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Abstract

An optimization algorithm for the problem of control reconfiguration in response to
operating condition changes or abrupt system component failures is presented here. The
algorithm utilizes a version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimiza-
tion method of conjugate directions. The algorithm provides an output feedback controller
that not only stabilizes the new/impaired system, when possible, but also preserves much
of the dynamics of the original/unimpaired system. The design is such that the closed-
loop system is robust with respect to inevitable uncertainties/modelling errors on the
state-space matrices of the impaired system. The algorithm is applied to an aircraft lon-
gitudinal control system, for which two severe cases of failure are considered, first the loss
of an actuator and then the loss of a sensor in addition to the actuator loss.

1 Motivation-Previous work

Reconfigurable control systems are control systems that are characterized by the ability to per-
form in the presence of drastic changes in the system dynamics due, for example, to abrupt sys-
tem component (actuator/sensor) failures or rapid changes in the operating conditions. Their
task is twofold; first they need to guarantee safe performance (stability), whenever possible,
and then recover maximum control performance under impairments. In aircraft flight control
systems, for instance in an emergency situation, the first objective is to maintain the aircraft
in a stable, flyable state and then try to recover as much of the performance specifications
of the unfailed system as possible. Established techniques exist for the cases of anticipated
failures/operating condition changes, for which control laws are precomputed, stored and used
according to need. However, the interest here is mainly for the cases of unanticipated scenarios,
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where an automated on-line failure accommodation technique is needed. Here, we are primarily
interested in the control reconfiguration part. That is, for the cases of component failures, a
failure detection and identification scheme is assumed to provide the dynamics (state-space
description) of the impaired system; for the cases of operating condition changes, an on-line
modelling technique is assumed to identify the state-space model that corresponds to the new
operating conditions. Before we present our control system reconfiguration approach to main-
tain stability and performance, other techniques that have appeared in the literature will be
briefly discussed; furthermore, the needs that our methodology will attempt to accommodate

will be identified.

Several approaches for aircraft flight control problems have appeared in the literature. In
[13], a design is proposed for an autonomous lateral directional flight control system that utilizes
a multiprocessor reconfigurable control and an adaptive learning network for the monitoring of
control surface compliance, control law synthesis and system attribute learning. In [20], a gain
schedule design procedure is presented. This procedure uses a linear quadratic optimization
based simultaneous stabilization algorithm in which the schedule gain is constrained to stabilize
a collection of plant models that represent the aircraft in various control failure modes. In
[21], non-reconfigured and reconfigured control laws to accommodate three control element
failures for a commercial airplane are studied. Note also that an interesting overview of the
reconfiguration problem for aircraft flight control systems can be found in [9].

An alternative approach to reconfigurable control is presented in [26], where failures enter
the system as uncertainties in system parameters and an H., controller is designed that provides
robust stability in the presence of some prescribed failures. In a similar fashion, reconfiguration
is incorporated in a general FDI framework in [25]. A different viewpoint is presented in [4],
[7], where the emphasis is on the identification of the parameters of the impaired system which
then determines the design of the new control laws. In all the papers above, reconfiguration is
either just a part of a more general adaptive or FDI/stability robustness scheme or treated as
an uncertainty that enters the system or restricted to some specific classes of failures for which
a control law may be stored and used upon need. Besides, the requirement of maintaining the
dynamics of the original closed-loop system is not explicitly included in the reconfiguration
design procedure. In this paper we are interested in an explicit control reconfiguration scheme
that will provide a controller for the impaired model so that not only the stability is guaranteed
but the performance of the impaired system closely approximates the control performance and
specifications of the original system as well. In other words, we need to deal with the case
of severe unanticipated failures and design on-line a controller that will maintain as much of
the original closed-loop dynamics as possible. This is the way reconfiguration is treated in the
papers that follow.

In [18], an approach to the automatic redesign of flight control systems for aircrafts that
have suffered one or more control element failures is presented. This approach is based on
linear quadratic (LQ) design techniques and attempts to maximize a measure of feedback
system performance while satisfying the bandwidth limitation of the control system. This
results in reconstructing the nominal forces and moments of the unfailed aircraft as nearly as
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possible. The proposed scheme maintains closed-loop stability and some robustness due to
uncertain system parameters but does not necessarily guarantee the recovery of the closed-loop
performance. Another drawback is that all states are assumed available for measurement, that
is full state-feedback is considered.

