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Abstract 

Two different approaches have emerged in recent years 
for the analysis and synthesis of hybrid control sys- 
tems. One approach views the hybrid system as a set 
of concurrent computer processes whose execution is 
controlled by continuous variables generated by an ex- 
ternal environment. The other approach studies hybrid 
systems as dynamical systems using familiar concepts 
of stability and robust performance. The development 
of a systematic framework for the analysis and syn- 
thesis of hybrid systems will require the integration of 
these two perspectives. The objective of this tutorial 
paper is to highlight some of the recent developments 
in computer science and control that provide insight 
into the integration of these two methods. 

1 Introduction 

In recent years there has been significant interest in hy- 
brid systems whose signals take on values in a metric 
space such as 8" as well as a finite set of symbols in 
which there may be no metric defined. Such systems 
arise frequently in the supervision of complex dynami- 
cal processes. In this case process supervision involves 
switching the system's structure between various op- 
erational modes so that continuous-state performance 
and logical behavioural specifications are satisfied. It 
is also convenient, however, to view such systems as 
switched dynamical systems where the supervisory as- 
pect is secondary to the verification of such system the- 

and assumes highly abstracted models of the system's 
continuous-state dynamics. This approach means that 
these methods can efficiently verify whether or not the 
system satisfies behavioural specifications which are 
posed as formulae in a temporal logic. On the other 
hand, in abstracting away certain details of the hy- 
brid system's continuous-state components, it becomes 
difficult to precisely control the process. Control theo- 
retic methods clearly provide the tools allowing pre- 
cision control of processes, but in a highly complex 
system, the useage of these tools may be prohibitively 
expensive. The development of a useful and efficient 
methodology for hybrid system design and analysis re- 
quires the integration of these two approaches. 

The objective of this paper is to  highlight some re- 
cent progress in both the computer science and con- 
trol theory communities which point toward a poten- 
tial integration of these two approaches. Recent results 
from the control systems community [Bran941 [Hou96] 
[Pet961 [Rant971 have provide sufficient characteriza- 
tions of switched system stability which can be ex- 
tremely conservative. A close examination of these re- 
sults indicates that these sufficient tests for Lyapunov 
stability might be used in conjunction with timed au- 
tomata models [Alur94] to provide a less conservative 
method for verifying hybrid system stability and per- 
formance. This paper identifies how the integrated 
use of computer science modeling methods with recent 
switched stability results might provide a systematic 
framework for the verification of hybrid system stabil- 
ity and performance. 

oretic properties as stability and robust performance. The remainder of this paper is organized as fo~~ows. 
We therefore see that hybrid systems can be studied Section 2 discusses timed and hybrid automata. Sec- 
from two distinct viewpoints; as a supervised collec- tion 3 recent in switched system 
tion of real-time computer processes or as a switched stability a d  identifies the way in which these results 
dynamical systems. might be integrated with timed/hybrid automata. Sec- 

tion 4 discusses some recent results on robust bounded 

might also be integrated with timed/hybrid automata. 

These two approaches provide a set Of for the performance and indicates how these results analysis of hybrid systems which , in many respects, 
complement each other. The computer science ap- 
proach focuses on high level supervision of the system 
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2 Timed and Hybrid Automata  

In [ClaSl], it was shown that formulae in the com- 
putation tree logic, CTL, could be computed as fixed 
points of recursive functiions. A consequence of this re- 
sult was the later development of efficient algorithms 
for verifying whether or not a finite automaton satis- 
fies a behavioural specification posed as CTL formulae 
IClar861, This verificatictn procedure became known as 

following initial value problem 

(2) -- dzi(t) - f i ( z i ( t ) )  ; 2s(Tio) = Zio 
dt 

The set of all local times and clock rates at time T will 
be called the clock state and will be denoted as 

( T I  = {(xi ( T I ,  i i  ( T )  1 )i=l,. . . ,N (3) 

symbolk model checking (McM931 and hits provided a 
powerful tool in the verikation of VLSI digital circuits 
[BurSO]. Timed [Alur94] and hybrid automata [Alur93] 
arose out of a desire to  extend symbolic model check- 
ing to the verification of real-time systems. In recent 
years there has been considerable progress in the devel- 
opment of SMC tools fctr timed and hybrid automata 
[Alur96] [TAH95]. The purpose of this section is to in- 
troduce the timed and hybrid automaton as a model of 
a hybrid system. 

