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Abstract 

'A necessary  condition for ob ta in ing   s t ab le  
so lu t ions  t o  t h e  minimal  design  problem is pre- 
sented. The condition is shown t o  be s u f f i c i e n t  
for i n s u r i n g   t h e   s t a b i l i t y   o f   s o l u t i o n s  which 
need  not be m i n i m a l .  The results are based  on 
the  recent ly   developed  not ion of minimal bases of 
r a t i o n a l   v e c t o r  spaces, and  an  example is employed 
t o  illustrate and c l a r i fy   t he   p rocedure .  

Thc m i n i m a l  design  problem (HDP) can be 
s t a t e d  as fofiows: G i v e n  a pxm rational transfer 
ma t r ix ,   T l ( s )  of rank p(< m)T and a pxq r a t i o n a l  
transfer latrix, T2(s),  find a (rorq) proper 
rational transfer matrix, T(s) , of  minimal dynamic 
o r d d  (if such a transfer ma t r ix   ex i s t s )   such  
that 

T1(s) T ( s )  = T2(s)   (1)  
It might be no ted   t ha t   t he  MDP represents  

an extension ( to  include "minimal order" input 
dynamic compensation) of t h e  well known exact 
model matching problem,  which  has  been  the sub- 
ject o f  numerous inves t iga t ions .  To r e s o l v e   t h e  
MDP , we r e q u i r e  s~me pre l iminary   def in i t ions .   In  
particular, suppose  that  K(s) is a qxr  polynomial. 
matrix  with  q>r.   K(s) is ca l l ed  column ro er[1] 
if and  only if the  qxr   constant  r & e s ) ]  , 
cons i s t ing  of t h e   c o e f f i c i e n t s  of the   h ighes t   de-  
gree polyncmials i n   e a c h  column of K(s)  has full 
rank r. If K(s) is column proper  and  the  degree  of 
each (j-fi) column is no greater than  the  degree of 
a l l  subsequent  columns; i.e. i f  a,*[K(s)] c 
a c , j + l  [K(s)] for  j E e, K(s) will be c a l l e d  
degree  ordered as well. Forney  has  recently  shovn[3] 
that e v e r y   r a t i o n a l  vector space, defined  by.a 
basis of r a t i o n a l  column vec tors ,   has  a minimal 

columns of a column proper  polynomial  matrix whose 
rows are r.r.p.  

- basis which, in view of [l], corresponds t o  t h e  

We now no te   t ha t   K(s )  can be pa r t i t i oned  as 

tIf p 3 m, t h e  HDP e i t h e r  has no so lu t ion  or a 
unique  solution  (which cah e a s i l y  be found). 

*If K(s1P-l s) is a r e l a t i v e l y   r i g h t  prime 
(r.r.p.)[l 5 [2] f ac to r i za t ion   o f  T(s), t h e  degree 

of the determinant of P(s ) ,   a [ IP ( s ) ) ] ,  is equal t o  
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k!::sj where K , ( s )  denotes   the first r rows of 

K(s)  and Kq-r(s) denotes   the 

rc[K(s)] will now be  wri t ten as 

t h a t  K, (or \-r 1 does  not   necessar i ly   equal  
rc[Kr(s~l (or rcckq-r(s)l) .  With t h i s   n o t a t i o n  
i n  mind, we can now re so lve   t he  MDP. 

Theorem I:  Let K(s) = be  any (m+q)x(m+q-p) 
degree  ordered,  minimal basis for'ker[Tl(s)-T2(s)]. 
The MDP has a so lu t ion ,   T ( s ) ,  i f  and  only i f  

Furthermore , i f  ( 1  j ' ho lds ,   t he  minimal  dynamic 
order of an   appropr ia te   T(s )  is equal t o  t h e  sum 
of t h e  column degrees of t h e  first (ordered from 
l e f t  t o  r i g h t )  q  columns of K(s) for  which t h e  
corresponding(numbered) coluslns of KSv m e  
l inearly  independent.   These  q columns of K(s) , 

kr;i R(s )  , represent  a proper,   minimal  order  solution, 

R( s )P - l ( s ) ,   t o   (1 ) .  

Proof: Since Theorem I is not   o r ig ina l ,   except  for 
the  conciseness  of its statement,  a formal  proof 
will not  be given  here   and  the  interested  reader  
is r e f e r r e d  t o  1. It should  be  noted that Wang 
and Dav i~on[~] [  53 were first t o   r e s o l v e   t h e  MDP 
using a rather  innovative,   but  belabored,  approach. 
ForneyC31 later employed the   no t ion  of minimal 
bases   o f   r a t iona l   vec to r   spaces   i n   o rde r   t o  faci- 
l i ta te  the   p roof .  More recently,   SainCgl  has 
presented a more d i rec t   p rocedure   for   ob ta in ing  
minimal bases which facilitates c e r t a i n  of t h e  
computat ional   s teps   out l ined by Forney. 

