I.K. Konstantopoulos and P.J. Antsaklis, "Eigenstructure Assignment in Reconfigurable Control
Systems,” Technical Report of the ISIS Group, I1SIS-96-001, Dept. of Electrical Engr, Univ of Notre
Dame, January 1996.

EIGENSTRUCTURE ASSIGNMENT IN RECONFIGURABLE
CONTROL SYSTEMS

Technical Report of the ISIS Group
at the University of Notre Dame
I51S-96-001
January, 1996

Ioannis K. Konstantopoulos and Panos J. Antsaklis
Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN 46556

email: antsakli@saturn.ee.nd.edu

Interdisciplinary Studies of Intelligent Systems



I.K. Konstantopoulos and P.J. Antsaklis, "Eigenstructure Assignment in Reconfigurable Control
Systems,” Technical Report of the ISIS Group, I1SIS-96-001, Dept. of Electrical Engr, Univ of Notre
Dame, January 1996.

EIGENSTRUCTURE ASSIGNMENT IN
RECONFIGURABLE CONTROL SYSTEMS

loannis K. Konstantopoulos and Panos J. Antsaklis
Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN 46556, U.S.A.

email: antsakli@saturn.ee.nd.edu

Abstract

An optimization approach to control reconfiguration, based on eigenstructure assign-
ment, for control systems with output feedback is presented. The emphasis is on the
recovery of the nominal closed-loop performance, which is determined by the closed-loop
eigenvalues and eigenvectors. The proposed scheme preserves the max(r, ¢) most domi-
nant eigenvalues of the nominal closed-loop system and determines their associated closed-
loop eigenvectors as close to the corresponding eigenvectors of the nominal closed-loop
system as possible. Additionally, the stability of the remaining closed-loop eigenvalues is
guaranteed by the satisfaction of an appropriate Lyapunov equation. The overall design
is robust with respect to uncertainties in the state-space matrices of the reconfigured
system. The cases of state feedback and dymanic output feedback are also studied. The
approach is applied to two aircraft control examples, where it is shown to not only pre-
serve the shape of the transient response but recover much of the characteristics of the
steady-state response as well.

1 Introduction

Eigenstructure assignment is a powerful technique that has developed considerably over the
last fifteen years or so. This technique is concerned with the placing of eigenvalues and their
associated eigenvectors, via feedback control laws, to meet closed-loop design specifications.
Specifically, the method alllows the designer to directly satisfy damping, settling time and mode
decoupling specifications by appropriately selecting the closed-loop eigenvalues and eigenvec-
tors. There are certain degrees of freedom associated with the use of state and output feedback;
see for instance [2], [12], [24], [25]. Several approaches have been presented exercising these
degrees of freedom to design closed-loop feedback systems using eigenstructure assignment.
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The most popular approach to eigenstructure assignment has appeared in [1] where both
cases of state and output feedback are studied and a design technique for eigenstructure assign-
ment with output feedback is presented. This methodology has subsequently been used in [18],
where eigenstructure assignment and command generator tracking are applied to the design
of yaw pointing and lateral translation control laws for a flight propulsion control coupling
(FPCC) vehicle. In [19], the above methodology is extended to the case of dynamic output
compensators.

Eigenstructure assignment with constrained output feedback is also studied in [1], where it
is shown that by suppressing certain entries of the output feedback matrix gain to zero, the
designer reduces controller complexity and increases reliability. In [4], a method is proposed
for choosing a priori which gains should be set to zero based on the sensitivities of the eigen-
values to changes in the feedback gains. In [20], an eigenstructure assignment design scheme
for an aircraft and an helicopter are presented where both performance (in terms of mode
decoupling) and eigenvalue sensitivity are considered. In [22], the results of [4] are extended to
include eigenvector sensitivity to the feedback gains as well, and a systematic design method is
presented for eigenstructure assignment with gain suppression by a priori selecting to eliminate
(suppress to zero) those entries in the output feedback matrix that have the smallest impact
on both the eigenvalues and eigenvectors.

In [17], [21], eigenstructure assignment results are extended to consider stability robustness
in the frequency domain, which is measured by the minimum of the smallest singular value of
the return difference matrix at the plant (aircraft) inputs. A time domain sufficient condition
for stability robustness of linear time-invariant systems subject to structured state-space un-
certainty is used in [27] to obtain a robust eigenstructure design method; this method yields a
robust pitch pointing and vertical translation controller for an AFTI-16 aircraft. Optimization
techniques based on eigenstructure assignment that give the desired closed-loop eigenvalues in
a specified stability range or the closed-loop eigenvectors/eigenvalues close to the desired ones
are presented in [13], [14] and [26] respectively. Finally note that a list of papers dealing with
eigenstructure assignment can be found in [26] and the review paper of [23].

The interest here is in control reconfiguration and the main objective is the design of a feed-
back law that preserves the eigenstructure characteristics describing the nominal closed-loop
system. In other words, we assume changes in the operating conditions or system component
failures occurring in the nominal system whose performance is determined by the nominal
closed-loop eigenvalues/eigenvectors. The new control law needs to be designed such that as
much of this nominal performance is recovered as possible; this can be done by recovering as
much of the nominal eigenstructure information as possible. Similar to the approach presented
in [7], [9], the overall design needs to be robust with respect to the matrices of the impaired
state-space model. Note that the design scheme here is different from the design scheme of [7],
[9], where no information regarding the eigenstructure of the nominal closed-loop system was
taken into account.

In section 2, results on eigenstructure assignment are discussed; the characterization of
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the closed-loop eigenvectors and the computation of the output feedback matrix that achieves
a specific desired eigenstructure (closed-loop eigenvalues and eigenvectors) are presented. In
section 3, the control reconfiguration problem is formulated and the algorithmic approach that
determines the new output feedback control law based on the eigenstructure assignment results
is presented. The cases of state feedback and dynamic output feedback are also discussed. In
section 4, the proposed methodology is applied to two aircraft control systems, and in section
5, concluding remarks are included.

2 Eigenstructure assignment using output feedback

We consider the linear multivariable continuous system with the state-space description

#(t) = Az(t)+ Bul(t) (1)
y(t) = Calt) (2)

where z € R" is the state vector, u € R" the input vector, and y € R? the output vector;
Ae R B e RV C € RY™ are the system matrices. The above system is assumed to be
both controllable and observable, that is

rank [B AB --- A"'B] = n (3)
rank [ CT ATCT ... (AT)™'CT] = n (4)

We also assume that the input and output matrices are of full rank, that is rank(B) = r and
rank(C) = q. Also, as is usually the case in aircraft problems, it is assumed that » < ¢ < n.
We consider static output feedback of the form

u(t) = K y(t) = KC x(t) (5)

The freedom that characterizes the placing of the closed-loop poles using output feedback
has extensively been studied; see for instance [2], [25]. For the additional freedom that charac-
terizes the selection of the associated closed-loop eigenvectors, the following theorem has been
proven in [25]

Theorem 2.1 Consider the controllable and observable system of (1)-(2) with the output feed-
back law of (5) and the assumption that the matrices B and C are of full rank. Then, there
exists a matrizc K € R™*? such that
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(1) maz(r, q) closed-loop eigenvalues can be assigned;

(11) maz(r, q) eigenvectors can be partially assigned with min(r, q) entries in each vector
arbitrarily chosen.