A finite automaton is characterized by the ordered pair, 
N = (V,A) where V is a finite set of vertices, A c 
V x V is a set of directed arcs between vertices. The 
automaton, N ,  is marked by a function p : V + (0,l). 
The marking function, p is said to be valid if and only 
if there is at most one p E V such that p(p) = 1. We 
use the vector p = [p(p1), . . . , p(pn)] to represent the 
state of the automaton. A marked automaton is then 
represented by the ordered triple, (V,A,Po) where j i o  
is the initial marking vector of the automaton. We 
denote the preset, ea, OF an arc a = (p, q )  as the place 
p E V .  Similarly the postset of the arc, a. is the place 
q E V. The preset of a place, p ,  is denoted its op and 
consists of all arcs of thle form ( q , p )  E A where q E V .  
Similarly the postset, pa ,  of a vertex consists of all arcs 
(p,q) E A where q E V .  

The dynamic behaviour of the automaton is generated 
by the firing of arcs. An arc ( p , q )  E A is said to  be 
enabled if p(p) = 1. An enabled arc is free to fire. Let 
p' and p be the marking vectors of the automaton after 
and before the firing of arc (qO,ql), respectively. The 
relationship between these marking vectors is given by 

1 i f p = q l  
0 otherwise 

A hybrid automaton arises by introducing a set, X, 
of dynamical systems which we refer to generically as 
clocks and by introducing functions which label the 
vertices and arcs of the automaton N = (V,A)  with 
equations representing constraints on the clock state. 
The i th  clock will be characterized by the ordered 
triple Xi = ( f i , z io ,qO)  where Z,O E 92", T,O E 92, and 
fi : 3" -+ P. The local time of the ith clock ,z i (~),  
( T 2 T ~ O )  generated by clock Xi is the solution to the 

Let P be a set of formulae defined over the clock state, 
Z(T) .  We say that the clock state Z ( T )  satisfies a for- 
mula p E P if the formula is true for the current state 
assignment at time T .  This is denoted as %(T)  p .  A 
hybrid automaton is formally defined by the ordered 
tuple, ( N ,  X , l j , l , , l , )  where N = (V,A,po) is a fi- 
nite automaton with initial marking po. L j  : A -+ P, 
l, : A + P , and 4, : V -+ P are functions labeling 
the arcs and vertices of N with formula from P. These 
labels have the following meaning. 

0 l j ( a )  is called the firing condition. If the clock 
Cj(a) for an arc a E A, then the arc a 

0 &(p) is called the vertex constraint. It represents 
a constraint on 3 must be satisfied while vertex 
p is marked. If Z + &(p) then the clock states 
are forced to satisfy this equation while p(p) = 
1. In general, we choose &(p) to be an equality 
constraint on the clock rates, ii. 

state 1 
is free to  fire provided it is already enabled. 

0 &(a) is called the reset constraint for arc a. This 
label represents an equality constraint which the 
clock state is reset to  immediately after the firing 
of an a c .  

The preceding definition of a hybrid automaton is ba- 
sically the same as that used in [Alur93]. Our descrip- 
tion, however, follows notational conventions found in 
the Petri net literature. When the hybrid automaton 
clocks rates are all constants (i.e. integrators) then 
the hybrid automaton is called a timed automaton 
[Alur94]. 

In a finite automaton, an arc, a = (p,q) E A, can 
fire as long as p(p) = 1. We refer to  this as a logical 
condition for firing. For a timed or hybrid automaton, 
however, the firing of an arc also requires that the clock 
state, % ( T )  ,t= l f ( a )  for some time T .  We now want 
to examine the implication of having arc transitions 
enabled by such conditions. Let's assume that vertex p 
is currently marked. Figure 1 shows this vertex along 
with its input arcs and output arcs. The input arcs 
are denoted as a?) = ( q y ' , p )  where qj!in) E V for 
j = 1 , .  , . , N .  The output arcs are denoted as a y )  = 
( p , q j o U t ) )  for qjout) E V for j = 1,. .. , M .  All of the 
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output arcs of vertex p are logically enabled. If arc 
is to actually fire, then we need to ensure that 

the system generates a clock state, Z(T), at some finite 
time T such that Z(T)  + ! , ( a y ' ) .  Whether or not this 
happens depends on the where the clock state was when 
vertex p was first marked, as well as the nature of the 
clock dynamics. These two conditions are determined 
by the reset conditions, !,(U?)) on all arcs leading into 
p and the vertex labels &(p) of vertex p .  Therefore to 
determine the conditions under which 3 (= !,(a), we 
need to  examine the reset and vertex labels in more 
detail. 

