generated by a smooth vector field, f

2. A t aqe t region, T c X

3. A set of smooth hypersurfaces, hi, i E IB c 2'
4 . A smooth hypersurface (exit boundary), he

such that B = {(E X : hi (() < 0, he(() > 0,Vi E
I B } # 8. For all < E B there is a finite time, t , such
that x(0) = (, x (t) E T, if the following conditions
are satisfied:

1. V t h i (6) * f (<) = 0, Vi E IB

2. 3 > 0, Vthe(E) . f (t) < E B

1456

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:14 from IEEE Xplore. Restrictions apply.

3. B n N (h ,) c T

Proof: See [2,3]. 13

The second proposition uses a slightly different
way of specifying a common flow region. In addition
to the invariant hypersurfaces and the exit bound-
ary, there is also a cap boundary. The cap bound-
ary is used to obtain a common flow region which is
bounded. So for this case

(5)
B = {€ E X : hi(() < 0, he([) > 0 ,

hc(() < 0,Vi E I B } .

Proposition 2 Given the following:

1. A flow generated by a smooth vector field, f

2. A target region, T c X

3. ' A set of smooth hypersurfaces, hj, i E IB C 2'

4 . A smooth hypersurface (exit boundary), he

5. A smooth hypersurface (cap boundary), hc

0, V i E I B) # 0 and B (closure of B) is compuct.
For all 5 E B there is a finite time, t , such that
x(0) = (,x(t) E T, if the following conditions are
satisfied:

such that B = {(€ X : hi(€) < 0, he(€) > 0, hc(€) <

Proof: See [2,3]. 0

Remark: Each of the two propositions gives suf-
ficient conditions for a set of hypersurfaces to form
a common flow region. They can be used to check a
design.

Remark: For a discussion of how to find the in-
variant hypersurfaces see [2,3].

3 Optimizing the Invariant Based Approach
The invariant based approach to interface design

produces a set of hypersurfaces in the state space of
the plant. These hypersufaces form the boundaries
of CFRs, which are regions of the state space where
all the trajectories flow to the same subsequent CFR
under a particular control policy. By driving the
state through a sequence of CFRs the controller can
eventually drive it to the target region. Since each
CFR is associated with a unique control policy, the
controller has only determine the CFR in which the
current state resides and apply the associated policy.

In general, however, the CFRs will intersect each
other, and therefore the plant state may well lie in
multiple CFRs simultaneously. In such cases the con-
troller must choose one of the CFRs in order to de-
cide which control policy to apply. The controller
design procedure described here bases this choice on
the optimization of some measure of performance.
The particulars of the measure used are not impor-
tant to the design procedure provided they can be
expressed as a cost associated with each 'CFR. The
controller will choose to drive the plant through the
sequence of CFRs which reaches the target region
with the lowest total cost.

3.1 Problem Formulation

Assume the invariant based design scheme has
been completed. The result is a set of hypersurfaces
which identify a set of CFRs. The set of CIFRs is de-
noted by l? where l? c P(X). For each CPR, B € l?,
four functions are defined.

depth(B) E (O..D}
cost(B) E Si

CP(B) E { O X }
net t (B) E 23

depth of CFR B
cost of traversing B
control policy for B
CFR reached via CFR B

These functions are determined by the interface
design algorithm. The depth of a CFR refers to the
number of CFRs traversed before reaching the target.
The target has a depth of 0. The cost of traversing a
CFR will depend on the particular control problem,
it can reflect the control effort required, the perfor-
mance of the plant when its state lies in the CFR,
etc. The the function, next, indicates which CFR is
reached from the present CFR. This function can be
extended to in the following way.

nez$'(B) = B
nextl(B) = neat(B)
nezp (B) = neat(neat(B))

The set of hypersurfaces which form the bound-
aries for the various CFRs will form a set of open
regions, S C P(X), in the plant state space. Each of
these open regions may belong to a number of CFRs.
Through observation of the sequence of plant events
the controller knows which of these open regions con-
tains the plant state and must decide which control
policy to apply. The following function identifies the
CFRs which contain a given open region., S .

