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1. Introduction 

There has been recent interest in the use of broadband 
communication networks to implement distributed 
control systems (DCS). Such systems use a high speed 
local area network (LAN) to connect smooth dynam- 
ical systems (plants) with their computer controllers. 
DCS have appeared with increasing frequency in pro- 
cess control and power plant supervision[l]. There 
has been recent interest in packet switched networks 
using asynchronous trnsfer mode (ATM) [2] [3] as the 
communication backbone in DCS [4]. 

ATM-based control systems can be modeled by both 
discrete event and continuous-state (smooth) dynam- 
ical systems. These systems can therefore be viewed 
as Hybrid Control Systems (HCS) [5] [6] [7] [8]. In 
this case, the networked plants and controllers form 
the continuous-state part of the HCS. The arrival and 
service processes within the network’s ATM switches 
can be modeled as discrete event processes. An im- 
portant issue in the design of such networks involves 
the synthesis of a scheduling protocol [9] to minimize 
the transport lag (delay) between network nodes. 
The scheduling protocol can be treated as a discrete 
event supervisor controlling the order in which pack- 
ets (cells) are transmitted by the ATM switch. 

This paper proposes using on-line observations to 
synthesize optimal scheduling protocols. In section 
2, an ATM-based real-time system is recast in the 
hybrid system modeling framework proposed in [6]. 
In section 3, we summarize our prior work [lo] [Ill 
[12] in the on-line identification of optimal DES con- 
trollers. 

switch is patterned after [2] and [3]. The inputs to 
the switch are from plant sensors or are feedback sig- 
nals generated by the control processors. The outputs 
of the ATM switch are connected to plant actuators 
and the input buffer of the control processors. The 
switch is seen to consist of four parts; the controllers 
on the input and output ports, the control unit, and 
the switching fabric. When a cell arrives at  an in- 
put controller, it is assigned to an output port. The 
switching fabric routes the cell from the input port to 
the appropriate output buffer. An output schedu1in.g 
protocol is used to decide the order in which buffered 
outputs are transmitted. The scheduling protocol is 
implemented by a control unit. This control unit is 
also responsible for other high level functions inchid- 
ing connection setup, network maintenance and mon- 
itoring. 

In the design of real-time control systems, an impor- 
tant specification that the communication network 
needs to satisfy are “hard” time delay constraints [14] 
[15] [16]. The delay between a sensor reading and the 
controller’s response needs to be constrained so that 
the overall system preserves stability. Delays in the 
system can arise from a variety of sources. Delays 
due to node processing and propagation delays are 
usually constant and are not affected by the ATM 
switch. Within the ATM switch, delays occur in the 
input/output controllers as well as propagation de- 
lays within the switching fabric. These delays will 
also be constant provided the switching fabric is non- 
blocking. Another delay occurs in the output buffer. 
This output delay is caused by the transmission order 
of the queued cells. This type of delay is directly de- 
pendent on the choice of output scheduling protocol 
used by the ATM switch. 

Examples of well-known scheduling protocols include 
round-robin (RR) and first come first served (FCFS) 
protocols. These protocols are essentially static 
mechanisms with relatively low computational over- 
head. In certain cases, however, it may be desirable 
to use a dynamic scheduling protocol [9]. Dynamic 

2. ATM-based Real-Time Control 

This paper considers a real-time system using a single 
ATM switch to interconnect sensors, actuators, and 
processors. The following description of an ATM- 
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scheduling decides on the order of served cells based 
on the current state of the switch’s output queues. 
Such dynamic scheduling protocols can take into ac- 
count dependencies between various nodes in such a 
way that can reduce the bandwidth required over ex- 
isting static protocols. The implementation of such 
dynamic schemes, however, requires that the dynam- 
ics of the arrival processes be known. Such knowl- 
edge, however, is rarely available on an a priori ba- 
sis. This paper proposes using on-line observations of 
the arrival processes to identify “optimal” scheduling 
protocols. 

To achieve this objective, we first recast the system 
as a hybrid dynamical s y s t em [S] [7] [8] [5] .  Hybrid 
dynamical systems consist of discrete event systems 
interfaced to smooth dynamical systems. One re- 
cently studied class of hybrid systems uses a log- 
ical DES controller to supervise the behaviour of 
continuous-state (CSS) plants [6]. The above ATM- 
network possesses this hybrid nature. The plant and 
processes connected to the ATM network are mod- 
eled as continuous-state systems. The arrival and 
transmission of cells in the ATM switch mark a dis- 
crete event process which arises when controller/plant 
measurements are packetized at discrete time in- 
stants. From the ATM switch’s viewpoint, the plants 
and controllers therefore appear to be a logical DES 
which we refer to collectively as the DES plant. The 
output scheduling protocol controls the traffic flow 
through the switch and can be interpreted as the 
DES controller found in the HCS framework of [6]. 
This HCS framework is an extension of the supervi- 
sory Ramadge-Wonham supervisory control formal- 
ism [17]. 

