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Abstract 

The hybrid control systems considered here consist 
of a continuous plant under the control of a discrete 
event system. Communication between the plant 
and controller is provided by an interface that can 
convert signals from the continuous domain to the 
symbolic domain, and vise-versa. Hybrid control sys- 
tem design generally involves designing a controller, 
possibly designing some or all of the interface, and 
in some cases, designing a continuous controller that 
will become part of the continuous-time plant. 

This paper examines the case where the interface 
is partially given, along with the plant and a set of 
control goals. A method is presented which designs 
the symbol generating portion of the interface and 
also yields a controller for the system. The method 
is based on the natural invariants of the plant. This 
technique is illustrated by an example in which the 
design process is simulated via a computer program 
for an unmanned underwater vehicle. 

1 Hybrid Control System Modeling 

A hybrid control system, can be divided into three 
parts, the plant, interface, and controller as shown in 
Figure 1. 

The plant is a nonlinear, time-invariant system 
represented by a set of ordinary differential equa- 
tions, 

q t )  = f(x(t), r(t>), (1) 

where x ( t )  E X and r(t) E R are the state and in- 
put vectors respectively, and X c Rn, R C Rml with 
t E (a, b )  some time interval. For any r(t) E R, the 
function f : X x R + X is continuous in x and 
meets the conditions for existence and uniqueness 
of solutions for initial states, xg E X. Note that the 
plant input and state are continuous-time vector val- 
ued signals. Boldface letters are used here to denote 
vectors and vector valued signals. 

The controller is a discrete event system 
which is modeled as a deterministic automaton, (s,x,  R, 6, 4) ,  where 3 is the set of states, is the 
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Figure 1: Hybrid Control System 

set of plant symbols, fi is the set of controller sym- 
bols, d : 3 x -+ 3 is the state transition function, 
and q5 : 3 + fi is the output function. The sym- 
bols in set R are called controller symbols because 
they are generated by the controller. Likewise, the 
symbols in set 2 are called plant symbols and are 
generated based on events in the plant. The action 
of the controller is described by the equations 

where a[n] E 8,Z[n] E 2, and .“[ti] E k. The index 
n is analogous to a time index in that it specifies 
the order of the symbols in the sequence. The input 
and output signals associated with the controller are 
sequences of symbols. 

The interface consists of two simple subsystems, 
the generator and the actuator. The generator con- 
verts the continuous-time output (state) of the plant 
to an asynchronous, symbolic input for the con- 
troller. The set of plant events recognized by the 
generator is determined by a set of smooth function- 
ah, {hi : Rn -+ R , i  E I), whose null spaces form 
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n - 1 dimensional smooth hypersurfaces in the plant 
state space. Whenever the plant state crosses one 
of these hypersurfaces, a plant symbol is generated 
according to 

where i identifies the hypersurface which was crossed 
and r,[n] is the time of the crossing. 

The actuator converts the sequence of controller 
symbols to a plant input signal, using the function 
7 : ii + R, as follows. 

m 

(3) 
n = O  

where I ( t ,  T ~ , T Z )  is a characteristic function taking 
on the value of unity over the time interval [ T I , T ~ )  

and zero elsewhere. ~ ~ [ n ]  is the time of the nth con- 
trol symbol which is based on the sequence of plant 
symbol instants, 

where 7-d is the total delay associated with the inter- 
face and controller. 

2 Invariant Based Approach 

Here a methodology is presented to design the con- 
troller and the interface together based on the natu- 
ral invariants of the plant. In particular, this section 
discusses the design of the generator, which is part 
of the interface, and also the design of the controller. 
We assume that the plant is given, the set of avail- 
able control policies is given, and the control goals 
are specified as follows. Each control goal for the sys- 
tem is given as a starting set and a target set, each of 
which is an open subset of the plant state space. To 
realize the goal, the controller must be able to drive 
the plant state from anywhere in the starting set to 
somewhere in the target set using the available con- 
trol policies. Generally, a system will have multiple 
control goals. 

