Xiaojun Yang, M.D. Lemmon and P. J. Antsaklis, "Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems,” P roc o f t he 1 Oth | nternational S ymposium o n | ntelligent

Control , pp. 585-590, Monterey, CA, August 27-29, 1995.

Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems

Xiaojun Yang, Mike Lemmon ! and Panos Antsaklis
Dept. of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556

Abstract

This paper summarizes preliminary results on the im-
plementation and convergence of an inductive learn-
ing algorithm used to identify optimal logical DES
controllers. The algorithm is a modification of An-
gluin's 1* procedure. It uses queries to an equiv-
alence oracle and incomplete membership oracle to
learn a minimal deterministic finite automaton con-
sistent with the supremal controllable sublanguage of
a known specification language and unknown plant.
This paper shows how the proposed algorithm is im-
plemented, provides results on the procedure’s con-
vergence properties, and presents an example illus-
trating its use.

1. Introduction

Discrete event system (DES) controller synthesis
methods as proposed by Ramadge and Wonham [1]
require that the state transition model of the plant’s
legal behaviours be known. It has been pointed out
that this requirement is often unreasonable. In many
cases, the DES plant may only be partially specified
and the “optimal™ DES controller must then be syn-
thesized from on-line observations of the controlled
plant’s behaviour. Prior work along this line of in-
quiry will be found in [2], [3], and [4]. Tn [2], control
actions al each execution step are based on an N-
step ahead prediction of the controlled system’s be-
haviour. In [3], an on-line method was proposed for
resolving uncertainty in the DES plant’s transitions.
In [4]. a modification of Angluin’s L*-procedure was
proposed for identifying DES countrollers. Under cer-
tain circumstances, the learning algorithm proposed
in [4] appears to identify a DES controller containing
This paper
examines the proposed algorithm and summarizes re-

the supremal controllable sublanguage.

cent results concerning the learning procedure’s con-
vergence.

IThe partial financial support of the National Science Foun-
dation (MS892-16559) and the Electric Power Research Insti-
tute (RPR030-06) are gratefully acknowledged.

0-7803-2722-5/95 $4.00 © 1995 IEEE

585

The remainder of this paper is organized as follows.
Section 2 reviews the L7-algorithm. Section 3 dis-
cusses the special oracles used by the modified L*-
procedure. Section 4 presents results on the algo-
rithm’s convergence. Section 5 uses two simple ex-

amples to illustrates the procedure’s use.

2. L*-Learning of DES Controllers

Inductive inference is a machine learning procedure
which 1s used to infer the minimal boolean func-
tional (also called the target functional) consistent
with a set of input-output pairs of that function.
These input-output pairs constitute a training set
from which the target functional is to be inferred.
Two different types of teachers are common in many
inductive learning protocols. These “teachers” evalu-
ate the training examples and use them to contruct an
approximation for the target functional. One type of
teacher is called the membership oracle. This oracle
is an algorithm which declares whether or not a given
training example is a member of the target set. The
second type of teacher is called an equivalence oracle.
This oracle is an algorithm which declares whether a
given hoolean functional is equivalent to the target
functional. In the event that they are not equivalent,
then the equivalence oracle returns a counfer-erample
illustrating where the two structures differ..

There are a large number of results on the feasibility
of using membership and equivalence queries to iden-
tify unknown regular languages. These results are of
special interest to this paper, since logical DES gen-
erate regular languages. In particular, it has been
shown that the inference of minimal DFA’s through
the sole use of membership queries is NP-complete
[5]. This results suggests that on-line DES identifi-
cation is impractical [6]. The L*-procedure proposed
by Angluin in [7] provides a way out of this dilemma.
This learning algorithm uses both membership and
equivalence queries and was shown to have a poly-
nomial complexity in the size of the minimal DFA
and the length of the counter-examples returned by

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:17 from IEEE Xplore. Restrictions apply.

Xiaojun Yang, M.D. Lemmon and P. J. Antsaklis, "Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems,” P roc o f t he 1 Oth | nternational S ymposium o n | ntelligent

Control , pp. 585-590, Monterey, CA, August 27-29, 1995.

the equivalence oracle. Based on these theoretical re-
sults, it was conjectured in [4] that some modification
of the L*-procedure could provide an effficient means
of identifying logical DES controllers.

