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2. Notation 
1. Introduction 

Hybrid systems which are capable of exhibiting si- 
multaneously several kinds of dynamic behavior (e.g., 
continuous-time dynamics, discrete-time dynamics, 
jump phenomena, logic commands, and the like) in 
different parts of a system are of great current in- 
terest (see, e.g., [1]-[9]). Typical examples of such 
systems of varying degrees of complexity include com- 
puter disk drives [4], transmissions and stepper mo- 
tors [3], constrained robotic systems [2], intelligent 
vehicle/highway systems [8], sampled-data systems 
[lo]-[ll], switched systems [12]-[13], and many other 
types of systems (refer, e.g., to the references included 
in [ 5 ] ) .  Although some efforts have been made to 
provide a unified framework for describing such SYS- 

tems [9], most of the investigations in the literature 
focus on specific classes of hybrid systems. More to 
the point, at the present time, there does not appear 
to exist a satisfactory general model for hybrid dy- 
namical systems which is suitable for the qualitative 
analysis of such systems. 
In the present paper we first formulate a definition of 
hybrid dynamical system which covers a very large 
number of classes of hybrid systems and which is 
suitable for the qualitative analysis of such systems. 
Next, we present several specific examples of hybrid 
dynamical systems. In a companion paper [18] we de- 
velop a qualitative theory which is based on the model 
for hybrid dynamical systems developed herein. 
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Let R denote the set of real numbers and let R" de- 
note real n-space. If x E R", then xT = ( z l , . * * , ~ n )  
denotes the transpose of x. Let RnXm denote the set 
of n x m real matrices. If B = [bijlnxm E RnXm, then 
BT denotes the transpose of B. 
Let R+ denote the set of nonnegative real numbers, 
i.e., R+ = [O,+oo), and let N denote the set of 
nonnegative integers, i.e., N = (0, l , . . . ,}  . For any 
T E R+, [T] denotes the greatest integer less or equal 
to r .  Let X be a subset of R" and let Y bc a subset of 
Rm. We denote by C [ X ,  Y] the set of all1 continuous 
functions from X to Y ,  and we denote by Ck[X,Y] 
the set of all functions from X to Y which have con- 
tinuous derivatives up to and including order k. 
A set T is said to be fully ordered with the order "4" 
if for any tl,t2 E T and t l  # t2, either tl 4 t2, or 
t2 4 tl. We will let (TI p) be a metric space where T 
represents the set of elements of the metric space and 
p denotes the metric. 
We denote a mapping f of a set V into a set W by 
f : V -+ W and we denote the set of all mappings 
from V into W by {V + W } .  

3. Hybrid Systems 

We require the following notion of time space. 
Definition 1 (Time Space): A metric space (T, p) 
is called a time space if 
i) T is fully ordered with order "4'; 
ii) T has a minimal element tmin E T, i.e., for any 
t E T and t # tmin, it is true that tmin -< t; 
iii) for any tl,tz,t3 E T such that t i  4 it2 4 t3, it is 
true that 
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iv) T is unbounded from above, i.e., for any M > 0, 
there exists a t E T such that p(t,t,i,) > M .  0 

When p is clear from context, we will frequently write 
T in place of (T, p).  
We can now introduce the concept of motion defined 
on a time space (T, p). 

Definition 2 (Motion): Let ( X , d )  be a metric 
space and let A c X .  Let (T,p)  be a time space, 
and let TO C T.  For any fixed Q E Alto E To, 
we call a mapping p(-,a,to) : Ta,to -+ X a motion 
if p(to,a,to) = Q where Ta,to = { t  E T : t o  2 

0 

We are now in a position to define hybrid system. 
Definition 3.3 (Hybrid System): Let S be afam- 
ily of motions, i.e., 

t ,  p(t,to) < I )  and 1 > 0 is finite or infinite. 

where 

A = U(a,t,)EAxTo{Ta,to x +. 

The five-tuple {T, X ,  A, S, TO} is called a hybrid dy- 

In the existing literature, several variants for dynam- 
ical system definitions are considered (see, e.g., [14]- 
[17]). Typically, in these definitions time is either 
T = R+ or T = N ,  but not both simultaneously, 
To = T ,  and depending on the particular definition, 
various continuity requirements are imposed on the 
motions which comprise the dynamical system. It is 
important to note that these system definitions are 
not general enough to accommodate even the sim- 
plest types of hybrid systems, such as, for example, 
sampled-data systems of the type considered in the 
example below. In the vast literature on sampled- 
data systems, the analysis and/or synthesis usually 
proceeds by replacing the hybrid system by an equiva- 
lent system description which is valid only at discrete 
points in time. This may be followed by a separate 
investigation to determine what happens to the plant 
to be controlled between samples. 