CFR(S) c L3 CFRs containing region S

The relation B ECFR(S) is equivalent to S c B.
1457

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:14 from IEEE Xplore. Restrictions apply.

3.2 Optimization
When the plant state is in the open region, S, the

controller will select from among the CFRs in the
set CFR(S), the CFR which provides the lowest to-
tal cost to reach the target. The total cost to reach
the target from CFR B is given by the following sum-
mation.

depth(B)

cost(neoti (B))
i = O

Therefore when the plant state is in the open re-
gion s, the controller will apply the control policy

where B is determined by the following optimization,

dept h(B I

3.3 Designing the Optimal Controller

The most straightforward way to implement the
controller is to create an automatto; with one state
for each of the open regions in the set, S. Then as
the plant evolves and produces plant symbols, the
controller can track the plant state and provide the
optimal control policy as defined by (7). Therefore
the output function for the controller is given by

where B is given by (7).
Remark: Using this controller design scheme, it

is possible for the controller to change its mind after
selecting a CFR as optimal. If, while traversing the
selected CFR, the plant state passes through another
CFR the controller may find a lower cost in the new
CFR and abandon the previous one.

4 An Implementation of the Invariant
Based Approach

The design procedure presented in this paper is
straightforward, but not computationally easy. For
these reasons it is possible as well as desirable to au-
tomate the procedure on a computer. Here a simple
automation scheme is presented along with results
for an example.

The computerized procedure does not find the hy-
persurfaces which bound the common flow regions,
but rather seeks to identify the regions directly. This
is achieved by simply back-calculating the state tra-
jectories from the target region and recording the
states which are encountered. It requires quantizing
and bounding the state space so that the computer
will have a finite number of state values to deal with.

To use the program the designer must choose the
quantization levels for each state, Axi, and the range
of each state, xi,min and x;,max. As can be seen, the
order of the computational complexity is qn, where q
is the number of quantization levels and n is the num-
ber of states. This limits the size of systems which
can be handled in a reasonable amount of time. The
limit depends on the computational power available
and the on the designer's idea of what is %eason-'
able". The following example had qn w lo5 and it
required 23 minutes of CPU time on a SPARC station
10.

After the designer has quantized and bounded the
state space, the procedure requires two additional
pieces of information from the designer. The set
of available plant inputs (control policies) must be
provided and the target region must be specified in
terms of the cells. That is, the cells which lie in
the target region must be identified as such by the
designer.

Once the program has the requisite information, it
proceeds according to the algorithm outlined by the
flowchart shown in Figure 2. The algorithm shown
in the chart will locate all cells from which it is pos-
sible to reach the target region via the application of
any one control policy. The program resets the tar-
get region to include all these cells and then repeats
the algorithm. In this way, all cells from which it
is possible to reach the original target via the appli-
cation of two control policies in sequence are identi-
fied. The program will repeat the algorithm as many
times as the designer has specified. When the pro-
gram finishes, each cell is marked with the control
policy which should be used to reach the target, ei-
ther directly or as the first in a sequence of control
policies.

4.1 Example - Unmanned Underwater
Vehicle

Unmanned underwater vehicles (UUV) have a
wide variety of practical usages in missions where it is
dangerous or impossible to send a manned underwa-
ter vehicle. Exploration, search and rescue, salvage,
mine disposal, and demolition are some examples of
the uses of UUV's.

This example uses a simplified model of a six-
degree-of-freedom UUV depicted in Figure 3. The
three types of linear displacement are surge, sway,
and heave, which represent translation in the x, y,
and I, directions respectively. The three types of
angular displacement are roll, pitch, and yaw. The
model employed here has six states which are the
time derivatives of the three linear displacements and
the magnitudes of the three angular displacements.
By expanding to a nine state model, the magnitudes

1458

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:14 from IEEE Xplore. Restrictions apply.