Note that the above theorem also applies to the general case where the closed-loop eigen-
values can be repeated or in complex-conjugate pairs.

It should be stated that eigenvalue assignment for the state feedback case has thoroughly
been investigated as well; see for instance [12], [24]. For controllable systems with the state-
feedback law u(t) = Kz(t), it has been shown in [24] that (i) all n closed-loop eigenvalues
and a maximum of nr eigenvector entries can be arbitrarily assigned, and (ii) no more than
r entries of any one eigenvector can be chosen arbitrarily. In other words, a maximum of
r entries in each of the n closed-loop eigenvectors can be arbitrarily chosen. It is apparent
that state-feedback compared to output feedback offers a greater flexibility with regard to
eigenstructure assignment. Note, however, that from a practical point of view, state-feedback
is quite undesirable, since for large systems it requires measuring and feeding back all states of
the system. This can be quite expensive, not to mention the fact that several states are usually
not available for measurement. This is the reason we usually prefer feeding back only the
measured states, which makes output feedback considerably attractive. Note that an extensive
discussion of eigenstructure assignment with respect to both state and output feedback can be
found in [1].

2.1 Eigenvector characterization

In view of (1), (2), (5), the closed-loop system is given by

i(t) = (A+ BKC)z(t) (6)
y(t) = Ca(1) (7)

For any pair of desired closed-loop eigenvalues and their associated closed-loop eigenvectors
{(Ai, vi),2 =1, .., q}, the following equations hold

v, = ()\ifn—A)_lBKC’Ui (9)

Note that the above inverse (A; 1, — A)™! exists under the assumption that the closed-loop
eigenvalues do not belong to the set of the open-loop eigenvalues, that is the set of eigenvalues
of A. Defining the (r x 1) vector
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m,; = KC’UZ' (10)

we rewrite (9) as

v, = ()\an — A)_lei (11)

From the above equation, we easily conclude that all achievable eigenvectors v; that corre-
spond to the desired closed-loop eigenvalue A; must lie in the subspace spanned by the columns
of (\;I,— A)~'B. Therefore, if the desired eigenvectors {v;,7 = 1, .., ¢} belong to the subspaces
spanned by the columns of {(\; I, — A)"'B,: = 1, .., q} respectively, then they are achievable.
In other words, there exists an output feedback matrix K such that the desired eigenvectors
can be achieved exactly. The computation of the output feedback matrix K is outlined next.

Since B has been assumed to be of full rank, the dimension of the above subspace is equal to
rank(B) = r, that is the number of independent input variables. Finally note that the subspace
for each desired closed-loop eigenvalue depends upon the matrices A, B and the closed-loop
eigenvalue.

2.2 Computation of output feedback matrix

We assume that the set of desired closed-loop eigenvalues/eigenvectors is specified and given by
the set of pairs {(A;,v:), 2 = 1,..,¢q}. Note that each desired eigenvector v; needs to belong to the
corresponding subspace spanned by the columns of ();1, — A)~' B as discussed above. We need
to compute the output feedback gain that achieves the above set of eigenvalues/eigenvectors.

We consider the state-trasformation defined by
z(t) =T &(t) (12)

and select the state-transformation matrix

T=(B S) (13)

where S € (") is any matrix such that rank(T) = n. Note that the selection of S is
not unique. This change of state-variables transforms the system of (1)-(2) to
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where

A = TAT (16)
B - T_lB - (OTL]ET‘T‘) (17)
C = CT (18)

where O,,_,, is defined as an [(n — ) X r] zero matrix. The structure of the new input
matrix B is quite convenient, as it will be shown next, and was the reason that motivated the
above state-transformation. With (12), (16)-(18), the closed-loop system of (6) is transformed
to

2(t) = (A+ BKC) #(t) (19)

As we see, the state-transformation does not affect the output feedback matrix. This is also
true for the eigenvalues of the transformed system, which remain the same with the eigenvalues
of the original system. Therefore, for the transformed system (121, B, é’) we have the same set
of desired eigenvalues {5\Z =X, 2 =1,..,q} , whereas the corresponding desired eigenvectors
are given by

¥ =T oy, i=1,..,q (20)

Similar to (8), each of the above pairs of desired eigenvalues/eigenvectors of the transformed
system satisfies

(A+ BKC) % = Ny (21)
(M, —A) 3, = BKC % (22)
Define
. A, A
A = (~11 ~11) 23
Ay g (23)

B = ({) (24)

where A, € Rrxr A,y € Rn-r)x(n-r) ﬁ c RxL, [, € R In view of (17) and the

above definitions, we rewrite (22) as
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z:o“
N—

Aijrffill —Alz _ ]E;) _( I, ) = ( -
( " Az-fn_r—Az) (zi =\o... ) K¢ (1 (25)

Considering the first » rows of the above equation, we obtain
(NI — Any _ A1) ({) _ K& ({) (26)

or equivalently

Nfi— Aiv; = KO,

(A +KC)o; = Nf; (27)

where A; = (12111 Ay, ) contains the first r rows of A. Considering (27) for the g pairs (A;,
9;) and defining

e <
|
[
-
=3
[\*)
=]

Q
"
—
N
o
"

we finally obtain

(A, + KC)V =F (30)

The above equation can be used to solve for the output feedback matrix K. Before we do so,
we need to consider matrices V, F. If all desired eigenvalues are real, then the corresponding
desired eigenvectors {7;,7 = 1, .., g} and therefore matrices V, F are real as well. This is not the
case, however, when there is at least one pair of complex-conjugate eigenvalues/eigenvectors.
In that case, both V, F' are complex matrices and the following procedure has to be followed
to transform them to real matrices.

Without loss of generality, we assume that the set of desired eigenvalues consists of a complex
conjugate pair, that is A\; = A5 € C, and (g — 2) real eigenvalues, that is {\;, € R,7 = 3, .., ¢}.
Then, v, = 03, where v* denotes the complex conjugate of a vector v. Defining

b = R4 50! (31)
A fi f1R‘|'Jf1[ (32)



I.K. Konstantopoulos and P.J. Antsaklis, "Eigenstructure Assignment in Reconfigurable Control
Systems,” Technical Report of the ISIS Group, I1SIS-96-001, Dept. of Electrical Engr, Univ of Notre
Dame, January 1996.

where v® and v’ denote the real and imaginary part of a vector v respectively. We rewrite

(30) as

(A + KC) (B +j8] of—jof - %)=
(FR4+5fF fR—Gf - Mfa) (33)

Multiplying both sides of (33) with the nonsingular (g X ¢) matrix

05 —05_7 | Ol,q_g
R I R (34
Oq—2 1 Oq—2 1 | -['rq—2
we finally have
(A KC) (5f of - 5) = (f& fL - Afy) (35)
(A, + KC)V = F (36)
where obviously
Vo= (5 6 ) (37)
Fo= (flR flI e Agfy) (38)

The generalization to the case of more complex conjugate pairs is straightforward. Note
that V, F are real matrices. Therefore, the output feedback matrix can be computed from (30)
and (36) for the real and complex eigenvalues cases respectively by

K =
K =

— A, V) (CV)! (39)
— A V) (CV)7! (40)

'T_j> 'T_jl

In order to compute K from the relations above, it is imperative that CV = CV has full
rank. Therefore, we need to have desired eigenvectors such that the invertibility of the above
matrices is guaranteed. On the other hand, as mentioned in [1], C'V will be singular, when
measurements taken (indicated by C) have little or no effect on the achievable eigenvectors

8
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(indicated by V). Therefore, the possible singularity of CV gives a good indication of how
unreasonable the desired eigenvectors may be with respect to the outputs measured and fed

back.

