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Abstract 

In this paper, a class of timed Petri nets, named pro- 
grammable timed Petri nets is used to model and study 
switched hybrid systems. Supervisory control of a hy- 
brid system in which the continuous state is transfered 
to a region of the state space in a way that respects 
safety specifications on the plant’s discrete and contin- 
uous dynamics is examined. The approach is illustrated 
using a power system example. 

1 Introduction 

In hybrid systems the behavior of interest is governed 
by interacting continuous and discrete dynamic pro- 
cesses. There are several reasons for using hybrid mod- 
els to represent dynamic behavior of interest. Reduc- 
ing complexity was and still is an important reason for 
dealing with hybrid systems. For example, in order to 
avoid dealing directly with a set of nonlinear equations 
one may choose to work with sets of simpler equations 
(e.g. linear), and switch among these simpler models. 
This paper considers systems that arise when a high- 
level discrete (-event) supervisor is used to coordinate 
the actions of various subsystems so that overall system 
safety is not compromised. These supervised systems 
can be viewed as a hybrid mixture of systems with con- 
tinuous dynamics (continuous variables) supervised by 
a switching law generated by a (discrete-event) supervi- 
sor described by discrete dynamics (discrete variables). 

In order to deal with highly concurrent processes, it 
is necessary to use discrete-event system models which 
are better suited to model system concurrency. One 
such model is the ordinary Petri net [7]. Petri nets 
can be viewed as a generalization of finite automata. 
Petri nets provide an excellent tool for easily capturing 
the inherent concurrency of a complex system as well 
as providing the means of modeling conflict within the 
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system. In general, a Petri net representation for a con- 
current process will be more compact (fewer vertices) 
than its associated automaton representation and with 
the use of partial order semantics [5] it is now possi- 
ble to search the Petri net’s state space in an efficient 
manner. Furthermore, recent results in the supervisory 
control of discrete-event systems using ordinary Petri 
nets [6] have made it possible to design supervisors in 
an efficient and transparent manner. 

In Section 2, a class of timed Petri nets named pro- 
grammable timed Petri nets [3] is presented. The main 
characteristic of the proposed modeling formalism is 
the introduction of a clock structure which consists 
of generalized local timers that evolve according to 
continuous-time vector dynamical equations. They can 
be seen as an extension of the approach taken in [I] 
and provides a simple, but powerful way to annotate 
the Petri net graph with generalized timing constraints 
expressed by propositional logic formulae. In Section 
3, programmable timed Petri nets are used to model 
switched dynamical systems. Section 4 discusses a 
Petri net approach to hybrid control. In the last sec- 
tion, the PTPN modeling of hybrid dynamical systems 
is illustrated with a power system example. 

2 Programmable Timed Petri Nets 

This section introduces a hybrid system model in which 
timed Petri nets [8] generate the switching logic of the 
system. In timed Petri nets the firing of a transition 
occurs over a time interval [TO, ~ f ] .  The length of this 
interval is called the transition’s holding time. A tran- 
sition t which starts to fire at time TO is said to be 
committed. The duration of the firing interval (holding 
time) can be characterized in a variety of ways. These 
time intervals can be controlled by introducing “local” 
timers which cause transitions to fire when specified 
conditions programmed by the system designer are sat- 
isfied. Essentially, this approach characterizes the hold- 
ing times by logical propositions defined over the times 
generated by a set of local clocks. Petri nets whose 
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holding times are defined in this way will be referred 
to as programmable timed Petri Nets (PTPNs). 

Let N = (P ,T , I ,O)  he an ordinary Petri net [7]. We 
introduce a set, X ,  of ,Y local clocks where the ith clock 
Xi is denoted by the triple ( i i , ~ i o , ~ i o ) .  xi0 E En is 
a real vector representing the clock’s offset. T ~ O  is an 
initial time (measured with respect to the global clock) 
indicating when the local clock was started. ii : SR“ -+ 
SRn is a Lipschitz continuous automorphism over En 
characterizing the local clock’s rate. Assume that the 
clock rate & is denoted by the automorphism f .  The 
local tame generated by the i th  clock will be denoted 
as xi which is a continuous differentiable function over 
XZn that is the solution to the initial value problem, 

for T > ria. We therefore see that the local timers 
are vector dynamical equations. The local time of the 
ith timer at global time r is denoted as xi(.) and the 
timer’s rate is denoted as X ~ ( T ) .  We say that the state of 
the ith timer is the ordered pair z i ( r )  = (~i(~),xi(r)). 
The interval [TO,  ~ f ]  over which a transition t will be fir- 
ing is going to be characterized by formulae in a propo- 
sitional logic whose atomic formulas are equations over 
the local times or clock rates of X .  