In [6], [22], [23], the Pseudo-inverse method (PIM) is used to compute the control law for
the impaired system. This method relies on the fact that the new feedback gain based on the
pseudo-inverse theory is optimal in the sense that it is the solution of smallest norm for the
linear least-squares problem of minimizing the Frobenius norm of the difference matrix between
the original and the impaired closed-loop system transition matrices. The main problem,
however, is that the stability of the impaired closed-loop system can not be guaranteed. This
problem was overcome in [10], where the reconfigurable control problem was formulated as a
constrained minimization problem and a modified pseudo-inverse method (MPIM)was proposed
that guarantees the stability of the closed-loop system. The optimal solution for single-input
systems is given in closed form; for multi-input systems the optimality is sacrificed for the sake
of stability and a sub-optimal solution is given. However, the approach has two drawbacks.
First it assumes full state-feedback, which can be quite unrealistic at times; and it relies on
some stability bounds that may give very conservative results; this results in certain limitations
of the proposed scheme.

More recently, an approach was presented in [14], where the full-state measurability (state-
feedback) is relaxed and the output feedback case is considered. The presented method is based
on the eigenstructure assignment approach of [1]. There are, however, two major drawbacks in
the proposed technique. First, the stability of only Max(m,r) eigenvalues of the closed-loop
system is maintained, where (m, r) are the numbers of inputs, outputs respectively. Although
a sufficient condition for the stability of the remaining eigenvalues is provided, there is no guar-
antee that they will remain stable. Note that similar limitations are encountered in another
reconfiguration design for some classes of failure scenarions that is based on eigenstructure
assignments in [11]. The second drawback of [14] concerns the fact that the proposed method-
ology relies on the assumption that the input matrix By of the impaired model is of full column
rank. This is a restrictive assumption, considering the common case of actuator loss which cor-
responds to zeroing a whole column of the input matrix.

Here, we consider the output feedback case and propose an optimization algorithm which
guarantees the stability of all the closed-loop eigenvalues, even in the case of severe failure
scenarions, such as the simultaneous loss of an actuator and a sensor. Note that this hap-
pens under the assumption that a stabilizing controller does exist for the impaired state-space
model. The new stabilizing feedback controller for the impaired system captures as much of the
dynamics of the original system as possible, since it is designed to minimize the Frobenius norm
of the difference matrix between the original and the impaired closed-loop transition matrices.
Another useful feature of the proposed design is that it is robust with respect to modelling
errors concerning the state-space matrices of the new/impaired system. In other words, the
realistic possibility of imperfect modelling of the impaired system is incorporated in our design
and the controller derived by the proposed algorithm is capable of maintaining the closed-loop
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stability even in the presence of uncertainty in the state-space matrices of the impaired system.
In section 2, the problem is formulated, the algorithmic approach is presented, and discussion
is carried out concerning features of the technique and its extension to more complex control
problems. In section 3, the algorithm is applied to an aircraft longitudinal control system, for
which two severe cases of failure are considered, first the loss of an actuator and then the loss
of a sensor in addition to the actuator loss. Finally, in section 4, concluding remarks are briefly
discussed.

2 Problem Formulation

We consider the linear multivariable continuous system with the state-space description

#(1) = Aa(t) + B u(t), y(t) = C () (1)

where x € R" is the state vector, u € R is the input vector and y € R? is the output vector.
We assume static output feedback of the form

ult) = K y(t) = KC (1) (2)

The above gain matrix has been selected so that it satisfies specific control specifications
or guarantees a certain control performance (transient response characteristics etc). Suppose
now that due to system component failures (e.g. actuator or sensor failure/loss) or operating
condition changes, the previous state-space representation can no longer model the dynamics
of the new/impaired plant, which is now described by

#(t) = Ay z(1) + By u(l), y(t) = Cy (1) (3)

Our objective is to design fast a new stabilizing output feedback control law

ult) = Ky y(t) = K;C; () (1)

so that the new closed-loop system A; + ByK;(C; captures as much of the dynamics of
the nominal closed-loop system A + BK (' as possible. In other words, we need to find a new
control gain matrix that minimizes the Frobenius norm of the difference between the nominal
and the new closed-loop system transition matrices. Therefore, the minimizing quantity of our
interest is given by
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Ju = ||[A+BKC — A; — ByK;C4|[%
= Tr[(A+ BKC — A; — B;K;C;)T(A+ BKC — A; — BiK;Cy) | (5)

where ||A||r and T'r(A) denote the Frobenius norm and the trace of a matrix A respectively.
This is clearly an unconstrained minimization problem. We know that given an asymptotically
stable matrix A and an arbitrary symmetric positive definite matrix (), there exists a unique
symmetric positive definite matrix P, such that