A high level flowchart of the original L*-algorithm
is shown in figure 1. This chart can also be used
to describe the overall structure of the modified L”-
procedure described in [4]. The primary difference
between the modified and original L*-procedure rests
with the oracle implementations. These implementa-
tion differences will be discussed in more detail below.,
Before discussing the oracles. however, it will he nec-
essary to review the algorithm illustrated in figure 1.

initialization

(S,.E,.T)

1

completion:

(S..E.T)

!

aceeptor:

M(S,.E,.T)

T

Equivalence Query

Figure 1: High level flowchart of L* procedure

Process
counter-example

counterexample
generated

cquivalent

The algorithm uses membership and equivalence
queries to build up an observation table represent-
ing the regular language to be learned. The ob-
servation table 1s represented by the ordered triple,
(S,E,T), where S5 and E are prefix closed and suf-
fix closed languages, respectively. S is sometimes re-
ferred to as a language of accessing strings and E
is referred to as a language of distinguishing strings.
T : (SUST)E — {0.1} is a partial function which
agrees with the declarations of the membership ora-
cle over strings in (S U SE)}E. The observation table
can be represented in tabular form as shown below.
In this table, 3 = {a,b, 4, B}, S = {s.a,a4}, and
E = {¢, A}. ¢ is the null event. The rows are labeled
with string in .S and SE—S. The columns are labeled
with strings in £. An entry in the table is therefore
indexed by a string s € S U .SY and a string ¢ € E.
An entry in the table is the membership oracle’s eval-
uation of the string se. A value of 1 indicates that
the string se is a member of the target functional and
0 indicates otherwise.

586

¢ | A4

€ 111

S aA 110

a 1 1

aB 11

aa 1] 1

aAB {110

SY -5 aAb 111
B 1|1

A 110

Define a function row : (S USY) — {0, 1}|E| which
maps elements se € S U SY onto a string of length
|E]. This function returns a single row of the table
shown above. A language is said to be consistent
with the table if and only if all strings, se, in the
table such that T(se) = 1 are members of the lan-
guage. The rows of the table can be used to identify
right invariant equivalence classes of a regular lan-
guage consistent with the tahle. This is accomplished
by completing the table. A table is said to be closed
if for all so € ST there exists an ¢ € S such that
row(sc) = row(t). A table is said to be consistent if
for any s and ¢ in S such that row(s) = row(t), then
for all ¢ € X, row(sc) = row(to). A table that is
closed and consistent is said to be complete. Any ob-
servation table can be closed and completed through
a simple algorithmic procedure (see [7] for details).
The table shown above is a completed table. We can
define an equivalence relation Ry such that sRpt if
and only if row(s) = row(f). Because the table is
completed, Ry is right invariant and can be used by
the MyHill-Nerode characterization [8] to construct a
DFA accepting a regular language consistent with the
table. In particular. it has been shown [7] that any
closed and consistent table will have an automaton
which is minimal in the sense that any other automa-
ton consistent with the table will have more states.
For the observation table shown ahove, the associated
DFA is shown in figure 2. The label for the states in
this figure are the distinct rows of the observation
table.

Figure 2: Observation Table’s Acceptor

The computational procedure illustrated in figure 1
constructs a completed observation table in the fol-
lowing manner. (Given an initial set Sy and FEq (usu-
ally chosen to be the null event, ¢), the procedure
evaluates the observation table, (Sp, Fo.T). Tt then

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:17 from IEEE Xplore. Restrictions apply.

Xiaojun Yang, M.D. Lemmon and P. J. Antsaklis, "Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems,” P roc o f t he 1 Oth | nternational S ymposium o n | ntelligent

Control , pp. 585-590, Monterey, CA, August 27-29, 1995.

completes the table to obtain (53, F1,7) and con-
structs an acceptor, M; = M(Sy, Fy, T). This accep-
tor is then presented to the counter-example oracle
as an hypothesized DFA for the target language, K.
If My 1s not equivalent to the acceptor for K, then
the oracle returns a counter-example, s. The counter-
example is either accepted by M; and not in K, or
else 1t 1s an element of K which is not accepted by Af;.
Such counter-examples are generally constructed by
search methods. The counter-example and its pre-
fixes are then added to S and the algorithm loops
back to complete the table again. This iterative pro-
cess is then repeated until the counter-example or-
acle returns no more counter-examples. It has been
shown [7] that each counter-example adds at least one
more state to the acceptor. This means that the L*-
procedure constructs a sequence of acceptors with a
monotone increasing number of states. Since the tar-
get language is assumed to be a finite language, this
immediately implies the algorithm’s convergence to
the minimal DFA representing the target language.

