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Abstract

An optimization strategy for the problem of control reconfiguration in response
to operating condition changes or abrupt system component failures is presented
here. The proposed approach provides an output feedback controller that not only
stabilizes the new/impaired system, when possible, but also preserves much of the
dynamics of the original system. The design is such that the closed-loop system is
robust with respect to inevitable uncertainties/modelling errors in the state-space
matrices of the impaired system. The approach is applied to an aircraft longitudinal
control system, for which two severe cases of failure are considered, first the loss of
an actuator and then the loss of a sensor in addition to the actuator loss.

1 Motivation-Previous work

Reconfigurable control systems are control systems that are characterized by the ability
to perform in the presence of drastic changes in the system dynamics due, for example,
to abrupt system component (actuator/sensor) failures or rapid changes in the oper-
ating conditions. Their task is twofold; first they need to guarantee safe performance
(stability), when possible, and then recover maximum control performance under im
pairments. Established techniques exist for the cases of anticipated failures/operating
condition changes, for which control laws are precomputed, stored and used according to
need. However, the interest here is mainly for the cases of unanticipated scenarios, where
an automated on-line failure accommodation technique is needed. Here, we are primarily
interested in the reconfiguration part. That is, for the cases of component failures, a fail-
ure detection and identification scheme is assumed to provide the dynamics (state-space
description) of the impaired system; for the cases of operating condition changes, an on-
line modelling technique is assumed to identify the state-space model that corresponds to
the new operating conditions. Once the model of the new/impaired system is available,
we present a reconfiguration technique to maintain its stability and performance.
Several approaches for aircraft flight control problems have appeared in the literature,
[9], [13], [14], [15]. Note also that an interesting overview of the reconfiguration problem
for aircraft flight control systems can be found in [6]. Alternative approaches to reconfig-
urable control are presented in [2], [4], [19], [20]. In all the papers above, reconfiguration
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is either just a part of a more general adaptive or FDI/stability robustness scheme or
treated as an uncertainty that enters the system or restricted to some specific classes
of failures for which a control law may be stored and used upon need. However, the
requirement of maintaining the dynamics of the original closed-loop system is not explic-
itly included in the reconfiguration design procedure. This is the way reconfiguration is
treated in the papers that follow.

In (3], [16], [17], the Pseudo-inverse method (PIM) is used to compute the control
law for the impaired system. This method relies on the fact that the new feedback gain
based on the pseudo-inverse theory is optimal in the sense that it is the solution of small-
est norm for the linear least-squares problem of minimizing the Frobenius norm of the
difference matrix between the original and the impaired closed-loop system transition
matrices. The main problem, however, is that the stability of the impaired closed-loop
system can not be guaranteed. This problem was overcome in [7], where the reconfig-
urable control problem was formulated as a constrained minimization problem and a
modified pseudo-inverse method (MPIM) was proposed that guarantees the stability of
the closed-loop system. This approach, however, has two drawbacks. First it assumes
full state-feedback, which can be quite unrealistic at times; and it relies on some sta-
bility bounds that may give very conservative results; this results in certain limitations
of the proposed scheme. More recently, an approach was presented in [10], where the
full-state measurability (state-feedback) is relaxed and the output feedback case is con-
sidered. There are, however, two major drawbacks in the proposed technique. First, the
stability of only Maz(m,r) eigenvalues of the closed-loop system is maintained, where
(m, r) are the numbers of inputs, outputs respectively. Note that similar limitations are
encountered in [8]. The second drawback concerns the fact that the proposed methodol-
ogy relies on the assumption that the input matrix By of the impaired model is of full
column rank. This is a restrictive assumption, considering the common case of actuator
loss which corresponds to zeroing a whole column of the input matrix.

Here, we consider the output feedback case and propose an optimization strategy
which guarantees the stability of all the closed-loop eigenvalues, even in the case of
severe failure scenarions, such as the simultaneous loss of an actuator and a sensor.
Note that this happens under the assumption that a stabilizing solution exists for the
impaired state-space model. The new stabilizing feedback controller for the impaired
system captures as much of the dynamics of the original system as possible, since it is
designed to minimize the Frobenius norm of the difference matrix between the original
and the impaired closed-loop transition matrices. Another useful feature of the proposed
design is that it is robust with respect to modelling errors in the state-space matrices of
the new/impaired system. In other words, the realistic possibility of imperfect modelling
of the impaired system is incorporated in our design and the controller derived by the
proposed algorithm is capable of maintaining the closed-loop stability even in the presence
of uncertainty in the state-space matrices of the impaired system.