namical system. 0 

4. Examples of Hybrid Dynamical Systems 

We now elaborate on the above concepts by consid- 
ering some specific examples of dynamical systems. 
Example 1 (Nonlinear sampled-data feedback 
control system) We consider systems described by 

equation of the form 

(1) i ( r )  = f ( z ( r ) )  + Bu(k),  r E [k, k + 1) { u(k + 1) = Cu(k)  + Dz(k)  

where z E R”, f E C1[Rn,Rn], f(0) = 0, u E R“, 
B E Rnxm, C E Rmxm, D E Rmxn, r E R+, and 
k E N. This system is a special case of the hybrid 
dynamical system specified in Definition 3. In the 
present case the time space is given by 

T e { ( r , k )  E R2 : r 2 O , k =  [ r ] } .  (2) 

This space T is equipped with a metric p which has 
the property that for any t l  = (TI,  ki) E T and t2 = 
(r2,IEz) E T ,  p(t1,tz) = 1.1 - 7 3 1 .  The set T is a fully 
ordered space in such a way that t l  4 t 2  if and only 
if rl < r2. It is easily verified that T defined in (a), 
along with the metric p given above, is a time space 
in the sense of Definition 1. The set TO is given by 
TO = {(k,k) E R2 : k E N } .  In Fig.1, we provide the 
“graph” for T .  
The motion p determined by system (1) are of the 
form 

P ( t )  = [+)* 1 .(VIT (3) 
where in (3)  t = ( r ,k)  E T ,  and the initial condi- 
tion Q E A and the initial time to E To have been 
suppressed. 
The system (1) may be viewed as an interconnection 
of two subsystems: a plant which is described by a 
system of first order ordinary differential equations, 
and as such, is defined on “continuous-time” , R+ , and 
a digital controller which is described by a system of 
first order ordinary difference equations, and as such, 
is defined on “dascrete-time”, N. The entire system 
(1) is then defined on T C R+ x N .  
In our considerations of the above sampled-data sys- 
tem, we did not include explicitly a description of the 
interface between the plant and the digital controller 
(a sample element) and between the digital controller 

0 

Example 2 (Motion control system) Several dif- 
ferent kinds of motion control systems are considered 
in [3]. These systems satisfy Definition 3 of hybrid 
dynamical system. In the following, we consider Ex- 
ample 4 of [3] for purpose of demonstration. 
The motion control system in Example 4 of [3] con- 
cerns an engine-drive system for an automobile with 

and the plant ( a sample and hold element ). 
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an automatic transmission. It is described by a sys- 
tem of equations of the form 

&1(r) = 2 2 ( 4  

&2(r) = [-.(x2(7-)) + 4.>1/[1 + Z(rP1)l (q p(r)  = 1 I 4bI+ 1) = f (z(bl) ,  21(r[p1), x2(r[p1)), 

where X I ,  x 2  E R" denote vehicle ground speed and 
engine rpm, respectively, U(.) E R" denotes the ex- 
ternal input as the throttle position, the .(-) term 
describes the decrease in the ability of the system 
to produce torque at high rpms, z E N represents 
the shift position of the transmission, and f : N x 
R" x Rn -+ N determines the shifting rule. The vari- 
able p E C1(R+,  R+) represents a special "clock" or 
"counter", where I E R+ in (4) depends implicitly on 
XI, x 2 ,  U, and z.  The notation rlpl denotes the most 
recent time at which p passes an integer, i.e., 

Notice that in the above definition, T[PJ is uniquely 
determined because 1 > 0. 
In the present example the abstract time space T is 
defined as 

T = ( ( r , r b ] ) E  R 2 : r > 0 , p = p ( r ) } .  

This space is equipped with a metric p such that 
for any t = ( T , T L ~ ] )  E T, t" = (i;,?b]) E T, we have 
p ( t , i )  = Ir - ? I .  Furthermore, T is fully ordered in 
such a way that t 4 if and only if r < i;. It is now 
easily verified that T is a time space in the sense of 
Definition 1. 
The motions determined by system (4) are of the form 

where t = (r ,  rb]) E T. cl 

Example 3 (Systems with Impulse Effects) 
There are numerous examples of evolutionary sys- 
tems which at certain instants of time are subjected 
to rapid changes. In the simulations of such processes 
it is frequently convenient and valid to neglect the 
durations of the rapid changes and to assume that 
the changes can be represented by state jumps. Ex- 
amples of such systems arise in mechanics (e.g., the 
behavior of a buffer subjected to a shock effect, the 
behavior of clock mechanisms, the change of veloc- 
ity of a rocket at the time of separation of a stage, 

and so forth), in radio engineering and communica- 
tion systems (where the generation of impulses of var- 
ious forms is common), in biological systems (where, 
e.g., sudden population changes due to external ef- 
fects occur frequently), in control theory (e.g., im- 
pulse control, robotics, etc), and the like. For addi- 
tional specific examples, refer to [19]. 
Appropriate mathematical models for processes of the 
type described above are so-called systems with im- 
pulse effects. The qualitative behavior of such sys- 
tems has been investigated extensively in the litera- 
ture (refer to [19] and the references cited in [19]). 
The class of systems with impulse effects under inves- 
tigation can be described by equations of the form 

