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ABsSTRACT: In this paper physically motivated and nonparametric models are investigated that predict within
some lolerance the response of a semiactive electrorheological (ER) damper that was designed, constructed, and
tested. The electrorheological damper is a hydraulic device that was designed for applications in vibration control
of civil structures. The simplest possible physically motivated phenomenoclogical modeis are first considered to
predict the damper response without and with the presence of electric field. Subsequently, the performance of
n multilayer neural network constructed and trnined by an efficient algorithim known as the dependence identi-
fication algorithm is examined to predict the response of the ER damper, The performance of the neural network
is cotnpared to that of the phenomenotogical models and some conclusions are provided.

INTRODUCTION

Semiactive dampers for vibration control of structures com-
bine the advantages of passive structural control {Constantinou
and Symans 1993) with the benefits of active structural control
(Housner et al. [994) 10 produce optimal, yet stable and reli-
able damping systems. Different types of semiactive danpers
have been proposed ranging from simple electrorheological
dampers (Stevens et al. 1984) to hydraulic dampers with me-
chanically controlled orificing (Kawashima and Unjoh 1994;
Patten et al. 1994; Symans and Constantinou 1995).

Electrorheological (ER) dampers have atiracted considera-
bie attention in the last decade for vibration control of me-
chanical and structural systems. Early studies by Stevens et al.
(1984) showed how a simple ER damper is capable of reduc-
ing displacement amplitudes when electric field is applied. ER
dampers have found varicus applications in the automotive
industry (Douclos 1988). Recently, ER dampers received con-
siderable attention for vibration control of civil structures. The
attraction of ER dampers is that they do not involve moving
parts to control the {luid flow, and they are relatively inexpen-
sive compared to hydraulic dampers with mechanically con-
trolied orificing. Ehrgott and Masri (1992) presented identifi-
cation techniques to mode! the behavior of a small ER damper
that operates under shear flow. Gavin and Hanson (1994a,b)
designed and tested an ER damper that consists of a rectan-
gular container and a moving plunger comprised of nine flat
parallel plates that are rigidly interconnected. In the study re-
ported herein, the damper under investigation generates {low
through a stationary annular duct, which is also known as Ha-
gen Poiseille flow.

Recently, a prototype semiactive damper for seismic protec-
tion of structures was designed, constructed, and lested at the
University of Notre Damme (Makris et al. 1996). The proposed
damper is an electrorheclogical fMluid damper that can deliver
relatively large forces and has potentiai to be used for seismic
and vibration protection of civil structures. A photograrh of
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the constructed damper is shown in Fig. [, and a schematic of
its design is shown in Fig. 2. The damper consists of an outer
cylinder and a double-ended piston rod that pushes the ER
fluid through a stationary annular duct. The etfectric field is
created perpendicular to the fluid flow,

Madeling the response of semiactive dampers is a key issuc
in the design and implementation of these devices in civil
structures. Modeling procedures can range from numerical so-
lutions of continuum mechanics equations to macroscopic in-
put-output relations. Modeling procedures that are based on
conlinuum mechanics are obtained by solving the balance of
momentum and continuity equalions together with some con-
stitutive equation for the behavior of a material point within
the damper. Such procedures can be computationally intense,
but they are very useful for design of optimal geomelries, since
they reveal information about the deformation and flow of the
materials used (Makris et al. 1993, 1995a,b}. While mmechan-
ical models that are based on first principles provide insight
on the mechanics that govern the response of a device, they
are not practical for control purposes. Structural control en-
gineers are primarily interested in macroscopic nodels that
describe the response of the damper at the force-displacement
level. Macroscopic models can vary from physically motivated
mechanical models to nonparametric models used for pattern
recognition or function approximation (artificial neural net-
works). The problem of developing the best macroscopic
model that predicts the response of a structural or mechanical
system is that it does not have a unique solution. Poincare
(1929) pointed out that if a physical phenomenon can be rep-
resented by one mechanical model it can be represented by
many other models. Thus, *‘springs,’* *‘dashpots'" and **slid-

FiG. 1. Conastructed Electrorheological Damper and Testing
Arrangement
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FIG. 2. Schematic of Propomed Elecirorheological Fluid
Damper

ers’’ could be amanged in many different patterns, with ail of
thein being equivalent (Shames and Cozzarelli 1992).