2 Problem Formulation

We consider the linear multivariable continuous system with the state-space description

£(t) = A o(t) + B u(t), y(t) = C () (1)
and assume static output feedback u(t) = K y(t) = KC z(t). The above gain
matrix has been selected so that it guarantees a certain control performance. Suppose
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now that due to system component failures (e.g. actuator or sensor failure/loss) or
operating condition changes, the previous state-space representation can no longer model
the dynamics of the new/impaired plant, which is now described by

#(t) = Ay =(t) + By u(?), y(t) = Cy 2(t) (2)

Our objective is to design fast a new stabilizing output feedback control law u(t) =
Ky y(t) = K;Cy z(t), so that the new closed-loop system A; + B;K;Cy captures as
much of the dynamics of the nominal closed-loop system A + BK( as possible. Hence,
we need to find a new gain matrix that minimizes the Frobenius norm of the difference
between the nominal and the new closed-loop system transition matrices. Therefore, the
minimizing quantity is

J]] = ”A + BI{C - Af - BfI{fo”%-
= Tr[(A+ BKC - Af — Bf.Kfo)T(A + BKC — Af — BfI{fo) ] (3)

where ||A||[r and Tr(A) denote the Frobenius norm and the trace of a matrix A
respectively. We know that given an asymptotically stable matrix A and a symmetric
positive definite matrix @, there exists a unique symmetric positive definite matrix P,
such that AP + PA + Q = 0. The new gain matrix K; needs to be stabilizing, that is
it has to make A; + B;K;C; stable. Therefore, according to above, it suffices to satisfy
the following Lyapunov equation

ATP+PA;+Q=0 (4)

where Ay = A;+B;K;C;. By including (4 ) in ( 3 ), we have a constrained minimiza-
tion problem. Therefore, the minimizing quantity is given by J; = Jyy + T'r[ Ly (;l}"P +
PA i+ @) ], where L; € R"*" is the Lagrange multiplier matrix. In the analysis above,
there is the underlying assumption that we know exactly the state-space matrices of the
impaired model. This is not usually the case in applications, where we can only ap-
proximate the state-space matrices of the impaired system in cases of abrupt operating
condition changes or severe failures. Hence, it is imperative that we design a controller
that stabilizes the closed-loop system, even in the presence of uncertainty in some or all
the state-space matrices {Ay, By, Cy} of the closed-loop system Ay + B;K;C;. We need
the following theorem from [5]

Theorem 2.1 Consider 2(t) = Axz(t) with A a stability matriz; let ATP+ PA+Q = 0.
Suppose that A — A+ AA, then §(t) = (A + AA) y(t) remains asymptotically stable if

1 1

(AA4) Q7 (AA)T < 1 PlQP o (AATPQP(AA) < 19 O
We can easily see that a sufficient condition for ( 5 ) to hold is
1 omn(Q)
Omaz(AA) < 3 () (6)

We can use ( 6 ) for A = A; to maintain stability in cases of inevitable uncertainties
in the closed-loop system A; + BfK;Cy. Since Q is selected beforehand, in order to
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maximize the stability bound of ( 6 ), we simply need to minimize Oma(P). Since
o2,..(A) < ||A]|% = Tr(AT A) for any matrix A, we choose to minimize J, = Tr(PTP) =
Tr(P?). Considering J; and J,, the overall minimizing quantity is finally given by

J =Tr{ (A — B;K;Cy)T (Ay — BfK;Cy) + Li (ATP+PA;+Q) + P*] (1)

where A; = A+ BKC — A;. We compute the following gradients of the final cost J

aJ : .
=4, = AIP+PA;+Q (8)
oL,
aJ : .
35 = 8p = AL+ ITA] + 2P (9)
aJ i
5k, =B = 9BT B;K;C;CT —2BTA;CT + BIP(L, + LT)CT  (10)

These gradients can be used by the algorithm of [11] to minimize ( 7 ). Note that this
algorithm uses a version of the Broyden family method of conjugate directions, which is
based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule; a version of this
algoritm has been used in [12] for the design of controllers for robust stability and optimal
performance of uncertain discrete-time systems.

Remark 2.1  The minimizing quantity of ( 7 ) consists of two components, the
reconfiguration term (J;) and the robustness term (J2). By assigning weights to these
terms, we could emphasize the one that is of more interest to us. Without loss of
generality, we can always consider a weight wy = 1 for Ji, so that the minimizing quantity
is given by J,, = J; + waJ2. Note that the introduction of w, affects only the gradient of
(9 ), where the term 2 P needs to be substituted by 2 w, P. )

Remark 2.2  We have considered the robustness of the closed-loop system Ay as-
suming possible uncertainties in all the state-space matrices of the impaired system. If we
are certain for some of these matrices, then the bound of ( 6 ) can be easily modified. For
instance, let’s consider a common case in reconfigurable systems, where the state and out-

put matrices remain the same A = Ay, C' = Cy and we only have changes in B. Then, the

1 Imin (@)
2 amag(P) O'maz(Kfo).

By minimizing ¢yq-(KC}), we can further enlarge the above stability region. This can
easily be done by including its upper bound Tr[ (K;C;)*(K;Cy) ] in the minimizing
quantity J.