Note that the output feedback matrix K computed above guarantees that g closed-loop
eigenvalues of (19) will be located at {)\;,72 = 1, .., g}, as specified, and that their corresponding
eigenvectors are the ones specified by the desired set {9;,7 = 1,..,q}. However, no control can
be exercised upon the remaining (n — q) eigenvalues which can be unstable. As mentioned
before, for the computational procedure above it has been assumed that the system is fully
controllable and that none of the desired closed-loop eigenvalues belongs to the set of open-loop
eigenvalues. A procedure that relaxes both assumptions is presented in [11].

3 Reconfiguration and eigenstructure assignment

3.1 Problem formulation

For a linear multivariable system with the state-space description of (1)-(2) an output feedback
control gain (5) has been selected such that the closed-loop eigenvalues are located at {);,7 =
1,..,n} and the shape of the response is determined by the set of their associated eigenvectors
{vi,1 = 1,..,n}. Note that the eigenstructure specified above characterizes the behavior of
the closed-loop system since the eigenvalues determine the stability of the system and the
eigenvectors the contribution of each system mode to the system (state or output) response.

Suppose that a system component (e.g. actuator or sensor) failure occurs in the system or
that the operating conditions change. The state-space model of (1), (2) can no longer model
the dymanics of the system, which is now described by

#(t) = Ay x(t)+ By u(t) (41)
y(t) = Cyal(t) (42)

where the state-space matrices of the impaired system are of the same dimensions with the
matrices of the nominal state-space model. Our objective is to design fast a new stabilizing
output feedback control law

u(t) = Ky y(t) = KsCy 2(2) (43)

such that the new closed-loop system A; + ByK;(Cs can capture as much of the eigen-
structure information characterizing the nominal closed-loop system A + BKC as possible. In
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other words, the new output feedback matrix has to be such that the shape of the response
of the impaired system closely approximates the shape of the response of the nominal system.
Therefore, in comparison to [7], [9], here we are really interested in the system performance,
which is determined by the closed-loop eigenvalues/eigenvectors.

Without loss of generality, we assume that the nominal closed-loop eigenvalues are arranged
in decreasing order with respect to their real parts, that is real(A;) > real(Xy) > -+ > real(An).
As discussed in the previous section, with output feedback we can only choose g closed-loop
eigenvalues and partially assign the same number of closed-loop eigenvectors. Therefore, in
order to maintain the performance of the nominal closed-loop system, we should determine
the new control law (43) such that the set of the impaired closed-loop eigenvalues includes
the ¢ most dominant eigenvalues of the nominal closed-loop system, {};,z = 1,..,q9}. On
the other hand, the eigenvectors of the impaired system that correspond to the above iden-
tical eigenvalues have to be as close to the corresponding eigenvalues of the nominal system,
{vi,1 = 1,..,q} as possible. Therefore, if we denote by {()\f,vif),i = 1,..,n} the closed-loop
eigenvalues/eigenvectors for the impaired system, the above objectives are translated into

M = MAj + BsK;Cs) = X = \(A+ BKC), v=1,..q (44)

min 3 b - wil? ()
Sl o]

Similar to (13), we consider the state-transformation matrix Ty = ( By Sy ), where Sy is
selected such that rank(7y) = n. In the new state-coordinates, the impaired system is described
by the matrices (Af, Bf, éf), which are computed similar to (16)-(18). Note again the special
structure of the input matrix Bf, as given in (17). The desired closed-loop eigenvectors, {v;,7 =
1, .., q} together with the actual closed-loop eigenvectors of the impaired system, {vf,i =1,..,q9}
need also to be transformed to the new state-coordinates. Define

’171' = Tf_l’l)i (46)
ol = T7'! (47)

1

as the desired and actual closed-loop eigenvectors for the transformed impaired system
respectively. From now on, we continue our discussion considering the impaired system in the
new state-coordinates specified above. Therefore, the objective of (45) for the transformed
impaired system is given by

min (3 5/ - 3" ()
St e

10
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As it has already been discussed, all achievable eigenvectors 17{ that correspond to the
closed-loop eigenvalue )\{ must lie in the subspace spanned by the columns of ()\f[n — Af)"'By.
Define

;= (M I, — A;) 7' By (49)

All achievable closed-loop eigenvectors of the impaired system that correspond to the eigen-
value A/ should be of the form

’l;f = 1:[1,[.1,Z (50)

1

where p; is an (r X 1) vector. Note that u; is a real vector if )\{ is a real eigenvalue or a
complex vector if A is a complex eigenvalue. In view of (50), the objective of (48) is rewritten
as

min |3 s 5 1)

=1

and the minimizing quantity is defined as

, q
leTr[

(s — 5" (s — ) (52)

2=1

where v denotes the complex conjugate transpose of a vector v. Each pair of closed-loop
eigenvalues/eigenvectors should satisfy (27), which can equivalently be written as

(A + KfCr — N L) 8 = 0
= (A + K;Cp — ML) Mps = 0 (53)
where fl} contains the first r rows of flf and

L,= (1 Ornr ) (54)

We see that the vectors {u;,7 = 1, .., ¢} that minimize (52) also need to satisfy the eigen-
structure condition of (53). Therefore, we need to include this condition for the g eigenvectors
of interest in the minimizing quantity, which becomes

11
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Mm

~ q ~ ~ ~
{ Mops — 97 (Mips — ) + > M; [(A} + K;C — M1, HM}} (55)
'L:l

=1

where {M;,7» = 1,..,q} are (1 x r) Lagrange multiplier vectors, which are real if they
correspond to a real eigenvalue or complex if they correspond to a complex eigenvalue. So
far, we have concentrated on the g closed-loop eigenvalues that we wish to preserve with the
procedure outlined above. Although we have no control upon the remaining (n — q) eigenvalues
of the closed-loop system, we need to ascertain that they remain stable. Therefore, the output
feedback gain needs to be such that the closed-loop system Af + BfoCf is stable In other
words, it suffices to satisfy the Lyapunov equation

(ATP+PA; +Q =0 (56)

where

Aj = As + BsK;Cy (57)

As discussed in [7], [9], we also need to safeguard against possible uncertainties in the state-
space matrices of the impaired system. It has been shown that this can be done by including
the term Tr(P?) in the minimizing quantity. Therefore, the overall minimizing quantity is
finally given by

q ~ ~ A A
J = Tr {Z(HM — o) (Mips — ) + Lo [ATP + PA; + Q)

q ~ ~ ~
b3 (R} + Gy~ 3 1) ] + P (58)

=1

where L; € R™™ is another Lagrange multiplier matrix. To summarize the approach
outlined above, we should state that with the minimization of the quantity in (58) above we
seek an output feedback matrix Ky such that

e The g most dominant eigenvalues of the nominal closed-loop system belong to the set
of the eigenvalues of the impaired closed-loop system Ay + By K¢Cjy.

o The eigenvectors of the impaired system that correspond to the above set of closed-loop
eigenvalues are as close to the corresponding eigenvalues of the nominal system as possible.

e The remaining (n — gq) closed-loop eigenvalues are stable.