Definition 1 An atomic formula, p ,  takes one of 
the following forms: (i) a t ime constraint of the form 
h ( x i )  = 0 or h(zi) < 0 where h : Rn + R is a real Val- 
ued function, (ii) a rate constraint of the form xi = f 
which means that the i th  clock’s rate xi is equal to the 
vector field f : 9In -+ X n ,  and (iii) a reset equation of 
the form xi(.) = Zo which says that the i th clock’s 
local time at global time T is set to the vector 30. 

Definition 2 A well-formed formula (WFF) is define 
as any expression generated by a finite number of ap- 
plications of the following rules: (i) any atomic formula 
is a WFF, (ii) if p and q are WFFs, then p A q  is a WFF, 
(iii) if p is a WFF, then$ is a WFF. 

The set of all WFFs formed in this manner will be 
denoted as P .  Consider an ordinary Petri net, N = 
(P,T, I , O )  and a set of logical timers, X. A pro- 
grammable timed Petri net (PTPN) is denoted by the 
ordered tuple ( N ,  X ,  e p ,  e T ,  e,, eo) where the functions 

label the places, transition, input arcs, and output arcs 
(respectively) of the Petri net N with WFFs in P .  The 
syntax for WFFs is defined with respect to the under- 
lying Petri net structure of the form N = (P, T ,  I ,  0) 
and the set of local clocks X. The local clock state z at 
time r is said to satisfy a formula p E P if p is LLtrue” 
for the given clock state, z ( r ) .  The truth of the WFFs 
is understood in the usual sense. 

e p  : P -+ P ,  eT : T -+ P ,  el : I -+ P, and eo : o + P 

3 PTPN Modeling of Switched Systems 

A switched system is a continuous-time system whose 
structure changes in a discontinuous manner as the sys- 
tem state evolves into switching sets. More formally, 
such systems are often represented by the equations 

j : =  fi(&(TL 4 T ) )  (2) 

i(.) = 4 4 T ) ,  i(.-->> (3) 

where x : SR + En and i : E Z+ denote the continu- 
ous and discrete states of the system, respectively. The 
signal w : SR -+ Em is an exogenous disturbance. The 
continuous dynamics are controlled by a finite collec- 
tion of N control strategies D = { f i ,  f 2 , .  . . f ~ }  where 
fi : En x SRm + SRn,  i = 1, . . . , N are locally Lipschitz 
continuous functions. The discrete state of the system 
is controlled by a successor function q : E“ x Z+ -+ Z+ 
which determines the next possible discrete state i ( ~ )  
at time r given the current continuous state and the 
“previous” discrete state i(~-), where i ( ~ - )  denotes 
the left hand limit of i at time T .  

Let D = { f ~ ,  . . . , f ~ }  be a set of N Lipschitz contin- 
uous vector fields and let 6 = {hl,  . . . , h ~ }  be a set 
of smooth hypersurfaces in En. The functions in G are 
sometimes referred to as the guards of the system. Con- 
sider a network N = (P, T ,  I, 0) and a set of timers X 
where the i th  timer has rate ii, initial time xio, and re- 
set time .io. We label the places, transitions, and arcs 
of the Petri net N with WFFs defined over the timer 
states, zi. In particular, these labels are defined as fol- 
lows. (i) Let J ( p )  be a subset of {l, . . . , N }  associated 
with place p E P representing those clocks associated 
with place p .  e p ( p )  is a WFF of the form, 

~ P ( P )  = A ((ii = f j )  A (Ti0 = (4) 
i € J ( P )  