ATP+ PA+Q =0 (6)

The new gain matrix Ky needs to be stabilizing, that is it has to make A;+ By K;C stable.
Therefore, according to above, it suffices to satisfy the following Lyapunov equation

ATP+PA;+Q=0 (7)

where

Af = Ay + BsK ;O (8)

By including ( 7 ) in ( 5 ), we have a constrained minimization problem. Therefore, the
minimizing quantity is given by

Jv=Ju+Tr[ L (ATP 4+ PA; + Q)] (9)

where L; € R™" is the Lagrange multiplier matrix. In the analysis above, there is the
underlying assumption that we know exactly the state-space matrices of the impaired model.
This is not usually the case in applications (e.g. flight control examples). When the operating
conditions change abruptly or a severe failure, such as an actuator loss, occurs, then we can only
approximate the state-space matrices of the impaired system. In cases like that, it is imperative
that we design a controller that allows some stability margin to the closed-loop system, that
is a controller that will stabilize the closed-loop system, even in the presence of uncertainty in
some or all the state-space matrices { Ay, By, Cs} of the closed-loop system A+ BsK;C;. We
need the following theorem, which has been proven in [§]

Theorem 2.1 Consider &(t) = Ax(t) where A is a stability matriz; let P, Q be as in ( 6 ).
Suppose that A — A+ AA, then y(t) = (A+ AA) y(t) remains asymptotically stable if
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(AA) Q™ (AT < —PtQ P! (10)

or equivalently

(AT P Q™ P (AA) < = Q (11)

| =

We can easily see that a sufficient condition for ( 11 ) to hold is

1
O-Tznax(AA) O-Tznax(P) Umal’(Q_l) < 1 Umzn(Q)
1 Omin
— O'mals(AA) < 5 WEC?P; (12)

Returning to our problem, we see that ( 12 ) can be used to maintain stability in cases of
inevitable uncertainties in the closed-loop system A; + B;K;Cy, that is we apply ( 12 ) for
A= Af. Since () is selected beforehand, it is apparent that in order to maximize the implied
stability bound of ( 12 ) for inevitable uncertainties in the closed-loop system given above, we
need to minimize 0,,,,.(P). Since o2 (A) < ||A||% = Tr(ATA) for any matrix A, we choose

max
to minimize

Jo = Tr(PTP) = Tr(P?) (13)
Therefore, the overall minimizing quantity is finally given by
J = L+ J;
= Tr[(Ay — ByK;Cp)' (Ap — ByK,Cp) + Ly (ATP+ PA; +Q) + P (14)

where

A; = A+ BKC — A; (15)

Next we compute the partial derivatives of the final cost J with respect to all the matrix
variables entailed; these partial derivatives are needed for the algorithm that is presented next
for the minimization of J;. In order to compute them, we need the following properties from

2]
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9 2 oy T
oy Ir(x?) = 2x (16)
9
o (Y By = ATBT (17)
9
S THAYTBy) = Budg (18)
a%Tr(AgYBgYT) = AsYBs+ AJYB] (19)

for any X ¢ %an7 Y € %nxm7 Al c %lxn7 Bl c %mxl7 A2 c %lxm7 32 c ?}E”Xl7 A3 c %an7
B3 € R*™ . With these properties, we have

dJ . .
0L
0J _ Ap = AT+ LTAT 42op (21)
P vy
aa[;,] = Ak, = 2B]ByK;C;CT —2BJA;CT + BT P(Ly + LT)CT (22)
!

To minimize ( 14 ) we use a version of the Broyden family method of conjugate directions,
which is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule; details in [3].
Note that a version of this algorithm has been used in [15], [16], [17] for the design of controllers
for robust stability and optimal performance of uncertain discrete-time systems. The proposed
algorithm is presented next.