12
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e Possible uncertainties in the state-space matrices of the impaired system are taken care
of by maximizing the stability margin allowed to the closed-loop system.

3.2 Algorithmic approach

Without loss of generality, we assume that the set of desired eigenvalues, that is the set of g
most dominant eigenvalues of the nominal closed-loop system consists of a complex conjugate
pair, that is A/ = ()\g)* € C, and (g — 2) real eigenvalues, that is {)\Zf € R,2=3,..,q9}. Then,
17{ = (175)*. The generalization to the case of more complex conjugate pairs of eigenvalues is
straightforward.

We need to compute the partial derivatives of the minimizing quantity of (58) with respect
to all the matrix parameters entailed. These parameters are the Lagrange multiplier vectors
{M;,7 =1, ..,q}, the Lagrange multiplier matrix L;, the positive definite matrix P, the output
feedback matrix Ky, and the vectors {u;,7 = 1, .., g} that specify the closed-loop eigenvectors.
Using the properties of [3] we have

8J . . = T :
SiL = O (A} + Ky Cp— N 1) T ] i=1,.,q (59)
6 J AT A
5L = A, = ATP+PA;+Q (60)
oJ i orT T AT
op = Ap = ALl + LTAT +2P (61)
8J - ST R AT LN =T 3
o = Ok, = BIPL.CT+ BIPL{CT + 5 MIufTITCF (62)
f =1
8J I - -7 A
g =l =2 T T, pp — 2 T8 9, + OF (AL + K0 — ML) MT (63)
o0J\"
_ <_) (64)
6/1,2
8J -7 = - -7
oo =0u = 2 07 0w — 2 07 % + 07 (A} + K;Cp — M 1,)T MT,
Wi

The derivation of (63) and the equivalence of (64) are shown in Remark 3.1. To minimize
(58) we use a version of the BFGS optimization method of conjugate directions. Note that
there are significant changes compared to similar algorithms used in [6], [7], [8], [9], [10]. This
is due to the structure of the present problem, since now we update the vectors {u;,2 =1, .., q}
instead of the output feedback matrix. On the other hand, the existence of complex eigen-
values/eigenvectors imposes certain modifications to the algorithmic scheme. The proposed
algorithm is presented next.

13
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Initialization Step Let € > 0 be the termination scalar. Choose an initial set of

vectors {u;,2 = 1,.., ¢} such that the output feedback matrix K} that results from the ¢

vector equations of (53) stabilizes (A4, By, C;), that is flf stable. Let

O;=(pt w3 - Hy) (66)
be a [r x (g—1)] matrix consisting of the above vectors. Note that 3 = (u])* is not included

in this matrix. Define the (2r x 1) vector

p= ([ n)® [man)" e n]® e - fWen)” [#KT:UY)T (67)

and form the (rg x 1) vector

I
13

Y1 =x1= : (68)
Hy
consisting of the elements of the vectors chosen above. Also, choose an initial [(rq) x (rq)]

symmetric positive definite matrix Dy, let k. = 7 = 1, and go to the Main Step.

Main Step

S1.  Substitute the vector columns of @;; in the gradients of (59)-(62), set them to zero,
that is {Axy, =0,2=1,..,q}, Az, =0, Ap =0, AK;' = 0, and solve for K;, P, Ly,

{M;,7 =1, ..,q} respectively, in that specific order.

S2.  Substitute these matrix parameters in (63), (65) and compute

A= (s5,1) .2 - &) (69)

and {A{wi =3,..,q}.

S3.  Form the (2r x 1) vector

14
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8, = (o) mo) Eel ge) - B e

and define

Vi) =| *

If ||VJ(¢;)]] < €, STOP. The output feedback matrix that minimizes (58) is K;.
Otherwise, go to M4.

S4. If 7 > 1, update the positive definite matrix D; as follows:

Pi1D)_y 9 1Dj1g;1.  [Dj1951P5 4 +piq) 1 Djal
Dj = Dj—l + T [1 + T - T
Pj—14;1 P;_1495-1 P;_1495-1
where
Pji-1 = Aj—ldj—l = ¢j - 7/Jj—1
g1 = vj(¢j) - VJ(¢J'—1)
S5. Define

dj = —D;VJ(t;)

(72)

(75)

and let A, be an optimal solution to the problem of minimizing J(;+ Ad;) subject to A > 0.

Let

A
7
M3
Vi =Y;+Nd; =]
-
Mg

where 7™ is an (2r x 1) vector and {ul™",7 = 3,..,q} are (r x 1) vectors. Defining

15
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u{i(l, 1) ﬂ{i(l, 1) ‘|'J:M{E(2; 1)
i+ pi(2,1) B(3,1) +5p7 (4,1)
uit(r,1) g2 —1,1) + it (2r,1)
we obtain
O = (pi™ gttt (78)

S6. If j < (rq), replace j by j + 1, and repeat the Main Step.
Otherwise, if j = (rq), then let ¥1 = Xk.41 = Y(rq)+1, replace k. by (k. 4 1), let 7 =1, and

repeat the Main Step. 0o

Several issues need to be discussed here.

Remark 3.1 The third term of (63), that is {I:If (121} + Kféf — )\{[r,n) MlT} can readily
be derived from the term {Ml {(A} + Kfé'f — )\{[r,n) I:IZ,UJZ” of the minimizing quantity (58).