This formula is interpreted as follows. When place p is 
marked, then the timer states, zi, for all i E J ( p )  are 
reset to satisfy t p ( p ) .  In particular, this means that 
the initial time, ria, and the clock rate, &, are reset to 
the values specified in the equation. The label l p ( p )  
is therefore used to represent switching of the system’s 
vector field when events occur (i.e. transitions fire). (ii) 
e T ( t )  is chosen to be a tautology. (iii) Let J ( p , t )  be a 
subset of { 1, . . . , M }  denote a set of hypersurfaces in G 
associated with the input arc, ( p ,  t ) .  er ( ( p ,  t ) )  is chosen 
to be a WFF whose truth commits the transition t to 
firing provided this transition is already enabled. In 
particular, we confine our attention to WFFs of the 
form 

~ I ( ( P Y ~ ) )  = A (hi(%(.)> < 0) (5) 
i E  J ( p , t )  

This condition allows t to be committed to firing when 
the continuous state (at time r )  satisfies the listed set 
of inequalities with respect to the hypersurfaces in 4. 
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We refer to [ ~ ( ( p ,  t ) )  as the input guard equation. (iv) 
& ( ( t , p ) )  is chosen as a WFF whose truth completes 
the firing of the transition, t ,  assuming that transition 
t is enabled and committed. These conditions also take 
the same form as the input guard equation ( 5 )  labeling 
the network’s input arcs. 

Use the guidelines mentioned above, we can construct 
PTPN for switched systems characterized by a gener- 
alization of equations (2) and (3). The generalization 
we consider treats the discrete state i in equation (3) as 
a vector in (0, l } N  rather than a nonnegative integer 
in Z+. Let i E ( O , l } N  be represented by the vector 
i = [ i l , i 2 , .  . ., i N ]  where ij E {O ,1 }  for all j = 1 , .  , . , N 
is the j t h  element of the vector i. We can therefore gen- 
eralize equations (2) and (3) as follows. Let the map- 
ping f in equation (2) be written as f = [ f ~ ,  fi,. . + ,  fn] 
where fj : Rn x Rm x (0 ,  l}N + R is a scalar function 
representing the rate of change for the j t h  continuous 
state. Also let the mapping q in equation (3) be written 
as q = [ q 1 , q 2 , .  . . ,qn]  where q j  : R* x (0 ,  l } N  + (0,1} 
is a scalar function representing change of j t h  discrete 
state. We assume f and q are both partial functions of 
the discrete vector i E ( 0 ,  l}N which means that f and 
q may not exist for all i. We represent the switched 
system by the equations 

$ j ( ~ )  = fj(z(~),w(r),i(r)), j = 1 , .  . . ,n  (6)  
i k ( T )  = q k ( X ( T ) , i ( T - ) ) ,  k = 1 , .  . . , N  (7) 

We say the model is well-posed if for all i,i‘ E 
( O , l } N  such that f j ( z , w , i )  and fj(z,w,i’) exist, then 
fj(z, w, i) = fj(z, w,  i’) whenever the Zth components, 
il and ii, are marked (i.e. il = ii = 1) .  This condition 
ensures that the marking of the 2th component of the 
discrete state i has a unique set of differential equations 
associated with it. 

We can now associate a Petri net N = (P, T ,  I, 0) with 
the switched system characterized by equation ( 6 )  and 
(7), by letting the set of places be P = ( 1 , 2 , .  . . , N }  
and the set of transitions T = { ( i , j )  E (0 ,  l}N x 
(0 ,  l}Nlq(z,i) = j exists }. The input and output 
arcs are obtained by examining the transitions in T. 
The set of input arcs are characterized by the equation 
I = ( ( p , t )  E P x Tlt = (i,j),ip = 1) and the set of 
output arcs by 0 = ( ( t , p )  E T x Plt = (i,j),jp = 1). 

4 Supervision of Hybrid Systems 

This section describes how switching policies that guar- 
antee the safe operation of hybrid systems can be in- 
corporated in the PTPN model. In particular, the 
supervisory control of a hybrid system in which the 
continuous state is transfered to a region of the state 
space in a way that respects safety specifications on the 
plant’s discrete and continuous dynamics is examined. 

The discrete specifications represent logical constraints 
on the switching policy (for example mutual exclusion 
constraints) and are expressed as linear predicates on 
the marking of the Petri net. A DES control method, 
namely supervisory control of Petri nets based on place 
invariants [lo, 61 is applied to satisfy these discrete 
specifications. In view of the continuous dynamics, an 
algorithm based on the notion of a common flow region 
is used to determine the exact mode switching between 
the subsystems and to characterize the length of time 
each subsystem will be active. This is accomplished by 
determining the set of hypersurfaces {hi}, i E J ( p , t )  
which are used to label the input and output arcs (see 
equation (5)). 