3. Membership and Equivalence Oracles

To use the L*-algorithm to learn logical DES con-
trollers an appropriate membership and equivalence
oracle need to be defined. Assume the plant language,
L(G), and the control specification, i, are regular
prefix-closed languages over an event. alphabet, X. It
is assumed that ¥ is partitioned into controllable, ¥,
and uncontrollable &, events. The plant is assumed
to be observable. The specification and the uncontrol-
lable events are assumed to be known, but the plant
language 1s unknown. Recall that a language S is con-
trollable if and only if S¥,NL(G) C 5. The supremal
controllable sublanguage K1 of the specification A is
the largest controllable sublanguage of K. The ob-
jective is to compute K7 from on-line observations of
the plant’s behaviours. Based on our preceding dis-
cussion, it certainly appears to be reasonable to use
the L*-algorithm to identify A!. Direct use of the
L*-algorithm, however, requires a membership oracle
declaring whether or not a given string s isin K. A
plant behaviour, s, is said to be legal with respect to
K if s € K. Clearly an illegal (w.r.t K) behaviour is
not in A1, A legal behaviour, however, will be in K
if and only if there are no uncontrollable suffixes in
L(G) taking this legal string outside of &'. This deter-
mination cannot be made without knowledge of L(()
and so we cannot implement a membership oracle for
KT, The significance of the preceding discussion is
that a modification of the L*-procedure will need to
be developed if we are to use it in identifying logical
DES controllers.

587

The modifications to the L*-algorithm involve two
changes. First, we will introduce a conditional mem-
bership oracle which is “updated™ using illegal ob-
served plant behaviours. Second, we introduce a
modified equivalence oracle whose counter-examples
are processed in different manners depending upon
the available information on plant behaviours and
their uncontrollable suffixes. With these two modi-
fications, the original flowchart shown in figure 1 can
still be used to identify the optimal DES controller.
C'onvergence results for this procedure are provided
in section 4.

It is well known that computation of the supremal
controllable sublanguage can be performed in an it-
erative manner using the following formula [9]

Ky = K (1)
Kiynw = Ki—[(L(G)= K;) /2] % (2)
This iteration produces a sequence of languages by re-
moving uncontrollable plant behaviours in L(G) — K;
from the original specification. This procedure clearly
produces a monontone decreasing sequence of lan-
guages which converges to the supremal controllable
sublanguage after a finite number, N, of iterations;

K'=KyCEKy_1C...CEK; CKo=K (3)

Note that each, K, can be computed from the preced-
ing one once we have an observed uncontrollable plant
behaviour which is “illegal” with respect to I;_;.
The preceding equations therefore provide a means of
including observed plant behaviours into the original
specification and, in particular, we can then view this
sequence of languages as a sequence of membership
oracles which converge to the membership oracle for
KT after a finite number of “illegal” hehaviours are
observed.

The preceding discussion therefore leads to our first
modification of the L*-procedure. Whereas the orig-
inal L*-procedure used a static membership oracle,
we will use a membership oracle which is conditioned
on a list of observed illegal plant behaviours. A plant
behaviour st € L(() will be said to be uncontrollably
illegal if s is legal, t € £ — ¢ and st ¢ K. Let C' be
a collection of ohserved uncontrollably illegal plant
behaviours. The language formed by discarding the
uncontrollable suffixes of strings in ' will be denoted

Dy (Cy = { s € L(G) such that st € C and t € £}
(4)

The set (' can be viewed as a set of sample plant
behaviours that are used to update the memberhsip
oracle. Let C; be a set of ¢ observed uncontrollably
illegal plant behaviours and let Ciyy be C5 U {s;41}

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:17 from IEEE Xplore. Restrictions apply.