Remark 2.3 We may also wish to include in J another term that establishes a
specific control performance, such as the familiar LQR. cost J4 = f° (2T @1z + vT Ryu) dt,
where ()1, Ry are positive definite matrices of appropriate dimensions. Finally note that

the results presented here can easily be extended to the dynamic output feedback case,
(12].

allowable perturbations in By are given from ( 6 ) by op.(ABy) <

3 An illustrative example

Consider an aircraft longitudinal control system from [10], with the linearized dynamic
model
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0 —0.0582  0.0651 0 —0.171\ [aft)
Aty _ | —0.303 -0.685 1.109 0 B(t)
$) | T | —-0.0715 —0.658 —0.947 0 $(t)
a(t) 0 0 1 0 o(t)
0 1
—0.0541 0 (t)
L SRR (Z(t))
0 0
10 0 o\ (&)
y(t) = (0 0 0 1) gg; (11)
0.0 1 0/ { g

where a(t) and f§(t) are the forward and vertical speeds, #(t) is the pitch rate and
8(t) is the pitch angle. The control inputs n(¢) and 7(t) are the elevator angle and
throttle position respectively. When we consider static output feedback, the controller
that assigns the closed-loop eigenvalues at {~2,—0.5973, —1.5 &+ 27} is given by

K=(—0.00031 4.77004 1.70457) (12)

—2.01505 —1.13002 0.02904

Next, we suppose that the system dynamics change due to operating condition vari-
ations and at the same time severe failures happen at the actuators or sensors. First, we
study the case of actuator loss and then the case of both actuator and sensor losses.

3.1 Actuator loss

The state-space matrices of the impaired model are given below. Note the loss of the
second actuator.

(00582 0.0 0.0 —0.171 0 0.0
A, - | 0103 —0.685 1.109 0 B, - | 009 00
F = 1 -0.0715 —0.658 1.98 0 » PIT -1 0.0
\ 0 0 1.5 0 0 0.0
/09 0 0 O
C; = |0 6 0 0.7) (13)
\0 0 1 0

Note that the state-space matrices given above correspond to new operating condi-
tions, as given in [10]; in addition, we imposed the loss of one of the actuators. We use
the algorithm of [12] for different weights to the robustness term, so that the minimizing
quantity is given by J,. In Table 1, we give the closed-loop eigenvalues and the first
row of the stabilizing output feedback gain for the original and several impaired models.
Note that for the impaired models the second row of the controller becomes irrelevant
due to the actuator loss. In Table 2, we give the results for the reconfiguration and the
robustness terms, and the robustness bound, that is the maximum singular value of the
variations of the closed-loop system that can be allowed so that the asymptotic stability
is maintained. We also restrict these variations in perturbations in the input matrix B
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model eigenvalues gain K
(first row)
nominal {-2.0,-0.5973, —1.50 & 2.005} [-0.00031 4.77004 1.70458

imp (w, = 0.01) || {=0.0770, —0.5591, —1.4610 & 2.5498;} | [0.00680 6.79671 4.31982]

imp (wp = 0.1) || {—0.0797, —0.5576, —1.4603 & 2.5401;} | |-0.06511 6.79624 4.31961]

imp (w; = 1) || {—0.0947, —0.5491, —1.4575 & 2.53527} | |-0.45799 6.75011 4.32028

imp (@s = 10) || {—0.1371,—0.5194, —1.4840 & 2.40607 } | |-1.37154 6.31477 4.37946

imp (wy = 50) || {—0.1779, -0.4819,—1.6283 £+ 2.15965} | [-1.92021 5.75013 4.64244|

Table 1: Actuator loss: eigenvalues and feedback gain for the nominal and the impaired

models.

impaired Ji Ja bound bound
model | (reconfiguration term) | (robustness term) | (general) | for ABy

wy = 0.01 5.7469 2.3324 0.0668 | 0.0104

we =0.1 5.7534 2.2092 0.0687 | 0.0107
wp=1 5.9737 1.7149 0.0785 | 0.0122
wy =10 7.8258 1.1772 0.0956 | 0.0151
wy = 50 10.3066 1.0538 0.1012 | 0.0159

Table 2: Actuator loss: results for different weight factors considered for the impaired
model.

and compute the same bound for ¢,,,.(AB;). Note that the same can easily be done
for the case of structured perturbations in By. It is quite obvious that for larger w,, we
enhance the robustness of the closed-loop system, which translates into smaller J; and
larger perturbation bounds (for ABy or general); at the same time, however, the recon-
figuration term J; increases, which results in the deterioration of the closeness of the
impaired closed-loop system Aj+ By K;Cy to the nominal closed-loop system A+ BKC.