We introduce now some additional notation that will be 
useful later in the section. The firing times of transition 
t are described by at (n) ,  n E Z+, where at(k) E !J? 
represents the duration of the kth firing of transition t. 
During the time interval d ( k )  the tokens of the input 
places of transition t do not change. These tokens are 
put into the output places of t upon the completion 
of firing of the transition, according to the enabling 
condition of the untimed Petri net. We assume that 
0 < A 5 at(n) < 00, for some A E R, for all firings 
n and transitions t. Next, a firing event is defined as 
the pair ( t ,  T) which denotes that the transition t starts 
firing at  time r. Consider the sequence of firing events 

s =   ti,,,^^), (ti, ,T I ) ,  . . . , ij E (1,. . . , N } ,  j = O , 1 , .  . . 
where j denotes the ordering of the transitions that fire. 
For example, s = ( t l , ~ ~ ) ,  ( t 3 , q ) ,  . . . denotes that tl 
fires at  TO,  next t 3  fires at  71 and so on. The firing time 
intervals are defined by the equation at; ( I C )  = T k + l  - T k .  

At the kth firing of the network, the transition ti starts 
firing (at time T k )  for &(k) time units (until T k + 1 ) .  

In the nonlinear control literature, switching has been 
used to expand the domain of attraction of operation 
points in control systems [4]. In the hybrid systems 
case, we assume that for each control strategy there 
exists a unique equilibrium point for the resulting con- 
tinuous subsystem fi, i = 1 , .  . . , N .  Each equilibrium 
has a domain of attraction associated with it. The idea 
is to switch at  discrete time instants from one mode 
(subsystem fi) to another in a way that the system 
gradually progresses from one equilibrium to another 
towards the final equilibrium. This can be formalized 
using an invariant based approach for hybrid systems 
proposed in [9]. A common flow region for a given tar- 
get region, is defined as a set of states which can be 
driven to the target region with the same control pol- 
icy. A common flow region can be determined by a 
set of hypersurfaces. The basic property of the regions 
defined by these hypersurfaces is that their boundaries 
satisfy certain conditions that preclude the state tra- 
jectories from crossing them. Sufficient conditions for a 
set of hypersurfaces to form a common flow region are 
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given in [9]. These hypersurfaces can be either invari- 
ant under the vector field of the given control policy 
(see [9]) or cap boundaries for the given vector field. 
For a hypersurface hc to form a cap boundary for a 
given vector field f and common flow region B ,  the 
following condition must be satisfied 

In this paper, a Lyapunov approach is followed to effi- 
ciently compute hypersurfaces that form common flow 
regions for each control policy. Each common flow 
region is identified as a subset of an invariant man- 
ifold defined by a Lyapunov functional and is asso- 
ciated with a control policy. Consider the hypersur- 
face h,(x) that forms a cap boundary for the common 
flow region B. Assume that there exists an appropriate 
Lyapunov function V ( z )  for the vector field f .  Then 
R, = {z E %"I V ( z )  5 c}  is bounded and the hyper- 
surface h,(s) = V ( z )  - c is a cap boundary candidate. 
The constant parameter c can be selected appropri- 
ately so that h,(x) bounds the common flow region 
B. Based on these results, appropriate cap boundaries 
can be determined efficiently using Lyapunov theory. 
Furthermore, the design based on Lyapunov functions 
will exhibit desirable robustness properties. The next 
proposition gives sufficient conditions for the state to 
progress from one equilibrium point to another. 

Proposition 1 Let f i , ,  f i ,  E D satisfy the following 
assumptions. Each f i  admits an isolated equilibrium 
point Z i ,  and %i i s  asymptotically stable w.r.t. fi. For 
each f i  there exists an  appropriate Lyapunov function 
V ,  : W + 8 and Ri  = { x  E !Rnl v(z) 5 ci} such that 

V ( x )  > 0 ,  v x  E Ri 
V ( x )  -+ co as (1x1) -+ co 

V ( z )  < 0 ,  v x  E Ri 
(9) 

I n  addition, assume that Ri, n Ri, # 0 and 
Zi, E R' = i n t (R i ,  fl R i z ) ,  then for every xo E 
Ri, there exists a switching sequence S ( X O , T O )  = 
(i l l  (ko)), (iz, oti2 (k1)) which drives the state to  a 
region R of the equilibrium point Z i ,  . 