Figure 1: Vertex of a Hybrid Automaton 

The reset constraint, !?(a) is an equality constraint on 
the clock states at the time arc a fires. We associate 
with the reset constraint a region 

r(e+) = {z : P + t , . ( ~ > }  (4) 

This set represents the possible clock state when the 
vertex p E .a is marked. We also associate a region 
with the firing condition [,(a). This region has the 
form 

= {z : 3 (= e,(a))  (5) 

Since there are several arcs can lead into vertex, p ,  
the total set of possible clock states when vertex p is 
marked will simply be 

fl,?-e(P,) = U r(e,.(a)> ( 6 )  
aE*p  

We call this set the precondition for firing any out- 
put arc of p .  After marking vertex p ,  the clock states 
are then constrained to satisfy !,(p). Recall that this 
equality constraint is placed on the clock rates, so we 
are effectively fixing the dynamics of the clocks while 
p(p )  = 1. We denote as R,(zo), the set of all clock 
states reached from initial clock state 20 assuming that 
arc a has fired. Since we've already represented the set 
of initial clock state as f l p r e ( p ) ,  we can conclude that 
the total set of clock states that can be reached by a 
firing of arc a0 will be 

This set, Opost(a) ,  is called the postcondition of arc a. 

Since Ctpost(a) represents the set of possible clock states 
after the firing of arc a,  then a sufficient condition for 
the arc to fire is that this set lie in the region associated 
with the firing condition. In other words, a sufficient 
for the unconditional firing of arc a is that 

f l p o s t ( 4  c V , ( a ) )  (9) 
This condition can be overly restrictive in many situa- 
tions. We therefore study conditions sufficient for the 
repeated firing of an arc a. This requires an investi- 
gation of the cycles in the language generated by the 
timed automaton. A cycle is defined as a periodic se- 
quence of arc firings. The simplest such cycle is shown 
in figure 1 where we have two vertices pl and p~ con- 
nected by arcs a1 = ( p l , p 2 )  and a2 = ( p 2 , p l ) .  In this 
case, the sufficient conditions for firing the arcs in the 
cycle are that the postset of arc a 1  lie in the preset of 
arc u2 and that the postset of arc a2 lie in the prese 
of arc al. These conditions state that for the cycle, we 
require that 

f lpos t  (all 5 f l p r e  (0.2)  (10) 
flpost ( a 2 1  E a p r e  (oal) (11) 

Note, however that Opost(al)  depends on flpre(a2) also. 
This means that each of these equations sets up a re- 
cursive relationship in which a function of OPre ( U )  must 
map to within a function of this preset again. The fixed 
point of this recursion will be denoted as fl*(al) and 
O*(a2). It has been shown that if such a fixed point 
exists, then the arc can fire infinitely often In the hy- 
brid system literature an arc that has the capability of 
always firing will be said to  be viable [Desh95]. If, in 
addition to this we can guarantee that the sum of the 
firing times E, q is unbounded, then we say that the 
cycle is nonZeno. Ideally we would like our cycles to 
be both viable and nonZeno. 

In general, it is extremely difficult to verify the liveness 
conditions posed above. For some important classes of 
hybrid automata, however, these conditions can be ef- 
ficiently decided. Specific algorithmic methods have 
been used to verify that these conditions are com- 
putable for timed automata [Alur94] and hybrid au- 
tomata whose clock rates are bounded by rectangu- 
lar differential inclusions [Alur96]. The decidability of 
these problems has been addressed in [TAH95a] and 
[Puri94]. 

Remarks: The verification results are analysis results 
and do not directly address issues of supervisor or con- 
troller synthesis. The restriction to hybrid automaton 
modeled by rectangular differential inclusions can re- 
sult in extremely conservative performance in the re- 
sulting system. While the automaton model can be 
used to represent concurrent events, it is not as natu- 
ral a model for concurrency as Petri nets. Some ini- 
tial modeling efforts in this direction will be found in 
[Lem98]. 
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3 Switched System Stability 

In recent years, there has been considerable inter- 
est in developing systematic frameworks for verifying 
whether a switched dyn(unical system is Lyapunov sta- 
ble [Pel911 [Bran941 [Hou96]. This recent work estab- 
lishes sufficient conditions for switched system Lya- 
punov stability. This section summarizes these recent 
results and argues that the results in [Hou96] provide 
important insights on how to use automata theoretic 
methods in the formal verification of switched system 
stability. 