Therefore, we only show how the remaining terms {2 TI¥ T, uy—2 ITIX #,} of (63) are computed.
It is apparent that it suffices to consider the quantity

) — pf T 5
+ (02) 70y + py T3 Tapp — (32)F Mapss — ufﬂff;z}
) My — pg 76
2)" 0 + Mle[me - (52)Hﬁ2/$2 - Mfﬂgﬁz} (79)

Y
|
—
=
=
~—
~
|
=
|
—
0¢]
o
~—

7

We compute
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6‘];2 T Tx ST ~% | TTHT P H
6[[1,1 = Hl Hl,ug — Hl U + H2 Hg,l.l,g — H2 Vo
= 2T, — 2 15, (82)
since
O - ()T - (2T )
M{o; = (I1;)70; = [0, (84)

In view of (82) and the discussion above, (63) follows easily. Similar to (82), we have

a J12 o _
L Lo+ (O T2\
- (s -2 1) = () (85
Therefore, the equivalence of (64) is proven. O

Remark 3.2 The intermediate steps of (51) need to be further exploited. First, the
vector equations {Ap;, = 0,2 = 1,..,q} of (59) are written in the compact form of (36), from
which we compute the output feedback matrix K]Jc similar to (40). Then, Ay, =0, Ap =0 are
solved for P, L, = LT respectively. Note that the final matrix equation AK;- = 0 of (62) can

be rewritten as

py 07
o CHN
~2 BIPL,C] = (MT (M) MI - M) | wll | CF
T‘~T
Ha Il

2t
—2 (/;ngl) 5
= ((MDR (M) Mf - MT) ug}Tg c¥

q

T‘~ T
frg g

17
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where obviously
Moo= (M) (M) M M) (87)

2 (i 1177
=2 (pi )
nm = p3 113 o (88)

T'~ T
g 11

are (r x q) and (g X g) real matrices respecticely. The above equation is solved for M to
yield

M= -2 BIPL,C} 11" (89)

Remark 3.3 The line search in (S5) is restricted to A’s such that the resulting output
feedback matrix from the g vector equations of (53) makes Ay stable.

Remark 3.4 We know that, in general, the desired eigenvectors {3;,72 = 1, .., ¢} will not
belong to the corresponding subspaces spanned by the columns of {I:L,z = 1,..,q}. Further-
more, some of these desired eigenvectors may be such that we can not find any eigenvectors
I:Ii,ui very close to them. In cases like that, we should use a more practical criterion compared to
the stopping criterion of (53). Specifically, we need to monitor J and terminate the algorithm
once we do not observe any significant changes in the value of J.

Remark 3.5 As it has already been discussed, the output feedback matrix does not
change under state-transformation. Therefore, the optimal K; that will be derived by the
above algorithmic approach is the optimal gain for the impaired system in the original state-
coordinates as well. However, the optimal vectors {17{,2' =1, ..,q} determined by the algorithm
need to be transformed back to the original state-coordinates using (47).

3.3 Interesting cases

The case g < r In the analysis above, it has been assumed that the number of outputs g
is greater than the number of inputs ». When g < r, we need to consider left eigenvectors
instead of the right eigenvectors of (8). Then, all the results presented above for the r < ¢
case still hold but now for the dual of the system (A, B,C), that is for the system (Ap =
AT Bp = CT,Cp = BT). In that respect, similar to (11), it can been shown, [16], that all

18
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achievable left eigenvectors ¢; that correspond to the desired closed-loop eigenvalue A; must lie
to the subspace spanned by the columns of ()\;I, — AT)"!CT. The controller that assigns the
r closed-loop eigenvalues {);,72 = 1,..,7} and their associated left eigenvectors {¢;,2 = 1,..,7}
can be found from the r vector equations

(AT + CTKTBT) t; = M\ ¢ (90)
The duality mentioned above should now be straightforward.

The state-feedback case The procedure outlined above for the output feedback case
can easily be extended to the case of state-feedback. In that case, we consider C = I,,. The
number of outputs is identical to the number of system states ¢ = n, which implies that all
the eigenvalues of the nominal closed-loop system are preserved and all the nominal closed-

loop eigenvectors can be approximated by the proposed optimization scheme. Therefore, the
minimizing quantity of (58) for the control reconfiguration problem now can be written as

J = Tr {Z(ﬁim — 5" (Wi — %) + Ly {A?P + PAs+ Q}

=1

=1

and the algorithmic approach of the previous subsection readily applies here as well. It
is apparent that under state feedback the stability of the closed-loop system is guaranteed.
However, the inclusion of the Lyapunov equation in (91) above is essential, since it is needed
for the minimization of the robustness term Tr(P?).

The dynamic compensator case The static output feedback case studied above can
be extended to the dynamic output feedback case as well. Consider the dynamic output
compensator described by

where the compensator state vector z.(t) is of dimension I, with 0 < ! < (n — gq), and
A. e ®% B, e %1 C, e R, D, € £7*9. The closed-loop system is described by

q(t) = Aa za(t)+ Ba ualt) (94)
ya(t) = Cazalt) (95)
ua(t) = Ka ya(t) (96)
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where

_ a:(t)) _ ( A On,l) _ ( B On,l)
mcl(t) = (:Iic(t) ) Ag = Ol,n Ol,l ) By = Ol,'r I (97)
— C O‘Ll _ DC Cc
CCl N (Ol,n Il ) ’ Kd N (Bc Ac) (98)

The closed-loop system has (n+1) states, (r +1) inputs and (g+1) outputs, and closed-loop
eigenvectors partitioned as

w= (o) (99)

where v;(z) is the ith subeigenvector that corresponds to the plant and v;(z.) the tth
subeigenvector that corresponds to the compensator. Therefore, we now can determine (g + {)
closed-loop eigenvalues and partially assign the same number of closed-loop eigenvectors. In
other words, given a set of desired closed-loop eigenvalues {);,72 = 1,..,q+(} and a set of desired
closed-loop eigenvectors {v;,2 = 1,..,q + [} such that they belong to the eigenspaces defined
by (Ailnti — Aa) ' B, we can find a matrix K that achieves the above given eigenstructure
assignment. It should be mentioned that a separation property with regard to the eigenvalues
of the plant and the eigenvalues of the dynamic compensator does not apply here.

In view of the definitions (97)-(98) for the closed-loop system, we see that the optimization
procedure outlined above for the control reconfiguration problem applies to the dynamic output
feedback case as well. Therefore, similar to (1), (2), (5), the nominal system is now (A, Ba, Cea)
and the output feedback matrix K. For the impaired system of (41)-(43), similar to (92)-(93),
we consider the dynamic output compensator

i.(t) = Af z.(t)+ Bl y(t) (100)
u(t) = Cla(t)+ DI y(2) (101)

such that the impaired closed-loop system is given by

da(t) = Al za(t)+ Bl ual(t) (102)
ya(t) = Chza(t) (103)
ua(t) = K7 ya(t) (104)

where
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o A On,l) f_ ( By On,l)

Az = (Ol,n O/’ Ba = O I (105)
f _ (O Oq,l) f_ (D?f Ccf)

Ccl - (Ol,n Il ) Kcl - Bcf AZ (106)

Hence, the impaired closed-loop system is (Afl, B({l, Ccfl) with output feedback matrix chl.
Therefore, the control reconfiguration problem for the dynamic output feedback case is defined
as the problem of determining the matrix chl of the feedback law (104) such that

e The (g+!) most dominant eigenvalues of the nominal closed-loop system Ay + By KaCu
belong to the set of the eigenvalues of the impaired closed-loop system AZI + BflKCflel.

o The eigenvectors of the impaired closed-loop system AZI + BflKCflCCfl that correspond
to the above set of closed-loop eigenvalues are as close to the corresponding eigenvalues of the
nominal closed-loop system as possible.

e The remaining (n — gq) closed-loop eigenvalues are stable.

e DPossible uncertainties in the state-space matrices (Ay, By, Cf) of the impaired system
are taken care of by maximizing the stability margin allowed to the impaired closed-loop system

Al + BIKICY.