Figure 1: The example power system 

I Governor Sync1 
hln 

uonous 
,..,chine 

Figure 2: Simplified generator block diagram 

Corollary 1 Suppose there exists a switching sequence 
accepted by the controlled Petri net such that every pair 
( f i j ,  f i j+ , )  satisfies Proposition 1 . Given a target re- 
gion R such that l i m  E int(R), there exists switch- 
ing policy to drive the continuous state from any initial 
condition xo E Rio to the region R in finite time. The 
firing time intervals a t (n)  will be chosen so that the 
switchings occur while x E i n t (R i j  fl Rij+,). 

The switching policy is implemented by assigning 
WFFs to the input and output arcs of the controlled 
Petri net that have the form of equation ( 5 )  and repre- 
sent the regions where switchings are allowed to occur. 

The following corollary gives sufficient conditions for 
a switching sequence generated by the controlled Petri 
net to  drive the continuous state zo to a target region of 
the state space. It is assumed that the initial conditions 
belong to  the region of attraction Rio of the first control 
policy and that the state progresses towards Zi,,, E Ri,,, 
by allowing switchings to occur on the intersection Ri, fl 
Rij+l of consecutive invariant manifolds. In the case 
when all the pairs of subsystems satisfy Proposition 1, 
the set Rij n will be nonempty and the proof is 
straightfor ward. 

1 620 

5 Analysis and Design of Power Systems using 
PTPN 

In this section, a power system example is used to illus- 
trate the use of the PTPN in modeling multiagent sys- 
tems. The supervisor control methodology presented 
in Section 4 is used to drive the setpoint of the system 
to a desired region of the state space. 

We consider the 4 node power system shown in Fig. 1. 
Each node in the figure represents a generator and 
the arcs denote the transmission lines between genera- 
tors. A simplified block diagram for each generator is 
shown in Fig. 2. A generator consists of a synchronous 
machine and a governor that controls the mechanical 
power input to  the rotor. The continuous state of the 
ith generator is characterized by its rotor angle, O i ,  
the rotor angle's rate of change O i ,  the variation in the 
mechanical power p m , ,  and the change si in the valve 
displacement that determines the input to the turbine. 
Without loss of generality, we assume that node 4 is a - " .  
reference node, so that = Bq = p,, = sq = 0. The 
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continuous state of the system x E $2" is 

T x = [e, ,  e l ,  P,, s l ,  e2, d2, P,, , s2, 0 3 ,  e3,  P,, , s3]  

The differential equations for the ith generator are 

0 0  

B i = [  ] , a n d u =  
- 
TG 

where Di, Mi,  TT, TG, R are constants determined by 
the physical characteristics of the generator. In the 
above equations, di represents the variation in the load 
di = wi + Spi which consists of two terms. The term 
wi represents a significant change in the load that the 
system should response to and Spi represents the vari- 
ation of the real power due to the generator coupling. 
From the power flow equation we obtain that 

- - 
211 0 0 
T1 0 0 

0 212 ra 0 . 
0 0 U3 

0 0 T3 - 

where bij is a constant based on the transmission line 
parameters. The input 7-i represents the increment in 
the speed changer position which determines increases 
or decreases in the power demand. From the preceding 
equations, we obtain the following linearized system. 

A11 A12 A13 0 
= [ 2:: A22 A23 ] z+ [ B2 ] 'U A32 A33 0 B3 

z = cz = [e1,e2,e3]T 
where 

r o  1 0 0 1  

r o  1 0 0 1  

The initial setpoint is chosen so that Bi = 0, i = 1 , 2 , 3 .  
It is assumed that a load change occurs at r = 0 and 
the increment of the speed changer ri is determined 
according to a prespecified rule to generate allocation 
levels. Both ui(t)  and ~ i ( t )  are described by known 