This paper first examines the performance of the simplest
possible phenomenological models to predict the response of
the electrorheological damper in the absence and presence of
electric field (£ = 0 and £ = 3 kV/mm, respectively). Subse-
quently, the performance of a neural network that was con-
structed and trained to characterize the response of the damper
is examined. Neural networks have been used with success in
various civil engineering applications, such as predicting the
spatial distribution of earthquake intensity (Tung et al. [994)
or actively controlling the response of structures (Ghaboussi
and Joghataie [995). A theoretical study on the modeling of
mechanical behavior using neural networks has been presented
by Masri et al, (1993).

ELECTRORHEOLOGICAL FLUID

The phenomenon of electrorheology was first reported by
Winslow (1949) and characterized the considerable variation
of rheological properties of some fluids when an electric field
is applied. The manifested resistance 1o flow depends on the
nature of the Muid, the conditions of flow, and the orientation
and strength of the applied electric field. In some cases, the
complete conversion from liquid to solid behavior is achieved
in which a finite yield stress 7, has to be exceeded to produce
flow. When the latter is the case, it can be said that under the
presence of electric field these *'fluids’’ become *‘solids,"* and
they behave elastically when stressed at stresses smaller than
the "‘yield'" stress. Recent reviews on the phenomenon of
clectrorheology and its applications has been presented by
Block and Kelly (1988) and Jordan and Shaw (1989).

The ER fluid within the damper consists of a carrier that is
silicone oil with specific density 0.970, and the suspended
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solid that is zeolite with concentration 46% by weight, Oscil-
latory viscometric tests under the presence of clectric field
demonstrated that the silicon oil-zeolite mixture manifests
more pronounced electrorheological properties than a similar
mineral-oil-based mixwre studied by Gamota and Filisco
(1991) and Gamota et al. (1993).

Fig. 3 shows shear stress versus shear-strain-rate curves
from steady viscometric tests at different values of the applied
electric fteld on the ER fluid used within the damper. The yieid
stress of the ER fluid depends strongly on the electric field.
At 3 kV/min, the average value of the yield stress, 7, is of the
order of 1.4 kPa (0.20 psi). The zero-shear-rate viscosity in-
creases gradually with electric field with a value of 3, ~ 7
Pa:sat £ =010 a value of ;g ~ 13.2 Pa-s at 3 kV/inm.

EXPERIMENTAL PROGRAM

To calibrate, train, and validate the parametric phenome-
nological models and the nonparametric neural-network mod-
eis under investigation, a series of harmonic and transient mo-
tions (earthquake motions) have been induced to the damper
and the resulting response was measured. Dynamic testing of
the damper was conducted using the arrangement showa in
Fig. 1. A hydraulic actuator imposes a prescribed displacement
history along the axis of the damper. The force developed in
the damper is measured through a stationary load cell that is
connected between the damper and the reaction frame (left end
in Fig. I). The displacement of the damper is ineasured using
a LVDT linear variable differential transducer (LVDT) that is
located within the actuator.

The electric field on the ER duct is applied through the
cathode connected at the right end of the inner eylinder of the
bypass shown in Fig. |. The **ground’” wire is connected at
the center of the outer cylinder of the bypass. The third wire
shown in Fig. | is connected to a temperalure transducer (ther-
mocoupie) 1o monitor the temperatuse of the fluid along the
bypass. This lemperature exceeds the temperature of the main
cylinder of the damper, since fluid velocities along the bypass
are larger than elsewhere. The recorded temperature should not
exceed the value of approximately 240°C (450°F} to prevent
damage of the insulators. The recorded temperature during all
experiments was approximately 26.5°C (80°F).

Fig. 4 shows a recorded force-dispiacement loop (dotied
line) at very small piston velocities with E = Q. At the reversal
of motion, one observes a net force drop of approximately 180
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FiG. 4. Recorded and Predicted Force Displacement Loop
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N {40 Ib). This force drop is due to the friction force that the
damper seals apply on the piston rod. This friction force is
present in all experiments and its value is approximately
90 N.

Fig. 5 shows recorded force-displacement loops without
electric field (£ = 0) and with E = 3 kV/mm. Al no electric
ficld the recorded loops are nearly eiliptical, whereas at £ = 3
kV/mm some nonlinear behavior becomes apparent. As the
piston velocity increases, viscous effects dominate over plastic
cffects, and the fraction of the force that can be controlled

reduces, Fig. 5 also shows (hat the damper respouse is nearly
frequency independent but strongly velocity dependent.