(5) 
;it - f(z,t), t # rk { AX d x -  = I k ( Z ) ,  t = r k  ' 

where x E X c R" denotes the state, f E C[Rn x 
R 4 R"] satisfies a Lipschitz condition with respect 
to x which guarantees the existence and uniqueness 
of solutions of system ( 5 )  for given initial conditions, 
E = {r1,r2, . . .  : 7 1  < 72 < e..} C R" is an un- 
bounded discrete subset of R+ which denotes the 
set of times when jumps occur, and I k  Ei C[R", R"] 
denotes the incremental change of the state at the 
time r k .  It should be pointed out that in general 
E depends on a specific motion and that for differ- 
ent motions, the corresponding sets E = { T ~ , T Z ,  . . . : 
71 < 72 < . .} C R+ are in general diflferent. The 
function 4 :   to,^) 4 R" is said to be a solution 
of the system with impulse effects (5 )  if i) 4( t )  is 
left continuous on [ t o , o o )  for some t o  1, 0 ii) 4( t )  
is differentiable and s(t) = f ( t ,  4 ( t ) )  everywhere 
on ( t 0 , o o )  except on an unbounded diiscrete sub- 
set E = {q ,rz , . . .  : 7 1  < 72 < .-.} R+; and 
iii) for any t = Tk E E ,  $(t+) = 4( t )  + I k ( + ( t ) ) ,  
where +( t+)  denotes the right limit of $ at t ,  i.e., 
4(t+) = lim,.-,tt 4(r) .  
If for system (5) we assume further that f(0,t) = 0 
for all t E R+, and Ik (0 )  = 0 for all k E: N ,  then it 
is clear that 2 = 0 is an equilibrium. For the qual- 
itative behavior of this equilibrium, some Lyapunov 
type theorems have been established in [ 191. 
System (5) also satisfies Definition 3 for hybrid sys- 
tems. The state space is X c R", and the time space 
for system (5) is R+. In fact, system (5) also sat- 
isfies the general definitions for dynamical systems 
(see, e.g., [14], [15]). However the state of system (5) 
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is discontinuous. In [20], we will regard system (5) 
as a hybrid system and then, we apply our stability 
results for hybrid systems to system (5). This enables 
us to obtain better qualitative results for the stability 
of the equlibrium t = 0 of system (5). 

Example 4 (Switched Systems) 
Switched systems, which constitute a special class of 
hybrid dynamical systems, include multimodal sys- 
tems or systems with variable structure. In the 
present example we concentrate on switched systems 
which are combinations of finitely many continuous 
dynamical systems. These systems can be described 
by equations of the form 

i ( t ) = . f j ( z ( t ) ) ,  i E { l , . * . , K )  (6) 

where z ( t >  E R” denotes the state of the system, fj E 
C(R”, Rn) is Lipschitz continuous, and the i’s are 
picked in such a way that there are finite swiichings 
tn finite time. 
The qualitative behavior of systems (6) has been an- 
alyzed in [12] by utilizing “multiple Lyapunov func- 
tions”. A special class of system (6), where fi(z) = 
A i t  for some constant matrices Ai (i = 1, . . , K), has 
been studied in detail in [13]. It is well known that 
even if we have individual candidate Lyapunov func- 
tions for each system fj which ensure certain desired 
stability properties, we still need to impose restric- 
tions on the switchings to guarantee the desired sta- 
bility property for the entire switched system. This 
is demonstrated, e.g., in [12]. 
We can view the switched systems (6) as special hy- 
brid dynamical systems which satisfy our definition. 
The state space is X C R” and the time space is R+. 
In [20], we are able to obtain a stability criterion for 
system (6) which is less conservative than the results 
in [13] and [12]. 

5. Qualitative Analysis of Hybrid Dynamical 
Systems 

In a companion paper [l8], we develop a qualitative 
theory for the class of hybrid dynamical systems de- 
veloped herein. Items which we address in [18] include 
Lyapunov stability and asymptotic stability of an in- 
variant set (such as, e.g., an equilibrium). Specifi- 
cally, we establish sufficient conditions and also nec- 
essary conditions (i.e., converse theorems) for stabil- 

ity and asymptotic stability of an invariant set. Fur- 
thermore, to demonstrate the applicability of these 
results, we conduct in [18] a stability analysis of the 
hybrid dynamical system described in Example 1 of 
the present paper. 
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