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Abstract

A necessary condition for obtaining stable
solutions to the minimal design problem is pre-
sented. The condition is shown to be sufficient
for insuring the stability of solutions which
need not be minimal. The results are based on
the recently developed notion of minimal bases of
rational vector spaces, and an example is employed
to illustrate and clarify the procedure.

The minimal design problem (MDP) can be
stated as follows: Given a pxm rational transfer
matrix, T1(s) of rank p(< m)T and a pxq rational
transfer matrix, To(s), find a (mxq) proper
rational transfer matrix, T(s), of minimal dynamic
order* (if such a transfer matrix exists) such
that

Tl(s) T(s) = T2(S) (1)

It might be noted that the MDP represents
an extension (to include "minimal order" inmput
dynamic compensation) of the well known exact
model matching problem, which has been the sub-
ject of numerous investigations. To resolve the
MDP, we require some preliminary definitions. 1In
particular, suppose that K(s) is a gxr polynomial.
matrix with q>r. K(s) is called column proper[1]
if and only if the qxr comstant matrix, Tg ins)],
consisting of the coefficients of the highest de-
gree polynomials in each column of K(s) has full
rank r.  If K(s) is column proper and the degree of
each (j-th) column is no greater than the degree of
all subsequent columns; i.e. if 3.3[K(s)] ¢
3c,j+l [K(s)] for j € r-1, K(s) wiil be called
degree ordered as well. Formey has recently shown[3]
that every rational vector space, defined by.a
basis of rational column vectors, has a minimal
basis which, in view of [1], corresponds to the
colums of a column proper polynomial matrix whose
TOWS are r.r.p.

We now note that K(s) can be partitioned as

+If p 2 m, the MDP either has no solution or a
unique solution (which can easily be found).

$If R(s)P‘lss) is a relatively right prime
(r.r.p.)(1][2] factorization of T(s), the degree
of the determinant of P(s), 3[|P(s)|], is equal to

the dynamic order o minimal state-space
mal?ization ‘of T(s){l&a. s pa
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(s)

ris
K(s) and Kq-r(s) denotes the final g-r rows.

Kq-l‘ Y
that K., (or Kq—r ) does not necessarily equal
rc[Kr(s¥] (or TolKy_p(s)]). With this notation
in mind, we can now resolve the MDP,

Let K(s) = E:;

degree ordered, minimal basis for'ker[T;(s)-T(s)].
The MDP has a solution, T(s), if and only if

where K.(s) denotes the first r rows of

Io[K(s)] will now be written as » noting

Theorem I: be any (m+q)x(m+q-p)

p[qul =q (2)

Furthermore, if (1) holds, the minimal dynamic
order of an appropriate T(s) is equal to the sum
of the column degrees of the first (ordered from
left to right) q columms of K(s) for which the
corresponding (numbered) columns of are
linearly independent. These q columns of K(s),
gg:; , represent a proper, minimal order solution,

(s) = R(s)P~1(s), to (1).

Since Theorem I is not original, except for
the conciseness of its statement, a formal proof
will not be given here and the interested reader
is referred to Ea]. It should be noted that Wang
and Davison[#J[3] yere first to resolve the MDP
using a rather innovative, but belabored, approach.
Forney{3] 1ater employed the notion of minimal
bases of rational vector spaces in order to faci-
litate the proof. More recently, Sainl®] has
presented a more direct procedure for obtaining
minimal bases which facilitates certain of the
computational steps outlined by Formey.

Although we will not formally establish
Theorem I here, we will illustrate its employment

by example. In particular, if
10 s242s42
Tl(s) = 5243542 and T2(s) = 12; i.e.
s-1 0
s+2

if we wish to find a proper '"right inverse" of
T1(s), then we can first determine a degree ordered,
minimal basis of ker[T;(s) -Tp(s)]. Using an
algorithm outlined in [7], we find that
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1 0 0
0 s+2 0