Viscous heating is, in general, an important issue for the
design of dampers. In the case of seismic protection, dampers
are subjected in inost cases to a small number of cycles. For
instance, in the case of an earthquake with approximate du-
ration of 30 s, the number of significant cycles is between 10
and 20, and it is assumed that viscous heating is insulficient
to considerably reduce the fluid viscosity. Moreover, the damp-
ers are usually placed in the interior of the structure where the
ambient temperature is controlled. In this study we do not
examine the temperature dependence of the damper response.
Nevertheless, viscous heating is an important problem that de-
serves a separate systematic investigation.

Fig. 6 shows the amplitudes of recorded force versus max-
imum piston velocity at no field (circles) and at E = 3 kV/mum
(stars). The scatter in the data is due to viscous heating during
testing. As the harmonic tests were conducted one after the
othier, the damper was subjected to many cycles and in some
tests the lemperature along the bypass was higher than along
others, rangina from 75°F to 85°F. At zero field and small
piston velociues the damper operates like n textbook-case
dashpot, where the force is linearly proportional to the veloc-
ity. The small-velocity damping constant, C, can be compuled
from the Hagen-Poisseilfe flow theory (Schiichting 1987)

12n,L
T wdh? M
where A, = piston-head area, With reference to Fig. 2, the
geometric characteristics of the constructed damper are L =
546 mm, d =143 mm, i = 0.8 mm, d, = 33.4 mm, and d, =
11.25 mun, With these values and n, ~ 7 Pa- sec (see Fig, 3),
the resulting value of C = 122 kN s/m (C = 700 b s/in.),
which is approximately the slope of the data at small piston
velocities, Consequently, Fig. 6 shows that the Hagen-Poiseille
theory (solid lines) predicts very well the damper response for
piston velocities less than 15 mm/s (0.6 in./s). The finite value
of force at zero velocity and E = 0 is due to the friction force
that the seals exert on the rod.

At higher piston velocities the damper delivers a force pro-
portional lo the velocity raised at a power that is less than one
[F(}) = C{du/dt)®, 0 < a < 1]. This desirable behavior is
achieved because the piston head has a small orifice that al-
lows for some flow at high piston velocities. The orifice util-
izes a specially shaped passage to alter flow characteristics
with Muid speed (Constantinou and Symans 1993), The reduc-
tion of the damping coefficient of the damper as piston veloc-
ity increases shows that at higher velocities the damper man-
ilests some elasticity. Oscillatory tests have becn conducted on
the damper and the dynamic stiffiness of the damping was ex-
tracted from measured {orce-displacement loops. Within the
context of equivalent linear analysis, Fig. 7 (left side) plots as
a function of frequency the storage stiffness, X\(w) and damp-
ing coefficient, C(w), compuled as

FAY W,
Kiw) = (u—o) = [wC(w)]); Clw) = “m:, (Za.n

o ]

where u, = amplitude of imposed displacemient; P, = amplitude
of recorded force; w = excitation frequency; and w, = energy
dissipated per cycle. At the zero-{requency limit the elasticity
of the device is zero, whereas the experimental values for C
present significant scatter. This scatter is the result of dividing
two very small quantities [see (2}). Fig. 7 {right side) plots the
same information as Fig. 7 (left side), but the dynamic stiffness
is expressed in terms of amplitude and phase.
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PHENOMENOLOGICAL CONSTITUTIVE MODELS

The force-velocity correlation in Fig. 6 suggests that at the
smali-velocity range the piston force is proportional to the pis-
ton velocity. The total {orce on the piston is the result of the
viscous forces due to the fluid flow plus the friction force, P,
, on the damper seals. A macroscopic model that includes both
contributions is the viscoplastic Bingham model (Shames and

Cozzarelli 1992)
P) = P, sgn(u) + Cu (3)