Initialization Step Let € > 0 be the termination scalar. Choose an initial stabilizing
gain
()"
K} = : (23)
(T

where (71)T,1 = 1,..,r are the 1 x ¢ rows of K}, which stabilizes (Ay, By, (), that is Af
stable. Also, choose an initial symmetric positive definite matrix D;. Let

po=a=((r)" - () (24)

be a column vector consisting of the transposes of the rows of K}. Also let k=35 =1 and
go to the Main Step.
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Main Step

M1.  Substitute the gain matrix KJ{ in the gradients of ( 20 )-( 21 ), set them to zero,
that is Az; = 0, Ap = 0, and solve for P, L; respectively, in that specific order.

M2.  Substitute these parameters in ( 22 ) and compute

()"
A]{} = (25)
(o))"
where (U{)T,l =1,..,r are the 1 x ¢ rows of A,;.
¥
M3. Define VJ(y;) = ((e})T -+ (09)T)".
If ||VJ(y;)|| <€, STOP. The optimal gain is KJJQ. Otherwise, go to M4.
M4. If 5 > 1, update the positive definite matrix D; as follows:
T T D iaq._ D: 1q._pL - qT D
D] :D]‘_l _I_p]T 1p]—1 [1_|_ q]—lT J 1q] 1]_[ J 1q] 1p]—1} —I_p] 1q]—1 J 1] (26)
P;-145-1 P; 1451 P; 1451
where
pj—1 = Ajordj—1 =y — Y- ¢-1 = VJ(y;) = VJ(y;-1) (27)

M5.  Define d; = —D;V.J(y;).

Let A; be an optimal solution to the problem of minimizing J(y; + Ad;) subject to A > 0.

Let yipr = y; + Ajd; = (7T - (#77tHT)T which implies that
ey
i1 :
K™ = : (28)
()T
where obviously (TZHI), [=1,..,7 are ¢ X 1 column vectors.

Mé6. If j < rgq, replace j by j + 1 and repeat the Main Step.

Otherwise, if j = rq, then let y; = 2441 = y,rg41, replace k by £+ 1, let j = 1 and repeat
the Main Step. oo

There are several issues that need to be discussed here.
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Remark 2.1  The line search in (M5) is restricted to stabilizing gains. Therefore, the
selected new gain matrix needs first to stabilize the closed loop matrix ( 8 ) of the impaired
system and then minimize ( 14 ). Note that the line search in (M5) of the Main Step was
performed in our examples by the Fibonacci method; details in [3].

Remark 2.2 Since our algorithm is an indirect version of the BFGS algorithm, as an
alternative to the stopping criterion of (M3), we could use another quite practical criterion.
Specifically, we may consider monitoring .JJ and stop when we reach a plateau or when we see
that J is sufficiently small and the associated bound derived is acceptably large. Additionally,
note that for optimization problems similar to the one we study here, alternative methods
based on gradient-type and nongradient-type algorithms have been proposed in [12] and [19]
respectively.

Remark 2.3  The minimizing quantity of ( 14 ) consists of two components, the recon-
figuration term (J;) and the robustness term (.J;). By assigning weights to these terms, we
could emphasize the one that is of more interest to us. Specifically, for cases where we are
quite uncertain about the state-space matrices of the impaired system, we could assign a large
weight to J,, in order to maximize the stability region within which the perturbations of the
closed-loop matrix are allowed to vary without jeopardizing the stability of the closed-loop
system. Without loss of generality, we can always consider a weight wy = 1 for Ji, so that the
minimizing quantity is given by

Jw = Jl + CUQJQ (29)

Note that the introduction of w, affects only the gradient of ( 21 ), where the term 2 P
needs to be substituted by 2 w, P.

Remark 2.4  For the algorithm mentioned above, we need an initial stabilizing output
gain. If such a gain is not available, then we can use the heuristic approach of [5].

Remark 2.5  Several stability bounds similar to the one given in Theorem 2.1 above can
be found in the robust stability literature. Which one is the best (less conservative) is not the
issue of interest here. We have chosen the bound of ( 12 ) because it is easy to use and suits
our analysis.

Remark 2.6 In our analysis design above, we have considered the robustness of the
closed-loop system Af assuming possible uncertainties in all the state-space matrices of the
impaired system. If we are certain for some of these matrices, then the bound of ( 12 ) can be
easily modified. For instance, let’s consider a common case in reconfigurable systems, where
the state and output matrices remain the same A = A;, ' = Cy and we only have changes in
the input matrix B. Then, the allowable perturbations in By are easily given from ( 12 ) by
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Omar(ABy) < 3 Tomaz(P) Opmar (K ;C)

(30)

It is apparent that by minimizing ¢,,..(K¢C}), we can further enlarge the above stability
region. This can easily be done by including its upper bound Tr[ (K;C;)T(K;Cy) ] in the
minimizing quantity J. Note that such an inclusion could enhance the robustness aspect of
the proposed design but would affect its reconfiguration aspect, which is of primary concern
here. However, for cases where there is a serious uncertainty about the input matrix By, the
inclusion of the above term is recommended to avoid instability due to imperfect modelling of
the impaired system.