In Fig. 1- 2, we compare the state-responses of the original and the impaired closed-
loop systems. For the latter, we have chosen the controller obtained by our algorithm
for wy = 1. The initial conditions vector was chosen as (0.1 0.5 0.3 1 )'. The two
plots are very similar, which implies that despite the severity of the actutator loss, we
were able to recover quite successfully the dynamics of the nominal model.

3.2 Actuator/sensor losses

We consider the even more severe case of losing both the second actuator and the first
sensor. Hence, Ay and By remain the same as before, whereas the output matrix changes
to
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Nominal system
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Figure 1: Nominal system: state trajectories for the closed-loop system.

Impaired system after losing 2nd actuator
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Figure 2: Actuator loss: state trajectories for the impaired closed-loop system.
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model eigenvalues gain K
(first row)
nominal {-2.0,-0.5973, —1.50 £ 2.005} [-0.00031 4.77004 1.70458 |

imp (w, = 0.01) || {-0.0773,—0.5589, —1.4610 + 2.5497;} | [-0.00031 6.79669 4.31982

imp (w; = 1) || {—0.0773, —0.5590, —1.4504 + 2.5527;} | [-0.00031 6.80620 4.31707

imp (w, = 10) || {-0.0772, —0.5598, —1.4488 + 2.57625} | [-0.00031 6.88535 4.29861

Table 3: Actuator/sensor losses: eigenvalues/feedback gain of original/impaired models.

impaired J1 Ja bound
model | (reconfiguration term) | (robustness term) | (general)

wq = 0.01 | 5.7471 2.3202 0.0670
wa=1 | 5.7472 2.3200 0.0670
wp =10 | 5.7525 2.3190 0.0670

Table 4: Actuator/sensor losses: different weight factors for the impaired model.

) 000 0
Ci={0 0 0 07 (14)
001 0

Note that these losses make the second row and the (1,1) element of the first row
of the controller gain irrelevant. In Tables 3-4, we give the same results as before for
the present case. Comparing with the actuator loss case, we see that the sensor loss, in
addition to the actuator loss, affects the robustness of the closed-loop system. Unlike
the actuator case, we can not remove the pole at -0.0773, see Table 3, no maftter how
much we increase w; in the minimizing quantity; in the actuator loss case we were able
to enhance the robustness of the closed-loop system by assigning a large weight to the
robustness term J;, which resulted in removing the problematic pole from -0.0770 to
-0.1779. Comparing the reconfiguration terms J; of Tables 2 and 4, we see that the loss
of the first sensor did not affect at all the reconfiguration aspect of our design. Finally
note that the state-responses of the impaired closed-loop system after the loss of both
the actuator and the sensor for the same initial vector as before are almost identical to
the ones of Fig. 2, which shows that despite the loss of the sensor, in addition to the
actuator loss, our scheme was capable of recovering the dynamics of the original system.

In Table 5, we compare the Frobenius norm of the difference between the original
and the impaired closed-loop transition matrices ||A + BKC — A; — B;K;Cy||¢ for the
controllers derived in the examples of [7] and [10] and the ones derived by the proposed
algorithm here for the cases of ws = 0.1 and w, = 1. The present approach, in addition
to maintaining closed-loop stability, is more successful in preserving the characteristics
of the original system compared to the techniques presented in the papers above.
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example of | present | present | example of | present | present

Gao et al | algor. algor. Jiang algor. algor.
(1991) Wy = 1 Wy = 0.1 (1994) Wy = 1 Wy = 01

[ 3.8525 [ 27038 [ 2.4225 [ 2.4627 [ 0.6392 | 0.6392 |

Table 5: Comparing ||A+ BKC — Ay — B;K;Cf||r for literature examples.

4 Conclusions

The problem of control reconfiguration in response to operating condition changes or
abrupt system component failures has been studied here. An optimization algorithm has
been presented that provides an output feedback controller that not only stabilizes the
new /impaired system but also preserves much of the dynamics of the original/unfailed
system. The design is such that the closed-loop system is robust with respect to uncer-
tainties/modelling errors in the state-space model of the impaired system.

Although the interest here is in continuous-time systems, a similar approach can be
applied to the discrete-time case. Results concerning eigenstructure assignment can be
included in our design so that additional restrictions/specifications can be introduced in
the minimizing quantity with respect to the eigenspace where the closed-loop eigenvectors
are desired/needed to vary. In that respect, the requirement of closeness to the original
closed-loop system can be specialized to the case where the closeness to the eigenstructure
of the original system becomes the main objective of the reconfiguration design.
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