Of course, this purely dissipative model results in a zero stor-
age stiffness and an equivalent linear damping coefficient with
constant value. According to Fig. 7, the proposed Bingham
model will be realistic at the low-frequency limit only. Indeed,
the prediction of the calibrated Bingham model [C = 84 kN s/
m (480 Ib/in.), P, = 90 N (20 Ib)) satisfactorily predicts the
recorded force-displacement loop shown in Fig. 4. Fig. 8 plots
the timme history (top) and the Fourier spectrum (bottoin) of
the 1940 El Centro earthquake (left side) and the {987 Whit-
lier Narrows earthquake-Tarzana record (right side). Obvi-
ously, the Bingham model neglects the increase in elasticity
and the reduction in damping of the device at higher frequen-
cies. Nevertheless, even for the Tarzana record, the high-fre-
quency content beyond 5 Hz is not dominant and the Bingham
model can be used as a first approximation to model the
damper response. Fig. 9 (top left) compares the prediction of
the Bingham model wilh the experimentally recorded force
from the damper when subjected to the Ei Centro displacement
history shown in this figure. The agreeinent is satisfactory. The
top right plot in Fig. 9 shows the difference in the signal be-
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tween the predicted and experimentally recorded force histo-
ries. This difference signal has a peak value (PV) of 200 ib
and a root-mean-square (RMS) value of 32 Ib. The RMS value
of the signal is defined as

RMS = %z (Pu = P)? )

with Pp and P, being vectors of recorded and predicted forces,
respectively. , .

The wemt simplc;,model that can approximate the frequency S/
dependence of the storage modulus and damping coefficient
shown in Fig. 7 is the classical Maxwell mmodel of viscoelas-
licity (Shames and Cozzarelli 1992)

daP() du(r)
P+ A d i dt

(5)
The Maxwell model is a linear viscoelastic model; therefore,
is capable of capluring some of the elasticity that the damper
manifests at higher {requencies. On the other hand, in the
model given by (5), the [riction force, P,, is not expressed
explicitly. The solid lines in Fig. 7 are the prediction of (5)
with zero-frequency-damping constant, C = 88.6 kN/in (C =
506 b sfin.) and relaxation time A = 0.02 s. Fig. 9 (center-
left) compares the prediction of the Maxweil model given by
(5) with the experimentally measured force from the damper
when subjected to the El Centro displacement history shown
in Fig. 8. The prediction of the response is more favorable
compared Lo the prediction from the Bingham model. The cen-
ter-right plot in Fig. 9 shows the difference in the signal be-
tween the predicied and experimentally recorded force histo-
ries. Evidently, because of the presence of the refaxation term
in the Maxwell model, the difference signal is more suppressed
with a PV = 640 N (144 1b), and an RMS = 120 N (27 Ib).
The performance of phenomenological models can be in-
proved by adding terms on either side of the constitutive equa-
lion. For instance, the Bingham and Maxwell models can be
combined in one constitutive equation.
ﬂ’_(l_) _ ~dut)

C=—+ P, sgn(u) (0)

+
AR dt dt

1o capture both nonlinear and relaxation effects. Alternatively,
within the context of equivalent linearization one can construct
higher order linear models with higher order derivatives of the
force and displacement (Franklin et al, 1991), or even frac-
tional order derivatives (Makris and Constantinou 1991) to
approximate the response within a smaller tolerance. The pa-
rameters of such models do not have direct physical meaning;
however, higher order models might be more appropriate for
control purposes, In the next section we examine the perfor-
mance of a neural network that is a inore general model to
approximate input-output refations.

NEURAL NETWORKS

Neural networks consist of many interconnected simple
processing elements calied neurons or units, which have mul-
tiple inputs and a single output. The inputs are weighted and
added together, This sum is then passed through a nonlinearity
called the activation function, such as a sigmoidal lunction like
Sy = 11 + e™") or f(1) = tanh{r), or a gaussian-type function.
The terms *‘artificial neural networks’” or *‘connectionist mod-
els’” are typically used to describe these processing units (o
distinguish them from biological networks of neurons found
in living organisms. The processing units or neurons are in-
lerconnected and the strength of the interconnections are de-
noted by parameters called weights. These weiglits are ad-
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justed depending on the task at hand to improve performance.
They can be either assigned values via some prescribed off-
line algorithm, while remaining fixed during operation, or ad-
justed via a learning process on-line. Neural networks are clas-
sified by network structure topology, by the type of processing
elements used, and by the kind of learming rules impiemented.