Although we will not   formal ly   es tab l i sh  
Theorem I here ,  we w i l l  i l l u s t r a t e  its employment 
by example.   In  particular,  i f  

i f  we wish t o  f i n d  a proper   "r ight   inverse"  of 
T l ( s ) ,  then we can first determine a degree  ordered, 
minimal basis of   ker [Tl (s )  -T?(s ) ] .  Using an 
a lgor i thm  out l ined   in  C71, we f i n d   t h a t  
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f l  0 0 1  

L1 s-1 o J 
is such a basis.  Since  rcCK(s)] = 

9 

1 1 OJ 
t ab l i shes   t he   ex i s t ence  of a proper   r igh t   inverse .  
Since columns 1 and  2  of K(s) are t h e  first two 
( = q )   f o r  which the  corresponding columns of Ksr 
are l inearly  independent,   the  minimal dynamic 
order   of  a proper   r ight   inverse  is 1 = adCK(s)]+ 
a c 2 [ ~ ( s ) ;  i.e. T(S) = R(s )P-~( s )  = 

s-1 s-1 

is a  minimal ( f i r s t )   o r d e r   p r o p e r   s o l u t i o n   t o  
( l ) ,   t h e  UDP. We f i n a l l y   n o t e   t h a t   t h i s   s o l u -  
t ion,   whi le   of  rginimal order ,  is also unstable 
and f u r t h e m r e ,   t h a t  no s t a b l e  minimal ( f i r s t )  
o rde r   so lu t ions   ex i s t ,  an  observation which 
motivates  the  remaining results. 

In  particular, we now no te   t ha t  l i t t l e  
has been s a i d   i n   t h e   c o n t r o l  literature regarding 
t h e   a b i l i t y  or i n a b i l i t y   t o   a c h i e v e  a stable 
so lu t ion  to  ( 1 )  when (2)  holds.  The purpose  of 
t h i s   pape r  will be t o   p a r t i a l l y   r e s o l v e   t h i s  
question by presenting a necessary  and  suff ic ient  
condi t ion   for   ob ta in ing  stable so lu t ions  t o  (1) .  
The r e su l t   g iven   on ly   pa r t i a l ly   r e so lves   t he  UDP 
s t a b i l i t y   q u e s t i o n ,  however,  since  minimality 
of   the  dynamic order   o f   s tab le   so lu t ions  cannot 
always be assumed. It might be noted a t  t h i s  
point that   the   quest ion  of   obtaining  both a 
stable and a minimal dynamic o r d e r   s o l u t i o n   t o  
(1 )   i s . ana logous   t o   t he   d i f f i cu l t  and still un- 
solved  quest ion  of   s tabi l iz ing  a   l inear   system  via  
constant  gain  output  feedback. 

Before  ne  consider   the  s tabi l i ty   quest ion,  
some preliminary  observations and d e f i n i t i o n s  
are requi red .   In   par t icu lar ,  i f  T l ( s )  and T2(s) 
are fac tored  as t h e   r e l a t i v e l y . l e f t  prime 
(r . l .p)[1][21  products   Plc-L(s)Ql(s)   and  P,~- l (s)  
Q ~ ( s )   r e s p e c t i v e l y ,   t h e  zeros of  the  determinant,  

( 8 . c . r . d . ~ c 1 ~ C $ e ~ ~ ( s ) ,   o f  Plp(::tandd  P2:Fs) will 
be ca l l ed   t he  common poles   of  Tl(s) and T2(-s). It 
now fo l lows   tha t  

P~Q(S)P- ' (S)  1Q = 24 (S)GRp(S)GRp(S)PIQ -1  -1 (s)=P, -1 (s)P2(S) - 
f o r  some r .1 .p .   pair   {Pl(s) ,P2(s)}.  The zeros  of 
the  determinant,  A (s ofany   g rea t e  €t 
divisor  (1z.c.l.d..)~Cljf2], GLQ(s), o ? P E ; Z ( $  
and P1(s)Q2(s) w i l l  be ca l l ed   t he  collpMln zeros of 

Ap(s), Of a n   e s t . c o m o n . r i   i v i s  

( 3 )  

T l ( 8 1  and T~(s) . In l i g h t  of t h e m  dafinitione, 
we can mu state and   cons t ruc t ive ly   es tab l i sh  
t h e  mkin result of  this paper. 
Them 11: Let AT(s) represent  the determinant 
of my g.c,l.d., %(SI, of   ( the  coluuns o f )  
Gw-l(s)   P2(s)Ql(s) .  The poles   of   any  solut ion,  
T(s),  to  (1 )  will equal t h e  2-8 O f  AT(S)AD(S). 
Furthermore , i f  (2,) holds, a proper so lu t ion  
Can be found which a r b i t r a r i l y  assign8 the zeros 
of AT)(s). 

A,, a rb i t r a ry ,   excep t  €or de&e , and 

a p rope r   so lu t ion   t o   (1 ) .  

It is of intezwt t o  no te  that n e i t h e r   t h e  
co~~lon aercsnor  the colllllw poles of T l ( s )  and 
T2(s) affect T(s) since they  appear,  and can 
therefore  be % a n c e l l e d 8 f ,  on both   s ides  of (1).  
The f ixed  poles of  T(g),  which are now defined 
as the   zeros   o f  AT(s), do correspond to all of 
the   zeros   o f  T l ( s )  which not common t o  T*(s), 
as well as the   zeros   o f  I P2(s) I , which represent  
t he   po le s  of  P2(s) which are n o t   c a m o n   t o   T l ( s ) .  
We thus   no te   t ha t  i n  order t o  insure stable solu- 
t i o n s   t o   t h e  MDP, T2(s)  should be chosen t o  be 
stable and t o  have i n  cQmmon with TI($) any and 
a l l  unstable   zeros-of   Tl(S) .   This   observat ion,  
which I s  i n tu i t i ve iy .   obv ious   i n   t he  scalar case, 
therefore   has   an  analogous  interpretat ion i n  t h e  
more genera l ,  multivariable case. 
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