Get first

Get first cell
in target region

Calculate trajectory
leading to current cell

with current policy

c,
4

Mark all unmarked
cells on trajectory
with current policy

Get next
policies? control policy +----+-

Get next cell

4

A
Figure 2: Algorithm

--
screw

\

Figure 3: Unmanned Underwater Vehicle

i = -z+O.OlXU, (8)
ey = 0.15x.ur/
0, = 0 . 1 5 ~ ~ ~

Notice that the roll angle is not included in the
model. It is assumed that the center of mass of
the UUV is sufficiently far beneath the center of
bouyancy so that the roll angle is always zero.

The algorithm is used to design a controller for
the UUV and then the design is evaluated through
simulation. The state space of the UIJV plant is
quantized and bounded as follows.

The controller has ten control policies to choose
from. These policies are obtained by combining two
propeller speeds U, E I O , 11, three stern plane an- - - - -
gles uY E {-lo, 0, lo}, and three rudder angles U, E
{-10,0,10}. Of the control policies with T I = 0,
only the one with ~2 = ~3 = 0 is kept, reducing the
total number of control policies from eighteen to ten.

The target region consists of the following interval.

of the linear displacements, could also be included.
They are omitted here to simplify the control prob-
lem and because they do not affect the dynamics of
the UUV.

The UUV model has three inputs which control
the rudder, stern plane, and screw. The following
table summarizes the variables of the model.

surge rate (forward speed)
sway rate (lateral speed)
heave rate (vertical speed)
roll angle in radians
pitch angle in radians
yaw angle in radians
screw
stern plane angle
rudder angle

The simplified model is as follows.

x = -2+u,

j (= -y+O.Olxu,

0.1 0.2

(9)

The results of a simulation is presented here. The
trial has the following initial conditions.

L yaw 1 L 1.00

Results of the trial are shown in Figure 4, which
consists of four graphs. The graph in the upper left

1459

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:14 from IEEE Xplore. Restrictions apply.

x, y, and z

1*51

1.5

0.5

-0.5

-0.5 0
O r r T 100 200 300

1 . -

-

U_ 0-

pitch and yaw

0 100 200 300

U-y and U-z

10:

OF- -
-5/

-lot --- -
-1.5’ . -

0 100 200 300

Figure 4: UUV Simulation #1

shows the surge, sway, and heave over time. The
graph in the upper right shows the pitch and yaw
over time. The trajectories on these two graphs can
be distinguished by noting the initial conditions. The
two lower graphs show the control signal. On the
lower left is the propeller speed which is either 0 or
1. The segments which appear to overlap reveal the
presence of chattering (due to quantization). The fi-
nal graph shows the stern plane angle and the rudder
angle. In Figure 4, the stern plane switches between
0 and 10 and the rudder angle switches between -10
and 0. As can be seen, the basic control strategy

til the pitch and yaw are within the bounds of the
target region, and then coast until the forward speed
is also in the target.
Acknowledgement - The financial support of
NSF/EPRI (grants MSS92-16559 and RP8030-06) is
gratefully acknowledged.

which developed is simply to accelerate and turn un-

in Computer Science. Springer-Verlag, 1995, To
appear.

[2] R. L. Grossman, A. Nerode, A. P. Ravn, and
€I. Rischel, editors, Hybrid Systems, volume 736
of Lecture Notes in Computer Science, Springer-
Verlag, 1993.

[3] J. A. Stiver, P. J. Antsaklis, and M. D. Lemmon,
“Digital control from a hybrid perspective”, In
Proceedings of t h e 33rd Conference on Decision
and Controf, pp. 4241-4246, Lake Buena Vista,
FL, December 1994.

[4] J. A. Stiver, P. J. Antsaklis, and M. D. Lemmon,
“Interface Design for Hybrid Control Systems”,
Technical Report of the ISIS Group (Interdisci-
plinary Studies of Intelligent Systems) ISIS-95-
001, University of Notre Dame, January 1995.

References

[l] P. Antsaklis, W. Kohn, A. Nerode, and S. Sas-
try, editors, Hybrid Systems 11, Lecture Notes

1460

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:14 from IEEE Xplore. Restrictions apply.