Consider a set of functilons, {K, i = 1,. . . , N } .  The el- 
ements of this set are citlled candidate Lyapunov finc- 
tions if they are positive definite about the origin and 
if they have continuous partial derivatives. Consider 
a switched system whose j t h  system is represented by 
the differential equation 

3l = f j ( $ )  (12) 

where x E 8" and f j  : 3'' + 8" for j = 1, ... , N .  
We define a switching sequence, E, assuming an ini- 
tial condition zo E 8'' as a sequence of ordered pairs, 
( i k ,  71;) ( k  = 1,. . . ,m) where 1 5 i k  5 N is the index 
of the ikth system turned on and Tk E 8 is the time 
this system was turned on. The switching sequence C 
can therefore be represented as 

= {(io,.o), ( ~ 1 , n ) , - - * }  (13) 

In [Bran941 it is provein if the conditions, I'j(z(r>) 5 
0 and Q ( z ( T ~ + ~ ) )  5 I ; ( x ( r j ) )  hold for all switching 
sequences C where T 6; 8 and 1 5 j 5 N ,  then the 
origin is stable in the sense of Lyapunov. An extended 
stability result was obtained in [Hou96]. Let C j  denote 
the sequence of switching times when the j system is 
turned on or off. 

cj = { T k  1 i '7' k l + l ,  Tk2 1 T k Z f l ,  ' ' 1 Tk,, , T k , + l l '  * '} (14) 

and let E ( C j )  denote the sequence of switching times 
when the system is turned on, 

E( cj ) = { 7'ki i Tk2 1 * , T k ,  I ' * } (15) 

If % is monotonically nonincreasing on E(Cj)  for each 
switching sequence, Cl generated by our switched sys- 
tem and if sup(.r,+l - 7,) c CO, then the equilibrium 
x = 0 of the switched system is stable in the sense of 
Lyapunov. 

Remark: The theorem in [Bran941 provides the ex- 
tension of Lyapunov theory to switched systems. Re- 
lated results pertain t o  switched linear systems will be 
found in [Pe191]. The result in [Hou96] represents, in 
our opinion, a significant extension of the earlier work 
in [Bran941 and [Pe191]. [Hou96] essentially says that if 
the candidate Lyapunov functions can be ensured to be 

nonincreasing at the times when the j t h  subsystem is 
switched on, then the entire system is Lyapunov stable. 
The sequence of events between the times when the j t h  
system switches on is essentially a cycle of events and 
this means that analysis of system stability only re- 
quires looking at the behaviour of candidate Lyapunov 
functions over these cycles. The original statement of 
theorems in [Bran941 and [Hou96] all assume that we 
can test the theorem's conditions over all switching se- 
quences. In view of the above observation, however, 
it should be apparent that this is not really necessary. 
If the underlying cycles of the switching sequences can 
be determined then we only need test for the mono- 
tone nonincreasing nature of the candidate Lyapunov 
functions over these cycles. 

The cycles within all switching sequences can be iden- 
tified if we know something about the switching logic. 
Assume, for instance, that the switching logic is gener- 
ated by either a finite automaton or a bounded Petri 
net. In both of these cases the reachability tree of the 
network is bounded which means that there is a fi- 
nite number of fundamental cycles from which all of 
the switching sequences can be constructed. In other 
words, rather than having to test the stability condi- 
tion, we only need to test the condition over a finite 
number of identified cycles. As an example of this idea, 
let's consider recent work [Pet961 [Rant971 concerned 
with the computation of candidate Lyapunov function- 
als satisfying the stability conditions in [Bran94]. Both 
of these papers consider switched Iinear time invariant 
systems of the form 

X = A j x  (16) 

where A j  E RnX", j = 1,. . . , N .  The switching rule 
for this particular system assumes that the j t h  system 
is used when the state x lies in a cone characterized by 
the symmetric indefinite matrix, Q j  where 

x E {Z : z 'Q~z  5 0) (17) 

Let's assume that the switch between the ith and j t h  
subsystems occurs when 

z E { x  : z ' Q ~ ~ z  5 0) (18) 

where Qij = Q i j .  In [Pet961 it is shown that a set of 
candidate Lyapunov functions of the form 

& ( x )  = Z ' P j Z  (19) 

(j = 1,. . . , N and 5 = P' > 0) satisfying the condi- 
tions in [Bran941 can be generated by solving the fol- 
lowing linear matrix inequality (LMI). 

A i P j  -I- P j A j  + a j Q j  _< 0, ( j  = 1,. . . , N )  (20) 
(Pi - P k )  - CVkjQkj 5 0, ( j ,  k = 1,. . . , NX21) 

The candidate Lyapunov functions obtained in the pre- 
ceding LMI assume that any switch is possible between 
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various events. This assumption can easily yield overly 
restrictive stability conditions. Based on our above ob- 
servations concerning the stability results in [Hou96] 
it appears that we can greatly simplify the resulting 
LMI by forming these LMI's over cycles generated by 
the system's assumed switching logic. This approach 
should yield a smaller set of LMI's which are more likely 
to  yield feasible solutions as well as providing a less 
conservative test for system stability. Details of this 
approach are currently being studied [Lem98]. 