In order to describe the language generated by the 
DES plant, we first need to examine the switch’s pro- 
cessing of cells in more detail. There are a variety of 
traffic types handled in ATM networks. The highest 
priority (class A) traffic is suitable for real-time con- 
trol. It is a connection oriented traffic mode which 
guarantees the quality of service (QoS) (i.e., delay 
time) for a message. The ATM switch’s scheduling 
protocol services the output buffers at  regular time- 
slots. The transmission of a cell from the switch 
therefore marks a controlled event which occurs in 
a synchronized manner. The arrival of cells, however, 
can be generated from a variety of different sources. 
A cell arrival therefore marks an event which occurs 
in an asynchronous manner. The ATM switch has no 
control over the arrival process (except during con- 
nection setup) so arrivals can be treated as uncontrol- 
lable events. We therefore see that the cell arrivals 
to and transmission from the switch represent uncon- 
trollable and controllable logical events, respectively. 

In particular, let’s denote the arrival of a cell from 
the ith source (plant or controller) destined for node 
j in the network as aij. Arrival events are generated 
whenever the source packetizes its output and sends it 
to the ATM switch. Let A be a fixed output quantiza- 
tion interval. Let y be the source’s output and define 
a quantization operator so that &A(Y) = Ly/AJ. It 
will be assumed that a packet is generated whenever 
&A(Y) changes. Denote the servicing of a cell arriv- 
ing from the ith source in the j t h  output buffer as 
cz3. These symbols form the event alphabet E. The 
controllable and uncontrollable events in this alpha- 
bet are denoted as C, and E,, respectively. Since 
the servicing events occur at regular intervals, they 
can be used to mark time between batches of cell ar- 
rivals. We will assume that only a finite number, k, 
of uncontrollable events can occur between any two 
consecutive service events. The DES plant language, 
L(G), is therefore contained within the following reg- 
ular expression (CtE,)*. 

In our case, the objective of output scheduling is to 
minimize the transmission delay of cells. These delay 
specifications are “hard” since violation may result in 
system instability. In order to use logical DES control 
theory to determine an “optimal” scheduling proto- 
col, this delay requirement must be formulated as a 
regular specification language, K. We are interested 
in determining “optimal” scheduling protocols. The 
protocol will serve as the DES controller of the DES 
plant. Assume that the protocol is a regular language 
L ( S )  where S is the minimal deterministic finite au- 
tomaton (DFA). We introduce the usual notion of a 
controlled finite automaton GJS generating a regular 
langauge L(G1S). The objective is to determine S so 
that &(GIs) is the largest controllable sublanguage 
of the specification E. We have therefore framed the 
HCS controller synthesis as a logical DES controller 
synthesis problem. 

3. On-line Controller Synthesis 

This section summarizes prior work in the use of in- 
ductive learning of DES controllers. In the follow- 
ing discussion it is assumed that the plant language, 
L(G), and the control specification, E, are regular 
prefix-closed languages over an event alphabet, E. It 
is assumed that C is partitioned into controllable, E,, 
and uncontrollable, E,, events. The plant is assumed 
to be completely observable. It is assumed that the 
specification language and the uncontrolled events are 
initially known. The plant language, L(G), however, 
is assumed to be unknown. We also assume that 
we may not know a minimal deterministic finite au- 
tomaton (DFA) accepting the specification language. 
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Under the preceding assumptions, we are interested 
in identifying the DFA for the supremal controllable 
sublanguage, K t  of the specification. 

In the ATM-based real-time system discussed above, 
it will be extremely difficult to characterize the ar- 
rival process in an a priori manner. This means that 
the DES plant language, L(G), will be initially un- 
known. Recall, however, that controllability can only 
be assessed once we know L(G). Therefore if we are 
to compute K t  we will need to use on-line observa- 
tions of L(G) in determining K t .  In this section, we 
discuss how Angluin’s L*-procedure [13] may be used 
to accomplish this. 