We propose the following solution to this design 
problem. For a given target region, identify the 
states which can be driven to that region by the ap- 
plication of a single control policy. If the starting 
region is contained within this set of states, the con- 
trol goal is achievable via a single control policy. If 
not, then this new set of states can be used as a tar- 
get region and the process can be repeated. This will 
result in a set of states which can be driven to the 
original target region with no more than two control 
policies applied in sequence. This process can be re- 
peated until the set of states, for which a sequence 
of control policies exists to drive them to the target 

region, includes the entire starting region (prc ;ded 
the set of control policies is adequate). 

When the regions have been identified, the gener- 
ator is designed to tell the controller, via plant sym- 
bols, which region the plant state is currently in. The 
controller will then call for the control policy which 
drives the states in that region to the target region. 

2.1 Generator Design 
A common pow region (CFR), for given target re- 

gion, is a set of states which can be driven to the 
target region with the same control policy. The fol- 
lowing definition is used. 

Definition 1: For a plant given by Equation (1) and 
a target region, T, the set B is a common flow region 
for T if 

Vx(0) E B, 3r' E A, t i ,  t a ,  ti < t z  

such that 
~ ( t )  E B, t  5 ti 

and 
~ ( t )  E T,ti < t < t z  

subject to 
w = f(W 7(r')) 

To design the generator, it is necessary t o  select 
the set of hypersurfaces, {hi : X + R 1 i E I} and 
the associated functions, (ai : n/(k) -+ k I i E I } ,  
described above. 

We present two propositions which can be used to 
determine whether a given set of hypersurfaces iden- 
tifies a common flow region. In different situations, 
one of the propositions may be easier to apply than 
the other. The following propositions give sufficient 
conditions for the hypersurfaces bounding B and T 
to ensure that all state trajectories in B will reach 
T. 

Proposition 1 Given the following: 

1. A flow generated by a smooth vector field, f 

2. A t aqe t  region, T c X 

3. A set of smooth hypersurfaces, hi, i E IB c 2' 
4 .  A smooth hypersurface (exit boundary), he 

such that B = {( E X : hi ( ( )  < 0, he( ( )  > 0,Vi E 
I B }  # 8. For all < E B there is a finite time, t ,  such 
that x(0) = ( , x ( t )  E T, if the following conditions 
are satisfied: 

1. V t h i ( 6 )  * f ( < )  = 0, Vi E IB 

2. 3 > 0, Vthe(E) .  f ( t )  < E B 
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3. B n N ( h , )  c T 

Proof: See [2,3]. 13 

The second proposition uses a slightly different 
way of specifying a common flow region. In addition 
to the invariant hypersurfaces and the exit bound- 
ary, there is also a cap boundary. The cap bound- 
ary is used to obtain a common flow region which is 
bounded. So for this case 

(5) 
B = {€ E X : hi( ( )  < 0, he([ )  > 0 ,  

hc( ( )  < 0,Vi E I B } .  

Proposition 2 Given the following: 

1.  A flow generated by a smooth vector field, f 

2. A target region, T c X 

3. ' A  set of smooth hypersurfaces, hj, i E IB C 2' 

4 .  A smooth hypersurface (exit boundary), he 

5. A smooth hypersurface (cap boundary), hc 

0, V i  E I B )  # 0 and B (closure of B) is compuct. 
For all 5 E B there is a finite time, t ,  such that 
x(0) = (,x(t) E T, if the following conditions are 
satisfied: 

such that B = {( € X : hi(€)  < 0, he(€) > 0, hc(€) < 

Proof: See [2,3]. 0 

Remark: Each of the two propositions gives suf- 
ficient conditions for a set of hypersurfaces to form 
a common flow region. They can be used to check a 
design. 

Remark: For a discussion of how to find the in- 
variant hypersurfaces see [2,3]. 

3 Optimizing the Invariant Based Approach 
The invariant based approach to interface design 

produces a set of hypersurfaces in the state space of 
the plant. These hypersufaces form the boundaries 
of CFRs, which are regions of the state space where 
all the trajectories flow to the same subsequent CFR 
under a particular control policy. By driving the 
state through a sequence of CFRs the controller can 
eventually drive it to the target region. Since each 
CFR is associated with a unique control policy, the 
controller has only determine the CFR in which the 
current state resides and apply the associated policy. 