Xiaojun Yang, M.D. Lemmon and P. J. Antsaklis, "Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems,” P roc o f t he 1 Oth | nternational S ymposium o n | ntelligent

Control , pp. 585-590, Monterey, CA, August 27-29, 1995.

where s;4; is an observed uncontrollably illegal be-
haviour. We therefore have a growing set of observed
behaviours which can be used to modify the member-
ship oracle. In particular, we now introduce a mem-
bership oracle conditioned on the set (; and repre-
sented by the partial function 7;. This partial func-
tion is defined as follows for ¢ > 1:

- 0 ifs¢ I
fo(s) = { I ifsek

{0 HTio(s)=0ors€D(C)T .
i) = { 1 otherwise (5)

The function T;(s) can then be used to evaluate and
complete a given observation table in exactly the
same way as done in the traditional L*-algorithm.
An immediate consequence of the preceding discus-
sion is that the language consistent with 7; will be
K — Dy (C;)T*. This is precisely the same type of
iteration shown in equation 2 and it can be expected
to converge to K1 after a finite number of updates.

The polynomial complexity of the L*-algorithm arises
from its use of equivalence queries. These equiva-
lence queries provide a set of counter-examples show-
ing where the hypothesized acceptor and the target
language disagree. Once again because of uncontrol-
lable plant behaviours, the equivalence oracle in the
original L*-procedure must be modified. In the origi-
nal L*-procedure, counter-examples occur when a le-
gal plant behaviour s is not accepted by the obser-
vation table's current acceptor M(S. E.T) or when s
1s an illegal behaviour generated by A7(S. E.T). The
introduction of uncontrollable events requires us to
distinguish between controllable and uncontrollable
behaviours. A controllable behaviour which is ille-
gal denotes a disagreement between the target lan-
guage and the current acceptor.
trollable behaviours will be illegal because uncontrol-
Jable events led a legal string outside of K. ‘This

However. uncon-

undesirable hehaviour 1s a consequence of the spec-
ification (membership oracle) not heing controllahle
and the appropriate way for processing these counter-
examples is to modify the membership oracle. In par-
ticular, this is precisely the type of processing implied
by the conditional membership oracle shown in equa-
tion 5.

The counter-example oracle used by the modified L=~
procedure searches for four different types of counter-
examples. The search can be carried out in a vari-
ety of ways. A very straightforward method is pro-
posed below. The proposed counter-example oracle
performs a randomized search through the enabled
sets of observed plant behaviours. The search alter-
nates between using the specification, ;. or the ac-
ceptor Af; to control the plant. K, is used to en-
able plant behaviours in the following manner. e

588

first randomly generate a string in ©* which is legal
with respect to K;. This string is used to enable a
sequence of plant events. If the resulting observed
plant behaviour is not accepted by M; or if it results
in an uncontrollably illegal behaviour, then the search
has found a counter-example to the equivalence query.
Alternatively, the acceptor AM; can be used to enable
plant behaviours. In this case, the acceptor enables
controllable transitions in the plant and the result-
ing observed behaviour is examined. If the observed
plant behaviour is illegal with respect to K. then
the search has found another counter-example to the
equivalence query.

As noted above, the counter-examples returned by
the oracle can be categorized into four groups. In
the following, a behaviour will be said to be unac-
cepted if it 1s not accepted by M; = M(S,E, T;). A
legal behaviour will be legal with respect the current
membership oracle A;. The four types of counter-
examples are itemized below;

1. unaccepted legal plant behaviours which were
generated by using I; as the controller,

2. 1llegal controllable plant behaviours which were
generated by using AM; as a controller,

3. illegal hehaviours which were generated by us-
ing I; as the controller,

4. and llegal uncontrollable plant hehaviours
which were generated by using M; as a con-
troller.

The first two cases are counter-examples in the usual
sense treated by the L*-procedure. These strings are
processed by adding their prefixes to S and complet-
ing the resulting table with membership oracle T;.
The third and fourth cases produce counter-examples
which are used to update the membership oracle. In
this case. the counter-example is added to the previ-
ous set (' to form (541 and the observation table is
then re-evaluated using membership oracle T4,

4. Convergence Results

The convergence of the proposed learning algorithm
follows inmmediately by combining convergence results
from the L™-algorithm and the iterative computation
in equation 2. The relevant results of interest are
stated below.

Theorem 1 [7] Assume that (S.E.T) 1s a closed.
consistent observation table. Suppose the acceptor
M(S.E.T) has n states. If AI" is any acceptor con-
sistent with T that has n or fewer states, then M’ 1s
tsomorphic to M(S, E.T).