Remark 2.7 In addition to the reconfiguration and the robustness objectives studied
above, we may wish to attain a specific control performance; in that case we need to include
in the minimizing quantity another term that evaluates this control performance. This term is
the familiar LQR cost given by

T = / T (@7 Que + uT Ry) dt (31)
0

where ()1, Ry are positive definite matrices of appropriate dimensions. It can easily be
shown that the minimization of ( 31 ) is equivalent to the minimization of T'r[ Pyx(0)x(0)" ],
where P, is the unique solution of Af P, + PQAf + Q1+ CfTKfTRlAfo = 0. Therefore, similar

to before, the minimizing quantity in that case will be

J =T+ Tr[ Py2(0) 2(0)" + Ly (AP, + P A; + Q1 + CTKT R K;Cy) ] (32)

where Ls is another Lagrange multiplier matrix. Of course, in addition to the gradients
computed in ( 20 )-( 22 ) above, we also need to compute the gradients with respect to Py and
Ly, which will be used by our algorithm.

Remark 2.8 In the analysis above, we have studied the static output feedback case.
When dynamic output feedback is considered, then the formulation given in the appendix of
[17] can readily be used. Note that in this formulation, the order of the controller is fixed.
In the same respect, when considering the output feedback gain for the impaired system,
the assumption is made that the new controller will be of the same order with the dynamic
controller of the nominal system.

10
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3 An illustrative example

Consider an aircraft longitudinal control system from [14], whose the linearized dynamic model

is given by
alt) 00582 0.0651 0 —0.171\ [a(t) 0 1
sy | | —0303 —0685 1109 0 B(1) 00541 0 (n(t))
o) | T | —0.0715 —0.658 —0.947 0 o) | Tl 1t oo )
0(t) 0 0 1 0 0(t) 0 0
1 00 0 gg;
o) = [0 00 )T (33)
00 10/ |G

where «o(t) and ((t) are the forward and vertical speeds, 1 (t) is the pitch rate and 6(¢) is
the pitch angle. The control inputs n(t) and 7(t) are the elevator angle and throttle position
respectively. When we consider the static output feedback law ( 2 ), the controller that assigns
the closed-loop eigenvalues at {—2,—0.5973, —1.5 + 25} is given by

K- (—0.00031 (34)

4.77004 1.70457)
—2.01505

—1.13002  0.02904

Next, we suppose that the system dynamics change due to operating condition variations
and at the same time severe failures happen at the actuators or sensors. First, we study the
case of actuator loss and then the case of both actuator and sensor losses.

3.1 Actuator loss

The state-space matrices of the impaired model are given below. Note the loss of the second

actuator.
—0.0582  0.10 0.0 —0.171 0 0.0
A — | 0103 —0.685 1.109 0 B _ | 009 00
! —0.0715 —0.658 1.98 0 e —1.11 0.0
0 0 1.5 0 0 0.0
09 0 0 0
C; = 0 0 0 0.7 (35)
0 0 1 0

11
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model eigenvalues gain K
(first row)
nominal {=2.0,-0.5973, —1.50 + 2.00;5 } [-0.00031 4.77004 1.70458 |

imp (w2 = 0.01) || {—0.0770, —0.5591, —1.4610 + 2.5498;} | [0.00680 6.79671 4.31982]
imp (w2 = 0.1) || {=0.0797, —0.5576, —1.4603 + 2.54915} | [-0.06511 6.79624 4.31961

imp (w2 = 1) {—0.0947, —0.5491, —1.4575 4+ 2.53525} | [-0.45799 6.75011 4.32028
imp (w2 = 10) || {=0.1371,—-0.5194, —1.4840 + 2.4060; } | [-1.37154 6.31477 4.37946
imp (w2 =50) || {—0.1779,—0.4819, —1.6283 + 2.1596; } | [-1.92021 5.75013 4.64244

—|—|——
AR i) ikl P

Table 1: Actuator loss: eigenvalues and feedback gain for the nominal and the impaired models.

impaired Ji Jo bound bound | (AB; = k1 By)
model (reconfiguration term) | (robustness term) | (general) | for ABy |k1] <

wy = 0.01 5.7469 2.3324 0.0668 0.0104 1.04

wy = 0.1 5.7534 2.2092 0.0687 0.0107 1.07
wy =1 5.9737 1.7149 0.0785 0.0122 1.22

wy = 10 7.8258 1.1772 0.0956 0.0151 1.51

wy = 50 10.3066 1.0538 0.1012 0.0159 1.59

Table 2: Actuator loss: results for different weight factors considered for the impaired model.