In general, however, the CFRs will intersect each 
other, and therefore the plant state may well lie in 
multiple CFRs simultaneously. In such cases the con- 
troller must choose one of the CFRs in order to de- 
cide which control policy to apply. The controller 
design procedure described here bases this choice on 
the optimization of some measure of performance. 
The particulars of the measure used are not impor- 
tant to the design procedure provided they can be 
expressed as a cost associated with each 'CFR. The 
controller will choose to drive the plant through the 
sequence of CFRs which reaches the target region 
with the lowest total cost. 

3.1 Problem Formulation 

Assume the invariant based design scheme has 
been completed. The result is a set of hypersurfaces 
which identify a set of CFRs. The set of CIFRs is de- 
noted by l? where l? c P(X). For each CPR, B € l?, 
four functions are defined. 

depth(B) E (O..D} 
cost(B) E Si 

CP(B) E { O X }  
net t (B)  E 23 

depth of CFR B 
cost of traversing B 
control policy for B 
CFR reached via CFR B 

These functions are determined by the interface 
design algorithm. The depth of a CFR refers to the 
number of CFRs traversed before reaching the target. 
The target has a depth of 0. The cost of traversing a 
CFR will depend on the particular control problem, 
it can reflect the control effort required, the perfor- 
mance of the plant when its state lies in the CFR, 
etc. The the function, next, indicates which CFR is 
reached from the present CFR. This function can be 
extended to in the following way. 

nez$'(B) = B 
nextl(B) = neat(B) 
nezp ( B )  = neat( neat(B)) 

The set of hypersurfaces which form the bound- 
aries for the various CFRs will form a set of open 
regions, S C P(X), in the plant state space. Each of 
these open regions may belong to a number of CFRs. 
Through observation of the sequence of plant events 
the controller knows which of these open regions con- 
tains the plant state and must decide which control 
policy to apply. The following function identifies the 
CFRs which contain a given open region., S .  

CFR(S) c L3 CFRs containing region S 

The relation B ECFR(S) is equivalent to S c B. 
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3.2 Optimization 
When the plant state is in the open region, S,  the 

controller will select from among the CFRs in the 
set CFR(S), the CFR which provides the lowest to- 
tal cost to reach the target. The total cost to reach 
the target from CFR B is given by the following sum- 
mation. 

depth( B) 

cost(neoti (B)) 
i = O  

Therefore when the plant state is in the open re- 
gion s, the controller will apply the control policy 

where B is determined by the following optimization, 

dept h(B I 

3.3 Designing the Optimal Controller 

The most straightforward way to implement the 
controller is to create an automatto; with one state 
for each of the open regions in the set, S. Then as 
the plant evolves and produces plant symbols, the 
controller can track the plant state and provide the 
optimal control policy as defined by (7). Therefore 
the output function for the controller is given by 

where B is given by (7). 
Remark: Using this controller design scheme, it 

is possible for the controller to change its mind after 
selecting a CFR as optimal. If, while traversing the 
selected CFR, the plant state passes through another 
CFR the controller may find a lower cost in the new 
CFR and abandon the previous one. 

4 An Implementation of the Invariant 
Based Approach 

The design procedure presented in this paper is 
straightforward, but not computationally easy. For 
these reasons it is possible as well as desirable to au- 
tomate the procedure on a computer. Here a simple 
automation scheme is presented along with results 
for an example. 

The computerized procedure does not find the hy- 
persurfaces which bound the common flow regions, 
but rather seeks to identify the regions directly. This 
is achieved by simply back-calculating the state tra- 
jectories from the target region and recording the 
states which are encountered. It requires quantizing 
and bounding the state space so that the computer 
will have a finite number of state values to deal with. 

To use the program the designer must choose the 
quantization levels for each state, Axi, and the range 
of each state, xi,min and x;,max. As can be seen, the 
order of the computational complexity is qn, where q 
is the number of quantization levels and n is the num- 
ber of states. This limits the size of systems which 
can be handled in a reasonable amount of time. The 
limit depends on the computational power available 
and the on the designer's idea of what is %eason-' 
able". The following example had qn w lo5 and it 
required 23 minutes of CPU time on a SPARC station 
10. 