Therefore, the algorithmic approach of the previous section readily applies here as well.

4 Illustrative examples

Example 4.1 Consider the aircraft longitudinal control system of [5], whose linearized dy-

namic model is given by

a(t) 00582 0.0651 0 —0.171\ [aft) 0 1
Bty | | —0.303 —o06s5 1109 0 B() 00541 0 (n(t))
(1) _0.0715 —0.658 —0.947 0 S| T 1 o \r@
0(t) 0 0 1 0 8(t) 0 0
(107)
100 0 0‘(?
yt) = |0 0 0 1 58 (108)
00 10/
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where a(t) and ((t) are the forward and vertical speeds, ¥(t) is the pitch rate and 6(¢) is
the pitch angle. The control inputs 7(t) and 7(t) are the elevator angle and throttle position
respectively. When we consider the static output feedback law of (5), the controller that assigns
the closed-loop eigenvalues at {—0.5973, —1.5 4+ 72, —2} and their corresponding eigenvectors
at

V = (v1 v2 v3 v4)

—0.1887 0.1465 + 70.0958 0.1465 — 70.0958  0.9680
—0.9634 0.2257 — 70.2492 0.2257 + 70.2492  0.1441

- —0.0977 0.3790 + 70.6047 0.3790 — 70.6047  0.0905 (109)
0.1636  0.1025 — 70.2664 0.1025 + 70.2664 —0.0453
is given in [5] by
—0.00031 4.77004  1.70457
K= (—2.01505 —1.13002 0.02904) (110)

Next, we suppose that the system dynamics change due to operating condition variations.
The state-space matrices of the impaired model are given below.

~0.0582 0.10 0.0 —0.171 0 0.9
A, _ | —0-108 —0685 1.109 0 B _ | 009 00
f —0.0715 —0.658 1.98 0 ’ f ~1.11 0.0
0 0 1.5 0 0 0.0
09 0 0 0
C; = |0 00 07 (111)
0 0 1 0

The algorithmic approach outlined above is used to find the optimal output feedback matrix
K, that is the controller gain that minimizes J of (58), for the impaired system. Our objective
is to preserve the first 3 most dominant eigenvalues of the nominal closed-loop system, that
is {—0.5973,—1.5 + 52}, and achieve closed-loop eigenvectors as close to their corresponding
eigenvectors of (109) as possible. First we need to transform the impaired system (Ay, By, Cf)
to new state-coordinates. Select

0 09 0 0
—009 0 1 0

T= -111 0 0 0 (112)
0 0 0 1

22



I.K. Konstantopoulos and P.J. Antsaklis, "Eigenstructure Assignment in Reconfigurable Control
Systems,” Technical Report of the ISIS Group, I1SIS-96-001, Dept. of Electrical Engr, Univ of Notre
Dame, January 1996.

The best results, with regard to closeness of the closed-loop eigenvectors of the impaired
system to the desired eigenvectors specified in (109) are obtained when we assign a weight
factor of 0.1 to the term {(ﬂg,ug — 3)T (]::_[3/1,1; — 173)} of the minimizing quantity of (58). This
is the term that corresponds to the real eigenvalue —0.5973. By assigning this weight, we are
able to emphasize the task of achieving optimal eigenvectors for the complex conjugate pair of
eigenvalues, (—1.5+72). Note that this task is the most difficult to achieve due to the complex
nature of the corresponding eigenvectors. The introduction of this weight factor only affects
(65), whose first 2 terms {2 I:Ig: I, i — 2 I:Ig: 173} need to be multiplied by this weight factor.

The algorithm gives the following results with regard to the closeness of the derived eigen-
vectors to the ideal eigenvectors of (109)

|57 — 54> = 0.0242 (113)
153 — 5|2 = |5 — @] = 0.0230 (114)

whereas the robustness term and the corresponding robustness bound are

Tr(P?) = 0.0788 (115)
Omas(AA) = 0.4037 (116)

and the output feedback gain that achieves these results is

—4.42776  5.95419  5.59306
Ky = (—4.15014 —0.71481 0.49365) (117)
With the above controller, the fourth closed-loop eigenvalue is placed at —4.7358. Note
that the above results concern the impaired system in the new state-coordinates specified by
(112). However, the controller is the same, as discussed before. The obtained eigenvectors
transformed back to the original coordinates of the impaired system are given by

Vo= (ol o] of)

—0.0674 0.1424 4 70.0945 0.1424 — 70.0945
_ —0.9950 0.1834 —70.1722 0.1834 + 70.1722 (118)
N —0.0453 0.3519 4 70.5667 0.3519 — 70.5667

0.1136  0.1453 — 70.3729 0.1453 + 70.3929
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where obviously the first column is the eigenvector that corresponds to the real eigenvalue -
0.5973, and the last two columns are the eigenvectors that correspond to the complex conjugate
pair of eigenvalues (—1.5 + j2). As we see, the above eigenvectors are indeed very close to the
desired eigenvectors of (109), as suggested by (113)-(114) above. This can also be shown by
computing

v — ] = 0.0231 (119)
v —wa|® = |jv —vs|? = 0.0210 (120)

In Figures 1-2, we compare the state respone of the nominal system (A4, B, C) of (107)-(108)
with the output feedback matrix K of (110) and the state response of the impaired system of
(111) with the output feedback matrix K; of (117). The initial conditon vector is chosen as

Vi=(075 05 03 1)7 (121)

The same is done in Figures 3-4 for the initial condition vector

V2 =(075 065 —05 —0.6)" (122)

As we see, the algorithm is capable of recovering the performance of the nominal system.
This should be expected, since the eigenvectors of the impaired closed-loop system are assigned
very close to the eigenvectors of the nominal closed-loop system, as shown in (119)-(120) above.

The external input case  For the system of (1)-(2) we assume the output feedback law

u(t) = K y(t)+ Gw(t) = KC z(t) + G w(t) (123)

where w € R is the external input vector and G an R™*" matrix. With this feedback law,
the closed-loop system is given by

#(t) = (A+ BKO)z(t)+ BG w(t) (124)
y(t) = Ca(t) (125)

For the impaired system of (41)-(42), we consider the output feedback law

u(t) = Ky y(t) + Gy w(t) = K;Cy a(t) + G w(t) (126)
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so that the closed-loop system becomes

:Ii(t) = (Af + BfoCf) :Ii(t) + Bfo ’LU(t) (127)
y(t) = Cya(i) (128)

The steady-state outputs of the above closed-loop systems in response to a unit step input
either in the first or the second external input are given by

hi(c0) = lim {sC(sIn —A- BKC)‘lBGJil}
S

s§—0
= —C(A- BKC)_lBGJZ- = J, (129)
- 1
H(o0) = lim {sCf(sIn _ Ay - BfoCf)—leGfJi—}
s S
= —Cf(Af — BfoCf)_leGfJi =V Gsz (130)
where

correspond to a unit step input in w; and w, respectively, and the following definitions have
been used

& — —C(A+BKC)'BG (132)
U = —C(A;+ BsK;Cy)™ By (133)

In view of the definitions above, the problem of maintaining the steady-state output perfor-
mance in response to unit step changes in the external inputs is reduced in [5] to the problem
of determining the matrix G4 that minimizes the quantity

Jee = 1|® — UGy|p (134)

The optimal solution, that is the solution that minimizes the Frobenius norm of the above
quantity, is given by

Gy =Uo = (0T0)"10To (135)
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where A! denotes the pseudo-inverse of a matrix A.

