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Petri Net Supervisors for DES with Uncontrollable
and Unobservable Transitions

John O. Moody, Member, IEEE,and Panos J. Antsaklis, Fellow, IEEE

Abstract—A supervisor synthesis technique for Petri net plants
with uncontrollable and unobservable transitions that enforces the
conjunction of a set of linear inequalities on the reachable mark-
ings of the plant is presented. The approach is based on the concept
of Petri net place invariants. Each step of the procedure is illus-
trated through a running example involving the supervision of a
robotic assembly cell. The controller is described by an auxiliary
Petri net connected to the plant’s transitions, providing a unified
Petri net model of the closed-loop system. The synthesis technique
is based on the concept of admissible constraints. An inadmissible
constraint cannot be directly enforced on a plant because of the un-
controllability or unobservability of certain plant transitions. Pro-
cedures are given for identifying all admissible linear constraints
for a plant with uncontrollable and unobservable transitions, as
well as methods for transforming inadmissible constraints into ad-
missible ones. When multiple transformations of this kind occur, a
technique is described for creating a modified Petri net controller
that enforces the union of all of these control laws. The method is
practical and computationally inexpensive in terms of size, design
time, and implementation complexity.

Index Terms—Discrete event systems, flexible manufacturing
systems, high-level synthesis, manufacturing automation, Petri
nets, supervisory control.

I. INTRODUCTION

A. Modeling DES with Petri Nets

I T IS often necessary to regulate or supervise the behavior
of discrete event systems (DES) to meet safety or perfor-

mance criteria, e.g., preventing automated-guided vehicles from
colliding on a factory floor by restricting their access to cer-
tain mutually traveled zones. DES supervisors are used to en-
sure that the behavior of the plant does not violate a set of con-
straints under a variety of operating conditions. The regulatory
actions of the supervisor are based on observations of the plant,
resulting in feedback control.

It is common to see discrete event systems modeled as finite
automata [22], [28]. Methods exist for designing controllers
based on automata system models; however, these methods
often involve exhaustive searches or simulations of system
behavior, making them impractical for systems with large
numbers of states and transition-causing events.
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Modeling DES with Petri nets may help address some of
these difficulties. Petri nets [3], [20], [21], [24] have a simple
mathematical representation employing linear matrix algebra
making them particularly useful for analysis and design. Petri
net models are normally more compact than automata-based
models that represent the same system behavior and are better
suited for the representation of systems with repeated struc-
tures and flows, but large reachable state spaces. Petri nets allow
for the simultaneous occurrence of multiple events without suf-
fering from increased model complexity, as is the case with
automata. In addition, they have an appealing graphical repre-
sentation that makes it possible to visualize the state-flow of a
system and to quickly see dependencies of one part of a system
on another.

The intuitive graphical representation and the powerful alge-
braic formulation of Petri nets has lead to their use in a number
of practical fields. Petri nets are used to model multiprocessor
computer systems, computer networks, digital communication
protocols, process control plants, queuing systems, and flexible
manufacturing cells, among others. Often times, the graphical
representation of a plant as a Petri net model is enough for an
engineer to design a controller or supervisor for the plant. Many
control techniques exist that involve recognizing and then ma-
nipulating certain structures that commonly appear in Petri net
models. Other techniques exist for automatically verifying the
reliability of these control designs. A survey of a variety of
supervisory control procedures for Petri nets can be found in
[8]. Representing the controller itself as a Petri net makes the
verification of the combined plant/controller system simpler, as
well as reducing the number of computational tools required to
model the overall system. Unfortunately, even when the con-
troller is modeled as a Petri net, this cyclic technique of design
and verification can become cumbersome when the plant model
is large. This process leads to the desire for an efficient method
for the automatic generation of controllers based on the plant
and constraint data.