Neural networks are useful as models of dynanical systems
because of their ability to be universal function approximaltors.
Several types of neural networks appear to offer promise for
use in function approximation. These include the multilayer
neural network trained with the back propagation algorithm
cormmenly attributed to Rumclhart et al. (1986), the recurrent
neural network such as the feedback network of Hopficld
(1982), the content-addressable memory of Kohonen (1980),
and the gaussian node network of Moody and Darken (1989).
The choice of which neural network to use and which training
procedure 10 invoke is an important decision and varies de-
pending on the intended application. It has been shown that
feedforward neural networks can arbitrarily approximate well
any continuous functivn; this, in fact, can be accomplished
using a feedforward network with a single hidden layer of
neurens with a linear output unit,

Herein, the dependence identification algorithm (DIA),
(Moody and Antsaklis 1995), is utilized to construct and train
a multilayer neural network (o predict the response of the elec-
trorheological damper. The DIA bears some similarities to the
boolean network construction algorithm; however, it is de-
signed to work with continuous taining problems and it uses
the concept of linear dependence, instead of the desired boo-

lean output value, to group patterns together. The algorithm
does not share the problems of network pruning techniques
because it builds from a small network up to a large one, and
because it does not use gradient descent. The DIA is an ex-
tremely fast algorithm for function approximation with the ad-
vantage that it generates an appropriate network, thus elimi-
nating the need for experimentation to determine the number
of hidden neurons. The DIA creates a network and sets of
initial conditions that are suitabie for further iterative or on-
line adaptive training with gradient techniques such as back-
propagation.

The DIA utilized displacement-force input-output pairs re-
corded in the laboratory to construct and train the neural net-
work. The ncural network is a single hidden layer network
with seven inputs, 99 neurons, one output, and six delays.
Displacement histories from three earthquakes have been used
as an input to the fluid damper. The resullant force needed to
maintain the motion was recorded with the load cell shown in
Fig. 1. Fig. 10 plots the three input displacement histories and
the recorded forces that we use Lo train the neural network,
The three input seismic records are the 1985 Mexico City
earthquakes, the 1987 Whittier Narrows earthquake (Tarzana
record), and the 1992 Petrolia earthquake. The cenler cotumn
of plots in Fig. 10 is the recorded force at zero ficld (E = 0)
and the right column of plots is the recorded force at 3 kV/
min,

Fig. 9 (bottom-left) compares the prediction of the neural
network with the experimentaily measured force. The agree-
ment is acceptable, but both PV and RMS values of the dJif-
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ference signal from the neural network model are larger than
the corresponding values resulting from the Bingham and
Maxwell models.

To further examine the perforinance of the DIA-constructed
network, the neural network trained with seismic records
shown in Fig. 10 was used to predict motions that contain a
single harmonic. Fig. 1] compares the recorded {solid line)
force-displacement loops (top) and force-velocity loops (bot-
tom) with the predictions of the neural network (dashed line).
The predictions of the Maxwell model are also plotted with
dots. It is interesting to note that the neural network not only
approximates the force-displacement loop but also predicts
with success the force-velocity loop, generating a (inite area.
This means that the neural network model is capable of ac-
counting for the elasticity that the damper manifests as fre-
quency increases.

In the case where the damper is passive (zero field), its
response is nearly linear. Figs. 9 and 11 indicate that the sim-
ple phenomenological Bingham and Maxweil models surpass
the performance of a rather sophisticated neural network. Nev-
crtheless, neural networks may be combined to both identify
and control the response of the ER damper therefore creating
adaptive countrollers. Such adaptive controllers might be useful
to address the problem of viscous heating or other time var-
ying effects. Moreover, in the case where electric field is pres-
ent, the noniinearities in the damper response become more
pronounced and, in this case, the neural network and the DIA
become more attractive.

CHARACTERIZATION OF DAMPER RESPONSE
UNDER PRESENCE OF ELECTR!C FIELD

Fig. 5 shows recorded force-displacement loops under the
presence of electric field (£ = 3 kV/Anm). These loops depart
from the shape of an ellipse and show nonlinear response. A
sinple phenomenological madel that can spproximate the iton-

linear behavior of the damper under the presence of electric
field is again the Bingham model of viscoplasticity, where now
the total yield force is the sum of the friction force on the
seals, P, plus the yield force, P,, that results from the yielding
of the ER material. Accordingly

P() = (P, + F,)sgn(n) + Ci (7)

This macroscopic model was motivated from the mechanical
behavior of the ER fluid used within the damper in conjunction
with the pattern of flow of the ER fluid through the bypass
shown in Figs. 1 and 2. With the assumption that the flow
across the bypass is not inlluenced drastically by the cnd ef-
fects, the pressure drop on the piston head is given by the
cubic equation (Phillips 196%; Makris et al. 1996)

|
L I2nlQ L
Yo [3r,E e =R Ap w42 () =0
Ap (31, W pag7e ) Ap' + 41, (h) 8

where @ = flow through the bypass. As the fluid velocity in-
creases, the pressure drop asymptotically reaches the expres-

sion

_12melQ

AP 3LT!