Assume that the output feedback law of (123) is applied to the nominal system of (107)-
(108) with G = I,. When we apply the feedback law of (126) to the impaired system of (111),
the optimal gain K; that minimizes the quantity of (58) has already been determined in (117).
In view of (135), we find that the optimal external input matrix that maintains the closed-loop
steady-state performance is given by

0.3342 1.9835 (136)

G, - (1.7784 1.9438)

In Figures 5-6, we compare the output responses of the nominal closed-loop system of (124)-

(125) and the impaired closed-loop system of (127)-(128), when a unit step input is applied in

the external input w;. The same is done in Figures 7-8 for a unit step input in the external

input wy. As we can see, with the feedback gain Ky of (117) and the external input matrix

Gy of (136) the steady-state response of the nominal closed-loop system of (124)-(125) has
successfully been recovered.

Finally, the closed-loop systems discussed above are subjected to impulse changes in the
external inputs. In Figures 9-10, we have the respones to an impulse change in the external
input w; and in Figures 11-12, the responses to an impulse change in the external input w,. As
we see, the impaired system of (127)-(128) designed to maintain the steady-state state response
of the nominal system (124)-(125), via the selection of Gy, is capable of recovering the impulse
response of the nominal system as well.

Example 4.2  Consider the lateral flight control system from [4]

ps(1) —0.746  0.387 —12.9 0 p5(%)

ro(t) | 0.024 —0.174 4.31 0 rs(t)

B#) | — | 0.006 —0.999 0.0578 0.0369 B(t)

$(t) 1 0 0 0 (1)
0.952 6.05

| ~Le 0.1 (5,(75))
0.0092 —0.0012 | \4&,(¢)
0 0

y(t) = (ps(t) m(t) B() ¢(t)" (137)

where p,(t), rs(¢) are the stability axis roll and yaw rates, 8(¢) the angle of sideslip, and ¢(t)
the bank angle. The control inputs é,(¢), d, are the rudder and aileron deflections respectively.
As we see, all states are available for measurement. In [4], it is assumed that the desired
closed-loop eigenvalues and their associated closed-loop eigenvectors are as follows
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Nominal system: state response
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Figure 1: Example 4.1: Nominal system. Closed-loop state response (no external inputs) for
the initial condition vector V;%.

Impaired system: state response

T T T
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A N x1= forward speed (solid line)
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Figure 2: Example 4.1: Impaired system. Closed-loop state response (no external inputs) for
the initial condition vector V;%.
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Nominal system: state response
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Figure 3: Example 4.1: Nominal system. Closed-loop state response (no external inputs) for

the initial condition vector V;2

Impaired system: state response
T T T T T T
x1= forward speed (solid line)

x2= vertical speed (dotted line)

x3= pitch rate (dashed line)

x4= pitch angle (dashdot line)

L
3 3.5

—-0.6~ .7
L L L
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—-0.8
(0]
Figure 4: Example 4.1: Impaired system. Closed-loop state response (no external inputs) for

the initial condition vector V;2
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Nominal system: step response (w1 changes)
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Figure 5: Example 4.1: Nominal system. Output response to a unit step change in the external
input w;.

Impaired system: step response (w1 changes)
02 T T T T T

y1(t) (solid line)

y3(t) (dashed line) J
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Figure 6: Example 4.1: Impaired system. Output response to a unit step change in the external
input w;.
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Nominal system: step response (w2 changes)
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Figure 7: Example 4.1: Nominal system. Output response to a unit step change in the external
input wy.

Impaired system: step response (w2 changes)
T T T T T

y1(t) (solid line)

y2(t) (dotted line)

y3(t) (dashed line) i

o 0.5 1 1.5 2 2.5 3 3.5 4
Time (secs)

Figure 8: Example 4.1: Impaired system. Output response to a unit step change in the external
input wy.
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Nominal system: impulse response (w1 changes)
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Figure 9: Example 4.1: Nominal system. Output response to an impulse change in the external
input w;.

Impaired system: impulse response (w1 changes)
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Figure 10: example 4.1: Impaired system. Output response to an impulse change in the
external input wy.
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Nominal system: impulse response (w2 changes)
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Figure 11: Example 4.1: Nominal system. Output response to an impulse change in the

external input ws.

Impaired system: impulse response (w2 changes)
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Figure 12: Example 4.1: Impaired system. Output response to an impulse change in the

external input ws.
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Ap = {-1,-1.25+31.75,—3} (138)

z 0472z 0—gz 1
z 1+357 1—35 0
z
z

Vp = (139)

0 z+jz z—jz
1 z+370 =z —30

where z represents an unspecified component. When we apply the state-feedback control
law u(t) = K z(t), the gain matrix that achieves the above design specifications is

K _ ( 0.138879 1.416315 —0.821448 0.086284 ) (140)
-~ \—0.559704 —0.286832 2.261491  —0.509444
and the actual closed-loop eigenvectors are given by
V = (v1 v vs vs)
—1 0 0 1
_ | 0.03080 149 1—7 0 (141)
N 0 —0.0940 + 70.6329 —0.0940 — 50.6329  0.00158
1 0 0 —0.33333

It is apparent that the above specifications for the closed-loop eigenvectors are completely
satisfied. Next, we suppose that a failure occurs in the actuator. Although the state-transition
matrix remains the same, the input matrix changes. Therefore

0.952 4.50
~15 —0.416
Ar =4, Br=10.0002 —0.0200 (142)
0 0

The algorithmic approach presented above is used again to find the optimal state-feedback
gain. Note that here all closed-loop eigenvalues will be recovered. Therefore, our objective
is to determine a new state feedback law u(t) = Ky z(t) such that the impaired closed-loop
eigenvectors are as close to the eigenvectors of (141) as possible. First, we transform the
impaired system to new state-coordinates by selecting the state-transformation matrix
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0952 450 0 0
15  —0416 0 0.2
T=100092 —00100 0 0 (143)

0 0 02 0

In order to emphasize performance, which is determined by the closed-loop eigenvectors,
we assign a weight factor of 0.01 to the robustness term Tr(P?). Note that the introduction
of this weight only affects (61), where the term 2P needs to be replaced by the term 2wpP,
where wp is the weight factor discussed above.