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:17 from IEEE Xplore. Restrictions apply.

Xiaojun Yang, M.D. Lemmon and P. J. Antsaklis, "Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems,” P roc o f t he 1 Oth | nternational S ymposium o n | ntelligent

Control , pp. 585-590, Monterey, CA, August 27-29, 1995.

Theorem 2 Assume that the counter-erample s has
been added to observation table (S,E,T). Let
(5", E'T") denote the updated and completed obser-
vation table. If M(S,E.T) has n states, then the
acceptor M(S', E',T") has al least n + 1 states.

Proof: By adding s to (S, E,7) we obtain an ob-
servation table (S, E',T'). This table is consistent
with (S, E,T) and by theorem 1, M (5", E',T") has
at least n states. Since s is a counter-example whose
prefixes are added to S, we know that s cannot be ac-
cepted by M(S, E.T). Therefore, the new acceptor,
M(S', E',T") cannot be isomorphic to AM(S. E.T)
and must therefore have at least n + | states. o

Theorem 3 [9] If the languages L(G) and K are reg-
wlar, then the sequence of languages, N;, defined in
equation 2 converges to K1 after a finite number of
updates.

The first result states that any acceptor M (S, F,T)
extracted from a complete observation table will be
“minimal” in the sense that any other acceptor con-
sistent with the table is isomorphic to M (S, E,T) or
has more states than A (S, E,T). The second result
[7] states that each counter-exarmple adds at least one
state to the minimal acceptor extracted from the up-
dated observation table. The third result states that
the sequence of membership oracles represented by
the iteration in equation 2 converges to the supremal
controllable sublanguage after a finite number of up-
dates. The following theorem combines these known
results to prove the convergence of the proposed log-
ical DES identification scheme.

Theorem 4 The modified L™ procedure with mem-
bership oracle updating converges to an acceptor, I\,
such that the controlled language L(G|R') is the supre-
mal controllable sublanguage. K'. Furthermore this
acceptor 1s identified after a fintte number of counter-
cramples are detected and used to update the obser-
vation table.

Proof: By the preceding description of counter-
examples, it should be apparent that there are two
distinct types of counter-examples. The first type
of counter-example is used to update the member-
ship oracle K;, and the second type is a “true”
counter-example in the sense originally used by the
L*-procedure. These counter-examples are used to
update the observation tahle. Let the “true” counter-
examples be placed in set D and let the other type
of counter-example be placed in set. (', The accep-
tor constructed from the modified L*-procedure can

589

be expressed as M(S;, E;,T;) where S; E; are the ac-
cess and the distinguishing sets of the table that occur
after the jth counter-example in D has been added
to the table. Let T; denote the membership oracle’s
partial function after the 7th counter-example in
has been used to update it. The number of states in
M(S;, E;.T;) be denoted as n; ;, the minimal numn-
ber of states for the acceptor of 7; will be denoted as
n;, and the number of states in the supremal control-
lable sublanguage’s DFA is n!. From theorem 3. we
known that n; — n! after a finite number of updates.
From theorem 2, we know that n;; < ni. There-
fore the number of states, n; ; in the sequence of ac-
ceptors is overbounded by a convergent sequence n;.
Since n; converges after a finite number of updates
and since n; ; — n; (consequence of theorems 1 and
2), we conclude that n; ; — nl after a finite number
of counter-examples.

5. Example

A simple example of the modified L*-algorithm is pro-
vided below. In this example we consider an event
alphabet ¥ = {z,a,b} where b is uncontrollable and
¢ is the null event. The unknown plant language is
L((7) = a*ba* and the specification language is given
by K = a? UaFba* where k < 2 and n > 2. Note that
this is an uncontrollable specification.

As noted above, the mitial membership oracle is the
prefix-closed specification . We construct an initial
observation table by taking S = ¢ and £ = ¢. The
resulting observation table is shown below. This table
1s clearly complete. The acceptor extracted from this
table is shown in figure 3.

[N U)

r\’?"Q (Y

The acceptor for the observation table is then used
as a controller and generates controllable and un-
controllable plant behaviours. The procedure stops
searching when an illegal (w.r.t A') plant hehaviour
is identified by the membership oracle. The simu-
lation program written to implement this procedure
produced the illegal accepted plant behaviour aaab.
This behaviour is used to update the observation ta-
ble as shown below. The acceptor extracted from this
table is shown in figure 3.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:17 from IEEE Xplore. Restrictions apply.