K(s) = |00 _ %3892 [K“(S)]
1 0 5242542 Kq(s)
1l s-1 [¢]

is such a basis. Since T [K(s)] =

1 0 ¢

01 0 K

0 0 1]|-= K‘Y s ptqu] = q = 2, which es-
10 1 £

1 10

tablishes the existence of a proper right inverse.
Since columns 1 and 2 of K(s) are the first two
(=q) for which the corresponding columns of Kay
are linearly independent, the minimal dynamic
order of a proper right inverse is 1 = 3,3[K(s)}+
3c2lK(s); i.e. T(s) = R(s)P-I(s) =

10 10 |t 1 o

0 s+2 1l s-1 = _ 5t2 s+2

0 0 s-1 s-1
0o o

is a minimal (first) order proper solution to
(1), the MDP. We finally note that this solu-
tion, while of minimal order, is also unstable
and furthermore, that no stable minimal (first)
order solutions exist, an observation which
motivates the remaining results.

In particular, we now note that little
has been said in the control literature regarding
the ability or inability to achiewve a stable
solution to (1) when (2) holds. The purpose of
this paper will be to partially resolve this
question by presenting a necessary and sufficient
condition for obtaining stable solutions to (1).
The result given only partially resolves the MDP
stability question, however, since minimality
of the dynamic order of stable solutions cannot
always be assumed. It might be noted at this
point that the question of obtaining both a
stable and a minimal dynamic order solution to
(1) is analogous to the difficult and still un-
solved question of stabilizing a linear system via
constant gain output feedback.

Before we consider the stability question,
some preliminary observations and definitions
are required. In particular, if T)(s) and Ty(s)
are factored as the relatively.left prime
(r,1.p)[1][2] products P1o-1(s)Qy(s) and pgq'l(s)
Qa(s) respectively, the zeéros of the determinant,
Ap(s); of an* est .common . ri ivi
(g.c.r.d.)[l L Grp(s), of P1g(s) and Pyq(s) will
be called the common poles of Tj(s) and To(s). It
now follows that

-1 . S DS | S
Paq(s)P 5(s) = Pyo(s)Gpp(s)GLp(s)Py o “(s)=P, "(s)P,(s)

- - (3)
for some r.l.p. pair {P;(s),P2(s)}. The zeros of
the determinant, AQ(si of any greatest common left
divisor (g.c.l.d.) (1 (2], Grqo(s), of Pa(s)Qy(s)

and P;(s)Qy(s) will be called the common zeros of

T1(s) and Tp(s) . In light of these definitions,
we can now state and constructively establish
the main result of this paper.

Theorem II: Let Ar(s) represent the determinant
of my g.c.1.d., Gy(s), of (the columms of)
GLq-1(s) Py(s)Qi(s). The poles of any solution,
T(s), to (1) will equal the zeros of Ay(s)ip(s).
Furthermore, if (2) holds, a proper solution
can be found which arbitrarily assigns the zeros
of Ap(s).

Proof: For notational convenience, let _M(s) =
T¥n(s) -M.(s)] 2 Grq~1(s)[Pa(s)Q1(s) -P1(s)Qa(s)].
As formally established in [7], we now simply
observe that when a proper T(s) does exist, one
can append to M(s) = [Mn(s) -Mq(s)l= th'i(s)

[Py(s)Qi(s) -P1(s)Qy(s)] (m-p) additional rows,
[a(s) 0], such that E“(s)] = Ba1(s)ap(s) with
(s)

Ap arbitrary, except for degree, and

-1
[‘m‘s)] [“q“)] = (s), )
a(s) 0

a proper solution to (1).

It is of interest to note that neither the
common zeros nor the common poles of T;(s) and
To(s) affect T(s) since they appear, and can
therefore be 'cancelled', on both sides of (1).
The fixed poles of T(s), which are now defined
as the zeros of Ap(s), do correspond to all of
the zeros of Tj(s) which gre not common to Ty(s),
as well as the zeros of |Py(s)|, which represent
the poles of Tz(s) which are not common to Ty(s).
We thus note that in order to insure stable solu-
tions to the MDP, To(s) should be chosen to be
stable and to have in common with T;(s) any and
all unstable zeros of T3(s). This observation,
which is intuitively. obvious in the scalar case,
therefore has an analogous interpretation in the
more general, multivariable case.
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