S 

SE-S 

It is well known that computation of the supremal 
controllable sublanguage can be performed in an it- 
erative manner using the following formula [18] 

KO = R (1) 
Ki+i = Ki - [(L(G) - Ki)/Cu]C* (2) 

This iteration produces a sequence of languages by re- 
moving uncontrollable plant behaviours in L(G) - Ki 
from the original specification. Note that each, Ki, 
can be computed from the preceding one once we have 
observed an uncontrollable plant behaviour which is 
“illegal” with respect to Ki-1. The preceding equa- 
tions therefore provide a means of including observed 
plant behaviours into the original specification. This 
iteration therefore serves as the basis for our on-line 
identification methods. 

E A  
& 1 1  

aA 1 0 
a 1 1  

aB 1 1 
aa 1 1 

aAB 1 0 
aAb 1 1 
B 1 1  
A 1 0  

If we already have a minimal DFA consistent with 
K ,  then the construction of K t  can be done in a 
straightforward manner. Let MO be the minimal au- 
tomaton accepting i?. Assume that this automaton 
has state space Qo. If we use the specification lan- 
guage automaton MO to control the plant, then we 
may generate an illegal behaviour if the specification 
is uncontrollable. Let s be such an uncontrollable (il- 
legal) string. We therefore know that s E L(G) but 
s 4 R. The only way this illegal behaviour could 
have occured was through an uncontrollable transi- 
tion out of a legal state in MO. If we then remove 
uncontrollable suffixes from s, until we obtain a legal 
behaviour t, then the state q( t )  associated with this 
behaviour can be removed from MO. The resulting 
machine, M I ,  will accept a language, K1, which is 
smaller than but which contains I<+. By repeating 
this operation using K I  as E,  we obtain a sequence 
of machines Mt whose number of states form a mono- 
tone decreasing sequence. The resulting iteration is 
shown below 

- 

Since MO had a finite number of states, this means 
that the iteration terminates after a finite number of 
updates yielding a DFA accepting KT. 

The above method can be used once the automaton 
for is known. Many times, however, the specifi- 
cation may be given as a regular expression or an 
informal specification. In these situations the L*- 
algorithm can be used to help compute the DES con- 
troller. 

L*-Algorithm 

The L*-procedure constructs approximations to 
boolean functionals through the use of a member- 
ship oracle and (sometimes) an equivalence oracle. A 
membership oracle is a function declaring whether or 
not a given string lies in the target language. An 
equivalence oracle is a function that declares whether 
or not an hypothesized DFA accepts the target lan- 
guage. In the event that the conjectured DFA is not 
accepting, then the oracle returns a counterexample 
illustrating the difference between the two sets. The 
L*-algorithm is important because it has been shown 
to converge after a finite number of updates which is 
polynomial in the size of the minimal DFA and the 
length of the observed counterexamples [13]. 

The L*-procedure constructs an observation table 
representing the regular language to be learned. The 
table is represented by the ordered triple ( S , E , T ) ,  
where S and E are prefix closed and suffix closed lan- 
guages, respectively. T : ( S  U SC)E -+ (0 , l )  is a 
partial function agreeing with the declarations of a 
membership oracle over strings in ( S  U SC)E. The 
observation table can be represented in tabular form 
as shown below. The rows are labeled with strings in 
S and SE  - S .  The columns are labeled with strings 
in E. An entry in the table is indexed by a string 
s E S U SC and e E E. The value of 1 indicates that 
the string se is accepted by the membership oracle 
and 0 indicates otherwise. 

The preceding table is useful in identifying the Nerode 
equivalence classes of the minimal DFA consistent 
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with the table entries. Define a function row : 
(S U SE) -+ (0, l}lEl. This function returns a sin- 
gle row of the above table. The rows of the table 
mark right invariant equivalence classes of a regular 
langua,ge consistent with the table provided the ta- 
ble is complete [13]. Any observation table can be 
completed through an algorithmic procedure using 
calls to  a membership oracle [13]. The table shown 
above is complete. Define an equivalence relation RL 
such that sRLt if and only if row(s) = row(t). Be- 
cause the table is complete, RL,is right invariant and 
can be used by the MyHill-Nerode characterization to 
construct a DFA accepting a regular language consis- 
tent with the table entries. In particular, it has been 
shown that the constructed DFA will be minimal in 
the sense that any other automaton consistent with 
the table will have more states. The label for the 
states are the distinct rows of the observation table. 
The DFA for the above table is shown below. 

a 0 
Figure 1: Automaton constructed by L*-algorithm 

A flowchart for the procedure is shown in figure 
2. Given an initial set S; and E; (ususally cho- 
sen to be null), the procedure evaluates the obser- 
vation table, (S;,E;,T). It then completes the ta- 
ble to obtain (SO, E0,T) and constructs an acceptor 
MO = k f (So ,  Eo, 2"). This acceptor is then given to 
the equivalence oracle as an hypothesized acceptor 
for the target language R. If the DFA is not equiv- 
alent, then the oracle returns a counterexample illus- 
trating where the DFA and the target language dis- 
agree. This counterexample is used to construct an- 
other completed observation table (SI, El ,  T). From 
this table another acceptor is constructed using the 
Nerode equivalence classes as states and the process 
repeated until the equivalence query returns no more 
counter-examples. 

