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INTRODUCTION

The problem of decoupling has been extensively
studied in the past [1-3], with particular attention
being paid to the special case of diagonal decoupling
[4-7]. Both state-space and polynomial matrix methods
have been used to study the diagonal decoupling problem,
while most of the block decoupling results have been
obtained using the geometric approach [3].

A unifying approach to the decoupling problem
(diagonal, triangular, block diagonal decoupling) is
introduced here, The key element is the interactor,
introduced in [8], which is a matrix of unique structure
associated with the transfer matrix of the system. The
results obtained are conceptually simple; in essence,
the (block) structure of the interactor specifies the
decoupled system structure attainable via state feedback
while, if input dynamics are to be used in addition to
state feedback, the interactor is essential in determin-
ing the minimal orders of the appropriate input dynamics
and of the decoupled system. The use of the interactor
makes the mechanism of decoupling transparent, it helps
to completely resolve the stability questions in the
block decoupling problem, as well as the question of
minimal order when input dynamics in addition to state
feedback are used, and it unifies and expands existing
results {9]. 1In this paper, as an introduction to this
approach, we shall mainly concentrate on the conditions
for block decoupling via linear state feedback.

PRELIMINARIES

Consider an nth order m-input/p-output controllable
system with state space representation {x=Ax+Bu, y=Cx+
Eu} and polynomial matrix representation {Pz=u, y=Rz}
where P is column proper [7] with column degrees {dj i=
1,2,...,m}, the controllability indices. Let T(s)=C(sI-
A)_iB+E=R(S)P_l(S) be the pxm transfer matrix. Define
the linear state feedback (lsf) control law by u=Fx+Gv
where v is an #x1 external input (£=min (p,m)). 1t is
known [7] that the transfer matrix of the lsf compensat-
ed system can be written as

Tp,c(s) = R(s)PFi(s)G (1
A
with Pp(s)=P(s)-F(s) where the column degrees of F(s)
are strictly less than dj; there is a unique correspond-
ence between F(s) and F,

PROBLEM STATEMENT
We are interested in decoupling the system using
lsf or lsf with input dynamics. A system is called
diagonally decoupled if its transfer matrix is diagonal
and of full rank. 1In general, a system is said to be
{(p;jx%{)} -block decoupled if its (px%) transfer matrix
has full rank and it is of the form blk diag {Tj(s)}
T r
with Tj(s)pjx&; i=1,2,...,r(} pi=p, z 2i=2); if pij=2;

i i
for all i, it is said to be {pj} ~block decoupled. When
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p<m, we are interested in pxp (4=p) compensated systems
and in the {pj} -block decoupling problem. When p>m we
are interested in pxm (&=m) systems and in the {(pjxmj)}

r
-block decoupling problem (z mij=m). This latter case

i
(p>m) reduces to decoupling a square system [9] so we
will concentrate here on the {pj} -block decoupling
problem. It is assumed in the following that rank T(s)=
p(<m).

The Interactor

The interactor Xyp(s) of T(s), defined in [8], is a
(unique) pxp polynomial matrix such that '

lim{Xp(s)T(s) } =Ky (2)
s+
with rank Kr=p and of the form
Xr(s)=H(s)4(s) (3)

f.

where A(s)=diag{s '} and H(s) lower triangular, with ls
on the diagonal and the nonzero off diagonal elements
divisible by s . Xy(s) can be obtained from T(s)[8],
from a state-space representation {A,B,C, E}[10], or
from the numerator R(s) and the controllability indices
di[9]. The interactor is closely related to the Inver-
sion/Structure algorithm of Silverman [2][11]; this
state-space method is equivalent to finding a polynomial
matrix X(s) satisfying (2) but not necessarily of the
special form (3). Note that it is the special structure
(3) of the interactor Xt(s) which makes the study of a
variety of decoupling questions (involving stability,
minimal order) possible,

Lemma 1 XTF,G(S) = X7(s) ynder all 1sf pairs (F,G)
for which rank KyG=p.