Note that the state-space matrices given above correspond to new operating conditions, as
given in [14]; in addition, we imposed the loss of one of the actuators. We use the algorithm
to compute the stabilizing static output feedback controller Ky that minimizes the Frobenius
norm of the difference A+ BKC — Ay — By K;(y denoted by J; and maximizes the robustness
of the impaired closed-loop system, which corresponds to the minimization of J;. We assign
different weights to the robustness term, so that the minimizing quantity is given by ( 29 ).

In Table 1, we give the closed-loop eigenvalues and the first row of the stabilizing output
feedback gain for the original and several impaired models. Note that for the impaired models
the second row of the controller becomes irrelevant due to the actuator loss. In Table 2, we give
the results for the reconfiguration and the robustness terms, when assigning different weights
to J, in (129 ). We also give the robustness bound, that is the maximum singular value of
the variations of the closed-loop system that can be allowed so that the asymptotic stability
is maintained. We also restrict these variations in perturbations in the input matrix B and
compute the same bound for 0,,,:(ABy). Finally, since by inspecting the input matrices B,
By we see that the uncertainty is mainly with regard to the element (2,1), we express the

12
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structured perturbation in By as

0.01
0
0

ABf = K1 B1 = K1 (36)

jen BN en BN an BN an)

and give the robustness bound for x;. Note that we could also restrict the variations in
the output matrix €'y and obtain the perturbation bound in the same way. From Table 2, it
is quite obvious that for larger w,, we enhance the robustness of the closed-loop system, which
translates into smaller Jy and larger perturbation bounds (for ABj or general); at the same
time, however, the reconfiguration term J; increases, which results in the deterioration of the
closeness of the impaired closed-loop system A; + ByK;Cy to the nominal closed-loop system
A+ BKC.

In Fig. 1- 2, we compare the state-responses of the original and the impaired closed-loop
systems. For the latter, we have chosen the controller obtained by our algorithm for wy = 1.
The initial conditions vector was chosen as (0.1 0.5 0.3 1 )T. The two plots are very close
to each other, which implies that despite the severity of the actutator loss, we were able to
recover quite successfully the dynamics of the nominal model.

3.2 Actuator/sensor losses

Now, we consider the even more severe case of losing both the second actuator and the first
sensor. Therefore, Ay and By remain the same as before, whereas the output matrix changes
to

00 0 0
Ci=]0 0 0 07 (37)

00 1 0
Note that these losses make the second row and the (1,1) element of the first row of the
controller gain irrelevant. Therefore, we try to recover the behavior of the nominal plant based
upon the optimal selection of only 2 elements of the output feedback gain, namely elements
(1,2) and (1,3). In Tables 3-4, we give the same results as before for the present case. Note
that only the cases of wy < 10 are included, since for wy > 10 no significant changes were

observed in the results. This is not surprising, since even from the results provided in Tables

3-4, we see that the parameters of interest did not change significantly even when we increased
wy from 0.01 to 10.

Comparing with the results of the previous subsection, with only actuator loss, we see that
the sensor loss, in addition to the actuator loss, affects the robustness of the closed-loop system.
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Nominal system
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Figure 1: Nominal system: state trajectories for the closed-loop system.

Impaired system after losing 2nd actuator
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Figure 2: Actuator loss: state trajectories for the impaired closed-loop system.
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model eigenvalues gain K
(first row)
nominal {=2.0,-0.5973, —1.50 + 2.00;5 } [-0.00031 4.77004 1.70458 |

imp (w2 = 0.01) || {—0.0773,—-0.5589, —1.4610 + 2.5497;} | [-0.00031 6.79669 4.31982]
imp (w2 = 1) {=0.0773, —0.5590, —1.4594 + 2.55275} | [-0.00031 6.80620 4.31707]
imp (w2 = 10) || {=0.0772, —0.5598, —1.4488 + 2.5762;} | [-0.00031 6.88535 4.29861]

Table 3: Actuator/sensor losses: eigenvalues and feedback gain for the original and the impaired
models.

impaired Ji Jy bound
model (reconfiguration term) | (robustness term) | (general)

wy = 0.01 5.7471 2.3202 0.0670
wy =1 5.7472 2.3200 0.0670
wy = 10 5.7525 2.3190 0.0670

Table 4: Actuator/sensor losses: different weight factors for the impaired model.