wdh’ h ®)

Multiplying (9) with the piston area, A,, one obtains the yield
force, P,, which can be approximated with the expression
3L+,

~—4

’ h °" (0

Substituting the aforementioned vaiues for the yield stress of
the ER fluid and the ditmensions of the bypass, the resulling |

yield force assumes the value of P, = 267 N (P, ~ 60 Ib#®). £—

Fig. 12 (top-left) comparcs the prediction of the Binghamn
model given by (7) with the experimental data. Note that in
the prediction of the Binghom model the computed vaiue of
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FIG, 13.

P, + P, =356 N (80 Ib) was used. The difference signal has
an RMS = 322.5 kN (72.5 Ib) and a PV = 1,583 N (356 1b).
Subsequently, the Maxwell model froin linear viscoelasticity
was utilized to predict the response of the damper at the pres-
ence of electric field. To calibrate the parameters of the Max-
well model, oscillatory tests have been conducted under the
presence of E = 3 kY/mm and the equivalent linear storage
stilfness and damping coefficients were extracted using the
expressions given by (2). Fig. 13 shows the experimental val-
ues and the predictions of the calibrated Maxwell model. The
calibrated values for the model parameters are C = 100 kN s/
m (C = 570 lbs sfin.) and A = 0.036 s. Fig. 12 (center-left)
cotpares the prediction of the Maxwell model with the ex-
perimentally imeasured force {rom the damper when subjected
to the El-Centro displacement history. Fig. 12 {center-right)
shows the difference signal between the predicted and exper-
imentally recorded force histories. It is interesting to note that
in this case (E = 3 kV/mtn), the prediction of the Maxwell
model is inferior to the prediction of the Bingham modei. This
is because under the presence of electric Geld, the total yield
force has increased resulting in a more pronounced nonlinear
behavior that cannot be realistically represented with the linear
Maxwell model.

Fig. 10 also plots the three input displacement histories and
the recorded forces that we used to train the neural network
10 sitnulate the damper response under the presence ol electric
field (E = 3 k¥/mm). Fig. 12 (bottom-lelt) compares the pre-
diction of the neural network with the experimentally tea-
sured force. The prediction of the neural model is better than
the prediction of the Maxwell model in terms of RMS. This
shows that neural networks are capable of approximating non-
linear response. Finally, Fig. 14 shows the capabilities of the
DIA 1o predict the response of the damper under lhe presence
of clectric field and when subjected to harmonic motions.
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CONCLUSIONS

in the present paper the performance of physically moti-
vated phenomenological models and neural networks has been
examined when predicting the measured response of an ER
serniactive damper. It was found that a neural network con-
structed with the dependence identification algorithm predicts
satisfactorily the response of the damper without and with the
presence of electric field. Specifically, under the presence of
electric field, where a more pronounced nonlinear response
prevails, the predictions of the neural network are comparable
but not superior to the predictions of simple phenomenological
models. It was also found that although the trained neural net-
work Is capable of approximating the damper response sub-
jected to harmonic motions it performs better in predicting the
damper response when subjected to random signals.

Although at this stage the performance of the proposed neu-
ral network does not surpass the performances of elementary
phenomenological models, neural networks tmay be combined
to both identify and control the response of the semiactive
damper, therelore creating adaptive controllers. Such adaptive
countrollers might be useful (o address the problem of viscous
heating or other time varying effects. Future studies will in-
vestigate the performance of neural networks to approximate
the damper response during time varying electric field and
temperature.
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APPENDIXIl. NOTATION

The following symbols are used in this paper:

A, = aren of piston head;
C = small-velocity damping constant;
d = diamcter of bypass;
E = electric ficld;
h = width of gap along ER ducy;
L = length of bypass;
P = pressure;
¢ = flow rate;
r = radial distance;
f = time;
Ap = pressure drop on piston head;
Ap, = pressure drop on piston head due (o viscous siresses only;
T = zero-shear rate viscosity;
A = relaxation time;
T = 3.14159...;
T, = Yyield stress of ER material;
w = angular frequency.
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