After the designer has quantized and bounded the 
state space, the procedure requires two additional 
pieces of information from the designer. The set 
of available plant inputs (control policies) must be 
provided and the target region must be specified in 
terms of the cells. That is, the cells which lie in 
the target region must be identified as such by the 
designer. 

Once the program has the requisite information, it 
proceeds according to the algorithm outlined by the 
flowchart shown in Figure 2. The algorithm shown 
in the chart will locate all cells from which it is pos- 
sible to  reach the target region via the application of 
any one control policy. The program resets the tar- 
get region to include all these cells and then repeats 
the algorithm. In this way, all cells from which it 
is possible to reach the original target via the appli- 
cation of two control policies in sequence are identi- 
fied. The program will repeat the algorithm as many 
times as the designer has specified. When the pro- 
gram finishes, each cell is marked with the control 
policy which should be used to reach the target, ei- 
ther directly or as the first in a sequence of control 
policies. 

4.1 Example - Unmanned Underwater 
Vehicle 

Unmanned underwater vehicles (UUV) have a 
wide variety of practical usages in missions where it is 
dangerous or impossible to send a manned underwa- 
ter vehicle. Exploration, search and rescue, salvage, 
mine disposal, and demolition are some examples of 
the uses of UUV's. 

This example uses a simplified model of a six- 
degree-of-freedom UUV depicted in Figure 3. The 
three types of linear displacement are surge, sway, 
and heave, which represent translation in the x, y, 
and I, directions respectively. The three types of 
angular displacement are roll, pitch, and yaw. The 
model employed here has six states which are the 
time derivatives of the three linear displacements and 
the magnitudes of the three angular displacements. 
By expanding to a nine state model, the magnitudes 
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Figure 3: Unmanned Underwater Vehicle 

i = -z+O.OlXU, (8) 
ey = 0.15x.ur/ 
0, = 0 . 1 5 ~ ~ ~  

Notice that the roll angle is not included in the 
model. It is assumed that the center of mass of 
the UUV is sufficiently far beneath the center of 
bouyancy so that the roll angle is always zero. 

The algorithm is used to design a controller for 
the UUV and then the design is evaluated through 
simulation. The state space of the UIJV plant is 
quantized and bounded as follows. 

The controller has ten control policies to choose 
from. These policies are obtained by combining two 
propeller speeds U, E I O ,  11, three stern plane an- - -  - -  
gles uY E {-lo, 0, lo}, and three rudder angles U, E 
{-10,0,10}. Of the control policies with T I  = 0, 
only the one with ~2 = ~3 = 0 is kept, reducing the 
total number of control policies from eighteen to ten. 

The target region consists of the following interval. 

of the linear displacements, could also be included. 
They are omitted here to simplify the control prob- 
lem and because they do not affect the dynamics of 
the UUV. 

The UUV model has three inputs which control 
the rudder, stern plane, and screw. The following 
table summarizes the variables of the model. 

surge rate (forward speed) 
sway rate (lateral speed) 
heave rate (vertical speed) 
roll angle in radians 
pitch angle in radians 
yaw angle in radians 
screw 
stern plane angle 
rudder angle 

The simplified model is as follows. 

x = -2+u, 

j (  = -y+O.Olxu, 

0.1 0.2 

(9) 

The results of a simulation is presented here. The 
trial has the following initial conditions. 

L yaw 1 L 1.00 

Results of the trial are shown in Figure 4, which 
consists of four graphs. The graph in the upper left 
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Figure 4: UUV Simulation #1 

shows the surge, sway, and heave over time. The 
graph in the upper right shows the pitch and yaw 
over time. The trajectories on these two graphs can 
be distinguished by noting the initial conditions. The 
two lower graphs show the control signal. On the 
lower left is the propeller speed which is either 0 or 
1. The segments which appear to overlap reveal the 
presence of chattering (due to quantization). The fi- 
nal graph shows the stern plane angle and the rudder 
angle. In Figure 4, the stern plane switches between 
0 and 10 and the rudder angle switches between -10 
and 0. As can be seen, the basic control strategy 

til the pitch and yaw are within the bounds of the 
target region, and then coast until the forward speed 
is also in the target. 
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