Mode 0 Mode 1 

+---- 1 1 ,  -- 
D,= 0 1  

Node 1 1 

Node 3 5 

Figure 3: Original Petri net model of the power system 

step inputs. The objectives for the allocation of gener- 
ation is to maintain zero frequency error and to be in 
accordance with dispatching principles. The allocation 
of generation results in a new setpoint. The control 
objective is to drive the new setpoint of the system in 
a region where le i (  < 0.3. A switching policy is used 
to help achieve this goal. It is assumed that each gen- 
erator has two winding ratios to choose from, Di0 and 
Dil ,  for i = 1 , 2  and 3. It is assumed that Di0 = 0.1 
and Dil = 0.5. The i th generator (node) is in discrete 
state 0 if the first winding ratio is used (i.e. Di = Dio) 
and is in state (mode) 1 otherwise. There are two con- 
ditions which the generators need to respond to. First, 
the generator must respond to a large setpoint, there- 
fore the supervisor strategy forces the i th generator to 
switch from mode 0 to 1 when /Oil > 0.25. Second, if a 
load change is detected and node is in mode 1, then the 
generator will switch to mode 0 to be able to track the 
load faster (smaller damping). The switch from mode 
1 to mode 0 will be constrained to reset the operating 
mode after 5 seconds. 

The strategy outlined above can be applied to each 
generator in a decoupled manner. We can therefore 
construct a network, n/, to represent the logical states 
of the system. We generalize the discrete state i to 
a vector i = [ i l ,  iz,. . . , i ~ ]  where the kth component 
represent the marking of the kth place. We let the 
set of places P = { 1,2 , .  . . , 6 }  represent three genera- 
tors in two different modes in the following way. Let 
place 2i - 1 represent generator i in mode 0 and place 
2i represent generator i in mode 1, i = 1,2 ,3 .  It is 
easy to show that the preceding construction satisfies 
the L'well-posed7' condition. We can therefore asso- 
ciate [bi ,  #ilii,?jmi, Si], (Di = Die) with place 2i - 1 and 
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Mode 0 Mode I 

Figure 4: Controlled Petri net model of the power system 

[ei,  gi,pmi , Si1 , (Di = D i l )  with place 2i, ( i  = 1,2,3) 
ks timers. We also associate each place with a local 
timer q. Six transitions are then derived to represent 
the switching policy between the different modes of the 
generator. The PTPN model of the original system is 
shown in Fig. 3. 

In practice, an additional requirement is due to the 
fact that the generators are coupled by the transmis- 
sion lines shown in Fig. 1. It is shown in [2] that if 
two neighboring generator nodes (i.e. nodes 1 and 2 or 
nodes 2 and 3) are both in mode 1, the rotor angle of 
the generators will exhibit large variations in the pres- 
ence of the disturbance. The additional requirement is 
implemented via supervisory control [6] that prevents 
adjacent generators from being in mode 1 at the same 
time. The supervised system is shown in Fig. 4. The 
supervisor is implemented by adding the control places 
7 and 8 to ensure that adjacent generators enter mode 
1 in a mutually exclusive manner. 

According to Proposition 1, the switching policy de- 
scribed above will drive the new setpoint to the de- 
sired region if we can guarantee that the switchings 
will occur inside the regions of attraction of the corre- 
sponding equilibrium points. Each equilibrium point is 
determined by the matrix A and the step inputs vi and 
ri. The matrix A is Hurwitz for both modes 0 and 1, 
and therefore, the region of attraction of the equilib- 
rium for each linearized system can be estimated by a 
Lyapunov functional. 

A particular case is used to illustrate the supervisor 
control methodology. It is assumed that initially, gen- 
erators 1 and 3 are in mode 1 and generator 2 at mode 
0. A known load change occurs in the generators 1 and 
3 at t = 0. Generators 1 and 3 will switch to mode 0 
where they will soon reach the steady state. After 5 
seconds the generators will switch to mode 1 to drive 
the new setpoint to a desired region so that the sys- 
tem is protected from random load disturbances. For 
this to be possible, we require that the switching will 
occur while the state lies in the region of attraction of 

Figure 5: Simulation results 

the desired setpoint. For example, the trajectories of 
Bi,i = 1 ,2 ,3  when VI = r1 = 0.5,v2 = r2 = 0 and 
213 = 1-3 = 0.3 are shown in Fig. 5.  
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