Remark: Before using cycles to  verifying hybrid sys- 
tem stability, the cycles need to be identified. A brute 
force approach would involve constructing the reach- 
ability tree for the network and identifying the cycles 
from that. For concurrent automata and Petri nets, 
however, the construction of a reachability tree may 
be impractical since it requires an exhaustive search 
through the network's reachability tree. In many cases, 
a more efficient method would rely on the use of partial 
order methods to  reduce the computational complexity 
associated with exploring a network's reachable mark- 
ings [McM92] [Gode97]. 

4 Bounded Amplitude Performance 

The preceding section discussed how network models 
such as automata or Petri nets could be used to simplify 
the stability analysis of a switched system. We now 
examine the performance of switched systems and see if 
any connections to hybrid automata can be discovered. 
Let's assume that the subsystems are now modeled by 
differential equations of the form 

X = Ajx + BW (22) 
where z is the plant state and w is a bounded distur- 
bance input for j = 1,. . . , N. We assume a switching 
rule in the form of a hybrid automaton. The perfor- 
mance of the entire system can be characterized using 
temporal logic formulae determining whether or not 
the system state eventually jumps outside of a given 
set. These performance measures can be verified (or 
not) using model checking methods, but the answer 
provides little insight into how the system can be mod- 
ified to ensure better performance. Traditional control 
theory does provide this insight, so we begin viewing 
the verification problem as a control theorist. In this 
case, we see that system performance is measured by 
a bounded amplitude performance measure. In particu- 
lar, if we introduce a performance signal, 

z = cx (23) 
then we'll be interested in determining if supt Ilt(t)II < 
y for a specified y for all possible switched behaviours. 

In an unswitched environment, sufficient conditions for 
bounded amplitude performance are readily obtained 

[Bett97]. Given a constant y > 0 then the system ex- 
hibits bounded amplitude performance if there exists 
constants a > 0 and ,6 2 0 and a positive definite 
matrix P E Rnxn satisfying 

1 
7 

P 2 -+'e 
and 

1 A'P + P A  + (CY + P)P + -PBB'P _< 0 (25) a 
If w is bounded and x'(O)Px(O) 5 1, then we can show 
that d ( t ) P x ( t )  5 1 and z' ( t )z( t )  5 y2 for all time. 
Moreover, if x'(O)Px(O) = TO > 1, then x'(t)Px(t)  5 1 
for all t > t d  where 

This last quantity is called the dwell time. 

The performance level of the switched system is guar- 
anteed provided the Riccati inequality cited above 
holds, and provided the switching times are not shorter 
than the dwell time identified above. The Riccati in- 
equalities can be reformulated as linear matrix inequal- 
ities in a manner [Bett97] analogous to  the LMI's used 
in [Pet961 to characterize switched system Lyapunov 
stability. This work ensures robust stability for sys- 
tems modeled as linear parameter varying systems. In 
our case, however, we also need to ensure that a dwell- 
time constraint is satisfied. This constraint of course, 
is identical to the firing constraints found in timed au- 
tomata. It therefore seems quite possible to use a com- 
bination of robust control methodologies and timed au- 
tomata analysis to verify the bounded amplitude per- 
formance of switched systems. 

5 Concluding Remarks 

This paper has surveyed recent results in switched sys- 
tem stability, performance, and verification. Can we 
now design complex hybrid systems? At this point the 
answer is "no". Current results in the area are more 
concerned with analysis or rather the verification of 
desirable system properties. In examining the various 
results that have emerged, it is apparent that there 
are strong connections between control and computer 
science theoretic methods which can have a great im- 
pact in addressing the weaknesses in each methodology. 
Control theoretic methods provide synthesis methods 
which can guarantee system performance but which 
are ill equipped, in general, to deal with the computa- 
tional complexity associated with verifying large-scale 
switched systems. The automata theoretic methods 
appear to provide a computationally attractive frame- 
work for large scale verification, but do not provide 
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synthesis methods tha,t can guarantee system perfor- 
mance. The development of a systematic method for 
hybrid system design will require the integration of 
these two viewpoints into a tool which takes the best 
from each method and puts them together. This pa- 
per has identified one possible way in which such a 
synthesis might be done for the verification of hybrid 
system Lyapunov stability and bounded amplitude per- 
formance. So, while it does not appear that systematic 
design methods for hybrid systems exist, the develop- 
ment of such methodologies does not appear to  be far 
Off. 
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