DES Controller Synthesis through the L* 
Procedure 

In [lo] and [12], the L*-procedure was modified to 
determine optimal logical DES controllers. The mod- 
ification involved using a time-varying membership 
oracle. The time-varying membership oracle condi- 
tions the oracle's declarations on a list of observed 
uncontrollable behaviours. If we let C be a collection 

inilializatiim: 

counterexample 
Equivalence Query generated 

equivalent 

Figure 2: High Level Flowchart of L*-procedure 

of observed uncontrollably illegal plant behaviours, 
then the language formed by discarding uncontrol- 
lable suffixes of strings in C can be denoted m 

&(C) = { s E L(G) such that st E C and t E E:} 

The set C is a set of example plant behaviours that 
can be used to update a partially specified member- 
ship oracle. This suggests that we can construct C 
in an iterative manner. In particular, let Ci+l = 
Ci U {si+l} where si+l is an observed uncontrollable 
(illegal) behaviour. We therefore have a growing set 
of observed behaviours that can be used to  modify 
the membership oracle. In particular, we introduce a 
membership oracle represented by the following par- 
tial function 

( 5 )  

0 if Ti-I(s) = 0 or s E &(Ci+l)C* 
1 otherwise 

(6) 
The function Ti(s) can then be used to evaluate and 
complete a given observation table in exactly the 
same way as done in the traditional L*-procedure. 
An immediate consequence of the preceding discus- 
sion is that the language consistent with Ti will be 
7is - D,(C,)C*. 

Provided the set C is finite, then this iteration ter- 
minates after a finite number of iterations. A simple 
example of this procedure is shown below. In this 
example we consider an event alphabet C = { E ,  a, b }  
where b is uncontrollable. The unknown plant lan- 
guage is a*ba* and the specification is akba* where 
k 5 2. The initial membership oracle is the prefix- 
closed specificatin R. An initial observation table is 
constructed by taking S = E and E = E .  The result- 
ing complete observation table is shown below. The 
acceptor extracted from this table is shown in figure 
3. 
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E 

E 1  

a 1  
b 1  

The acceptor for the observation table is then used 
as a controller and generates controllable and un- 
controllable plant behaviours. The procedure stops 
searching when an illegal (w.r.t I() plant behaviour 
is identified by the membership oracle. The simu- 
lation program written to implement this procedure 
produced the illegal accepted plant behaviour aaab. 
This behaviour is used to update the observation ta- 
ble as shown below. The acceptor extracted from this 
table is shown in figure 3. 

As before, the acceptor is used to control the plant. 
In this case no illegal behaviours were uncovered. We 
then begin using the original specification to generate 
controllable plant behaviours and see if there are any 
accepted legal behaviours. In this case an unaccepted 
legal plant behaviour baaa is discovered and added to 
the observation table. The resulting completed table 
is shown below. The acceptor extracted from this ta- 
ble is shown in figure 3. This is the suprema1 control- 
lable sublanguage, K t  , for the specification language. 

aaa 
0 
0 
1 
0 
1 
1 
1 
1 
1 
1 

- 

__ 

4. Summary 

In the synthesis framework discussed in [6], an ex- 
tension of the Ramadge-Wonham formalism can be 
used to synthesize controllers for HCS. This synthesis, 

h 

Figure 3: sequence of acceptors generated by modified 
L*-procedure 

however, requires a prior extraction of the DES plant 
language. The analytical determination of such a 
DES plant language may not be possible. The ATM- 
based real-time control system examined by this pa- 
per is an example of such a system. In this case, a 
characterization of packet arrival processes will gener- 
ally be impossible to determine beforehand. In order, 
therefore, to synthesize the controller, we will need 
to do an on-line synthesis. This paper has suggested 
that a modified verion of Angluin’s L*-learning pro- 
cedure may provide the framework for such an on-line 
synthesis method. 
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