Impaired system after losing 2nd actuator/1st sensor
T T T T

1~ i
N x1= forward speed (solid line)
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\
\ x2= vertical speed (dotted line)
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\
\
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07\ N i /\ S
\ N _ -7 ToTm T T T
\ s
\ /
\ /
—0.5F // x3= pitch rate (dashed line) i
\ /
\ /
\ / x4= pitch angle (dashdot line)
\ /
—1F N _ 7 !
_1 -5 L L L L L L L L L
(o] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (secs)

Figure 3: Actuator/sensor losses: State trajectories for the impaired closed-loop system.
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example of | present | present | example of | present | present

Gao et al | algor. algor. Jiang algor. algor.
(1991) wy =1 |wy =0.1 (1994) we =1 | wy =0.1

| 3.8525 | 27038 | 24225 || 24627 | 0.6392 | 0.6392 |

Table 5: Comparing ||A + BKC — Ay — By K;Cy||r for literature examples.

Specifically, because of the (1,1) term of the output controller being obsolete, we can not affect
the location of the closed-loop poles. Therefore, unlike the actuator case, we can not remove
the pole at -0.0773, see Table 3, no matter how much we increase ws in the minimizing quantity.
Compare with the case of actuator loss, where we were able to enhance the robustness of the
closed-loop system, by assigning a large weight to the robustness term J,, which resulted in
removing the problematic pole from -0.0770 to -0.1779.

Comparing the reconfiguration terms .J; of Tables 2 and 4, we see that the loss of the first
sensor did not affect at all the reconfiguration aspect of our design. This can also be seen in
Fig. 3, where we give the state-responses of the impaired closed-loop system (for wy = 1) after
the loss of both the actuator and the sensor for the same initial vector as before. This plot is
quite similar to the one of Fig. 2, which shows that despite the loss of the sensor, in addition
to the actuator loss, our scheme was capable of recovering the dynamics of the original system.
This was not the case, however, when we considered the loss of the second sensor instead of
the first. In that case, we obtained J; = 37.3052 which is not even close to what we obtained
before.

Finally note that in Table 5, we compare the Frobenius norm of the difference between the
original and the impaired closed-loop transition matrices ||A + BKC — Ay — By K;Cy||r for
the controllers derived in the examples of [10] and [14] and the ones derived by the proposed
algorithm here for the cases of wy = 0.1 and wy = 1. It is obvious that the present algorithm,
in addition to maintaining closed-loop stability even for the output-feedback case, is more
successful in preserving the characteristics of the original system compared to the techniques
presented in the papers above.

Note that for all the simulations mentioned above, our algorithm proved to be quite fast.
The algorithm, written in MATLAB code, was terminated, that is the stopping criterion of
step (M3) for e = 0.01 was satisfied in just several iterations of the algorithm; this took less
than 10-15 seconds on a Sun SPARCStation 20.
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4 Conclusions

The problem of control reconfiguration due to operating condition changes or abrupt system
component failures has been studied here. An optimization algorithm has been presented that
provides an output feedback controller that not only stabilizes the new/impaired system but
also preserves much of the dynamics of the original /unfailed system. The design is such that the
closed-loop system is robust with respect to uncertainties/modelling errors in the state-space
model of the impaired system.

Although the interest here is in continuous-time systems, a similar approach can be ap-
plied to the discrete-time case, for which robust stability theorems for unstructured/structured
perturbations from the literature can readily be used in the place of theorem 2.1 used for con-
tinuous systems here. Results concerning eigenstructure assignment, [24], can be included in
our design so that additional restrictions/specifications can be introduced in the minimizing
quantity with respect to the eigenspace where the closed-loop eigenvectors are desired/needed
to vary. In that respect, the requirement of closeness to the original closed-loop system can be
specialized to the case where the closeness to the eigenstructure of the original system becomes
the main objective of the reconfiguration design.
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