The algorithm gives the following state feedback gain

K. ( 0.220764 1.699474 —1.208819  0.154278 ) (144)
77\ —0.769002 —0.493509  3.242570 —0.697044
with which the achievable eigenvectors transformed back to the original state-coordinates
are

Vi = (of of of o)

—1.00279 —0.10677 4 70.10062 —0.10677 — 70.10062  1.12200
0.03033 1.01196 + 70.98766 1.01196 — 70.98766 0.00428
0.00002  —0.09381 + 70.63279 —0.09381 — 70.63279  0.00116
1.00279 0.06693 + 70.01321 0.06693 — 70.01321  —0.37400

(145)

As we see, the obtained closed-loop eigenvectors are indeed close to the corresponding
eigenvectors of (141). This can also be seen by computing

|vf —v|> = 0.000015 (146)
v —va|> = |Jvf — vsl* = 0.0265 (147)
v —va||? = 0.0166 (148)

The state response of the nominal system (A, B, C) of (137) with the state feedback matrix
K of (140) and the state response of the impaired system of (142) with the state feedback
feedback matrix Ky of (144) are compared in Figures 13-14. The initial conditon vector is
(—0.50 0.4 —0.75 0.9 )T. As we see, the algorithm is capable of completely recovering
the performance of the nominal system. This is not surprising, since with state feedback
we maintain all the nominal closed-loop eigenvalues, whereas with the proposed optimization
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scheme we achieve closed-loop eigenvectors very close to the eigenvectors of the nominal closed-
loop system, as shown in (146)-(148) above.

The external input case  For the system of (1)-(2) we assume the state feedback law

u(t) = K z(t) + G w(t) (149)

where again w € R" is the external input vector and G is an R™*" matrix. With this
feedback law, the closed-loop system is given by

i(t) = (A+ BK)z(t)+ BGw(t) (150)
y(t) = =(t) (151)

For the impaired system of (41)-(42), we consider the output feedback law

u(t) = Ky z(t) + G5 w(t) (152)

so that the closed-loop system becomes

:Ii(t) = (Af + Bfo) :Ii(t) + Bfo ’LU(t) (153)
y() = =(1) (154)

As shown in the previous example, in order to recover the steady-state performance of
the nominal closed-loop system of (150)-(151) in response to a unit step input in either of
the external inputs, we need to determine the external input matrix Gy that minimizes the
quantity J,s of (134). Assuming again G = I, in view of (135) we easily obtain

1.2019  —0.0970

s = (—0.0877 1.3517 ) (155)

In Figures 15-16, we see that the output response of the nominal closed-loop system of
(150)-(151) and the output response of the impaired closed-loop system of (153)-(154) for a
unit step change in the external input w; are almost identical. The same is true for the output
responses to a unit step change in the external input w,, which are illustrated in Figures 17-18.
Therefore, with the state feedback gain Ky of (144) and the external input matrix Gy of (155)
the steady-state performance of the nominal closed-loop system of (150)-(151) is recovered as
well.
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Nominal system: state response
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Figure 13: Example 4.2: Nominal system. Closed-loop state response (no external inputs).

Impaired system: state response
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Figure 14: Example 4.2: Impaired system. Closed-loop state response (no external inputs).
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Figure 15:

Nominal system: step response (w1 changes)

—0.1F x1= roll rate (solid line)
—-0.2 x2= yaw rate (dotted line)
—0.3 x3= sideslip angle (dashed line)
—-0.4 x4= bank angle (dashdot line)
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Example 4.2: Nominal system. Output response to a unit step change in the

external input wy.

Figure 16:

Impaired system: step response (w1 changes)

—0.1F x1= roll rate (solid line)
—-0.2 x2= yaw rate (dotted line)
—-0.3 x3= sideslip angle (dashed line)
—-0.4 x4= bank angle (dashdot line)
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Example 4.2: Impaired system. Output response to a unit step change in the

external input wy.

37




I.K. Konstantopoulos and P.J. Antsaklis, "Eigenstructure Assignment in Reconfigurable Control
Systems,” Technical Report of the ISIS Group, I1SIS-96-001, Dept. of Electrical Engr, Univ of Notre
Dame, January 1996.

Nominal system: step response (w2 changes)
2 T T T

- x1= roll rate (solid line)

x2= yaw rate (dotted line)

x3= sideslip angle (dashed line)

x4= bank angle (dashdot line)
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Figure 17: Example 4.2: Nominal system. Output response to a unit step change in the

external input ws.

Impaired system: step response (w2 changes)
2 T T T

- x1= roll rate (solid line)

x2= yaw rate (dotted line)

x3= sideslip angle (dashed line)

x4= bank angle (dashdot line)

L L L
o 0.5 1 1.5 2 2.5 3
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Figure 18: Example 4.2: Impaired system. Output response to a unit step change in the

external input ws.
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Nominal system: impulse response (w1 changes)

—2

x1= roll rate (solid line)
x2= yaw rate (dotted line)
x3= sideslip angle (dashed line)

x4= bank angle (dashdot line)

Figure 19: Example 4.2: Nominal system. Output response to an impulse change in the

external input wy.
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Impaired system: impulse response (w1 changes)
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Figure 20: example 4.2:

external input wy.
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Impaired system. Output response to an
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Nominal system: impulse response (w2 changes)
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Figure 21: Example 4.2: Nominal system. Output response to an impulse change in the
external input ws.

Impaired system: impulse response (w2 changes)
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Figure 22: Example 4.2: Impaired system. Output response to an impulse change in the
external input ws.
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Finally, we compare the responses of the nominal closed-loop system and the impaired
closed-loop system, with K; and G determined above, to impulse changes in the external
inputs. The results for an impulse change in w; are given in Figures 19-20, and for an impulse
change in wy, in Figures 21-22. As expected, the impulse response of the nominal system also
is recovered.

We see that for the state feedback case the results obtained here are even better compared
to the results obtained in the output feedback example studied before. This is due to the fact
that all closed-loop poles are recovered. In addition, the optimization scheme proposed here
determines all n impaired closed-loop eigenvectors close to the corresponding eigenvectors of
the nominal system, since we are capable of exercising control upon all the modes of the system.
This results in a performance (state response, unit step response, impulse response) which is
very close to the performance of the nominal system.

5 Conclusions

An optimization approach to control reconfiguration, based on eigenstructure assignment, for
control systems with output feedback has been presented. The emphasis has been on the recov-
ery of the nominal closed-loop performance, which is determined by the closed-loop eigenvalues
and eigenvectors. The proposed scheme preserves the max(r, ¢) most dominant eigenvalues of
the nominal closed-loop system and determines their associated closed-loop eigenvectors as
close to the corresponding eigevectors of the nominal closed-loop system as possible. Addition-
ally, the stability of the remaining closed-loop eigenvalues is guaranteed by the satisfaction of
an appropriate Lyapunov equation. The overall design is also robust with respect to uncertain-
ties in the state-space matrices of the impaired/reconfigured system. Although the emphasis
here was on static output feedback, the cases of state feedback and dymanic output feedback
have also been studied. The approach has been applied to an aircraft control examples, where
it was shown to not only preserve the shape of the transient response but recover much of the
characteristics of the steady-state response as well.
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