Proof By (1), Tp,g(s)=(RP1)(PPFlc)=T[Pp+F]PFlc=
TG+TFPr*G. By (2), Xp(s)T(s)=Kr+V(s) for some strictly

proper V(s). Combining, Xp(s)Tp,g(s) = KyG + (strictly
proper) since FPF' is strictly proper. This implies

that XTF,G (s)=X7(s) because of the uniqueness of the
interactor. QED
Lemma 2 There exists lsf (F,G) such that
TF,G(S ;=Xfl .
Proof Choose F (or F(s)) to satisfy Xp(s)R(s)=
Rp[P(s)-F(s)](=KpPp(s)) and G such that KpG=I. This is

always possible since column degrees of XpR=d;= column
degrees of Pp and rank Kr=p (see also [12] [10]). QED

Conditions for Decoupling

Lemma 2 and the fact that X is triangular, clearly
shows that in this case it is always possible to trian~
gularly decouple the system via lsf, a well known result
[13]. TFor diagonally decoupling via lsf, the rank of a
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matrix B*[5] is important. The relation between B¥* and
the interactor is as follows:

Given T(s),
(£, i=1,2,...,p},

there exists a unique set of integers
its decoupling indices, for which

£
[6] D(S)é diag{s 1} yields

lim D(s)T(s)} = B* (4)

e

with B* finite with no zero rows. The following result
follows from (4) and the definition of the interactor

Lerma 3 Xp(s) is diagonal iff B* is of full rank.
In this case, X7(s)=D(s) and Xp=B*,

When p=m, diagonal decoupling via lsf is possible
iff rank B*=p[5], that is, iff Xp(s) is diagonal in view
of Lemma 3. When p<m, the condition is only sufficient.
These results are special cases of the following block
decoupling results:

Theorem &4 An invertible system can be {p;} -block
decoupled via lsf, iff its interactor is {pj} -block
diagonal.

Proof SuffLCLency If Xp(s) is {pj} -block
diagonal, so is the closed loop transfer matrix XTl(s)
produced by lsf (F,G) as in Lemma 2.

Necessity: If Tp,g(s)=blkdiag{T;j(s)}{pj} -block
diagonal and nonsingular, for some (F,G), then so is its
interactor (as lim[blkdiag{XTi(s)} blkdiag{T;i{(s)}] =

g¥®

blkdiag{KTl}, finite and nonsingular). But by Lemma 1,
X7(s) XTF (s) = bldeag{XT (s)} (rank G=p=m), that is

X1(s) 1is {pl} -block dlagonal QED

When p<m, the sufficiency proof still holds but
that of necessity does not since XTF,G $/ is not neces-
sarily equal to Xp(s) (unless rank KyG=p). Similarly
limited results, sufficient for p<m but necessary as
well only for p=m, have appeared in [2], and in [1][3]
using the geometric approach. The next result is a
tighter sufficient condition for p<m.

Theorem 5 A right-invertible system (rank T(s)=p)
can be {p{J - block decoupled via 1sf if there exists
some (mxp) real G such that T(s)=T(s)G has {pi} -block
diagonal interactor.

Proof If such & exists, then by Theorem &4, T(s) can
be {p;J —decoupled by some 1sf(F,G). Then (GF, GG) 1sf,
{p;} -block decouples T(s). . QED
Algorithms to calculate such G, if one exists, are de-
rived in [9].

A brief note on stability. Appropriate (F,G) which
decouple the system are given in Lemma 2. It has now
been shown in [12] that among the n roots of |Pp(s)]
(closed loop eigenvalues), q will he exactly equal to
the q invariant zevos of the open loop system and
dy(=degr|Xp(s)|) will be equal to the poles of
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X7l (s)(n=q+dp for p=m); when p<m there are k(=n-(d7+q))
more arbitrarily assignable eigenvalues. The dr eigen-
values can be arbltrarlly assigned by defining_the
generalized interactor Xp(s) = H(s)A(s) where 4(s)=

diag{8;(s)} with §;(s) any nomic polynomial of degree
£:19) and then using Lemma 2; Xr(s) has the same block
structure as Xp(s) and it satisfies Lemmas 2 and 3 and
therefore Theorems 4 and 5. Finally, it can be shown
that the only fixed zeros of |Pp(s)| are the {p;} -block

coupling zeros, a subset of the q invariant zeros, which

must lie in the left half s-plane for stability.
CONCLUDING REMARKS

The use of the interactor in the study of the de-
coupling problem unifies and expands existing results
involving conditions for triangular, diagonal and block
diagonal decoupling and helps resolve the stability
questions which arise. Here, as an introduction to this
approach, conditions for block diago nal decoupling via
1sf were presented.
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