Xiaojun Yang, M.D. Lemmon and P. J. Antsaklis, "Inductive Inference of Optimal Controllers for
Uncertain Logical Discrete Event Systems,” P roc o f t he 1 Oth | nternational S ymposium o n | ntelligent

Control , pp. 585-590, Monterey, CA, August 27-29, 1995.

s | a | aa
3 1] 1 1
a 1)1 0]
aa 110 0
b 1 |]
ab 1)1 1
aab || 111 41_]

As bhefore, the acceptor is used to control the plant.
In this case no illegal behaviours were uncovered. We
then begin using the original specification to generate
controllable plant hehaviours and see if there are any
accepted legal behaviours. In this case an unaccepted
legal plant hehaviour baaa is discovered and added to
the ohservation table. The resulting completed table
is shown below. The acceptor extracted from this ta-
hle is shown in figure 3. This is the supremal control-
Jable sublanguage. K. for the specification language.

c | a| aa | aaa
£ 1)1 1 0
a 111 () 0
b 111 1 1
aa Lo 0 0
ba 1)1 1 1
baa 111 1 i
haaa 1|1 1 1
ab 111 1 i
aab 111 1 1
baaaa |} 111 1 1

Figure 3: sequence of acceptors generated by modified
L*-procedure
6. Suminary

This paper examined the behaviour of an inductive
inference algorithm proposed in [4] for on-line DES

controller svnthesis. The proposed algorithm is a
modification of Angluin's L*-procedure shich up-
dates the membership oracle from observed uncon-
trollable illegal behaviours in such a way that the or-
acle decides the membership of strings in the supre-
mal controllable sublanguage. A1, of a known speci-
fication language. A'. The algorithii has been shown
to converge after a finite number of membership or-
acle updates to a minimal DFA consistent with KT,
The important open question concerns the number
of updates required for convergence. The number of
connter-examples will depend on the equivalence ora-
cle used and we suspect. that an appropriately formu-
lated heuristic search procedure might be very useful
I quantifving the complexity of this learning proce-
dure.

References

117 P. Ramadge and W.M. Wonham (1987), “Su-
pervisory control of a class of discrete event pro-
cesses” . STAM Journal of Control and Optimization,
Vol 25. No. 1., pp. 206-230. Jan. 1987.

[2] S-L Chung, S. Lafortune, F. Lin (1992), “Lim-
ited Jookahead policies in supervisory control of dis-
crete event systems . [EEE Trans. Automatic Con-
frol. Vol 37. No. 12, pp. 1921-1935. Dec. 1992.

[3] S. Young. Vijay Garg (1991). “Transition un-
certainty in discrete event systems”. Proceedings 61h
IEEE Infernational Sympostum on Infelligent Con-
frol, pp. 245-250, Arlington, VA, Aug. 1991.

[1] M. Lemmon, P. Antsaklis, X. Yang, (*. Lucisano
(1995). = “Control Systemn Synthesis throngh Indue-
tive Learning of Boolean Concepts™, IEEE Conlrol
Systems Magazine, June 1995.

(5] D. Angluin (1978). “On the complexity of min-
muninference of regular sets™. Int. J. Information
and Control. Vol. 39, pp. 337-350. 1978.

[6] J.N. Tsitsitklis (1989). “On the control of
discrete-event dynamical systems™, Mathematics of
conirol. signals. and systems, Vol 2., No. L. pp. 95-
107, 1989.

{77 D. Anghiin (1987). “Learning regular sets form
queries and counter-examples™. Int. J. Information
and Computation. Vol 75, No. 1, pp. &87-106, 1987.
[X] J.E. Hoperoft and J.D. Ullman (1979). Infro-
duction to Automata Theory. Languages, and Com-
putation. Addison-Wesley, Reading. Mass., 1979.

[9) W.AL Wonham and P.J. Ramadge (1987). “on
the supremal controllable sublangnage of a given lan-
guage” . SIAM Jonwrnal of Control and Optimization,
vol 25. No. 3. pp. 637-659, 1987,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 7, 2009 at 21:17 from IEEE Xplore. Restrictions apply.