B. Invariant-Based Controllers and Linear State Constraints

A method for automatically deriving supervisory controllers
for DES described by Petri nets appears in [19] and [31]. The
control designer is presented with a Petri net model of a DES and
a set of linear constraints on the state space of the DES, and the
control goal is to ensure that the constraints are met during the
plant’s operation. The method is based on the idea that specifi-
cations representing desired plant behaviors can be enforced by
making them place invariants of the feedback controlled system.
The resulting controllers are themselves Petri nets and identical
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to the monitors [7] of Giuaet al., which were derived indepen-
dently using a different methodology. This technique forms the
basics of the synthesis procedure described in this paper and is
summarized in Section III.

Linear inequalities can be used to describe a large class of for-
bidden state problems. The basic synthesis procedure requires
that the set of allowed states be a convex region described by
the conjunction of several linear inequalities. The modified con-
trol structure of Section VI expands the class of realizable for-
bidden state problems by allowing nonconvex feasible regions
in the form of disjunctions of linear state inequalities. Thus, the
control procedure can be applied to many common problems
seen in flexible manufacturing, process control, and communi-
cation networks, including serial, parallel and general mutual
exclusion problems [4], [7], and the modeling and allocation of
shared resources [17].

Ensuring system liveness or avoiding deadlock is a common
and important supervisory control goal. The existence of
liveness-ensuring supervisors for Petri nets with uncontrollable
transitions has been studied by Sreenivas [26], [27]. Techniques
for deadlock avoidance have been proposed by a variety of
researchers; see [1], [2], [5], [10], [11], and [29] for details.
These techniques involve analysis of thesiphons or other
similar structures within the Petri net plant. Often, the resulting
controllers can be expressed by supervisors enforcing sets of
linear inequalities on the reachable plant states. Combining
these techniques with the supervision approach of this paper
can then be used to prevent deadlock or ensure liveness for
plants with uncontrollable and unobservable transitions.

A major goal in the field of DES control is the synthesis of
supervisors under conditions where certain state-to-state tran-
sitions cannot be prevented by any action from the supervisor,
i.e., conditions under which certain transitions areuncontrol-
lable. The problem is then to design a controller that prevents
states from occurring that violate the behavioral constraints di-
rectly or that might lead to a violation of the constraints through
the action of uncontrollable transitions.

Li and Wonham [13] have made important contributions re-
garding the enforcement of linear constraints on Petri net plants
with uncontrollable transitions. These authors show that op-
timal, or maximally permissive, control actions that account for
uncontrollable transitions can be found by repeated applications
of an integer linear programming (ILP) problem, assuming that
valid control actions actually exist and that the uncontrollable
portion of the net contains no loops. They also give sufficient
conditions under which the solution to the ILP has a closed-form
expression. In these cases, the control law can be enforced by
a feedback Petri net supervisor of the type described in Sec-
tion III or VI of this paper. The computation of the control
law, described in Sections IV and V presented here involves
only matrix algebra and is more desirable, computationally, than
analytically solvingan ILP. The tree structure assumed by Li
and Wonham is only sufficient, not necessary. For example, the
structure of the uncontrollable part of the plant in Section VI-B
does not have a “tree structure;” in fact, it contains a loop; how-
ever, a maximally permissive supervisor was found and imple-
mented using a modified Petri net of the kind described in Sec-
tion VI.

The concept of uncontrollability is associated with the dual
concept of unobservability. It is possible that a DES plant might
contain certain state-to-state transitions that cannot be detected
by the supervisor. The mathematical representation of these
unobservable events is analogous to uncontrollable transitions.
Both uncontrollable and unobservable transitions are covered
by the design procedures of this paper.

C. Summary of Contents

Following the review of the algebraic model of Petri nets in
Section II, a brief summary of the basic synthesis procedure
of [31] appears in Section III. The primary contribution of this
paper is the extension of these results to the synthesis of Petri
net supervisors for plants with uncontrollable and unobservable
transitions. One possible approach to this problem is to construct
a supervisor that searches through the uncontrollably reachable
markings of the plant at every iteration of the plant’s evolution.
This potentially expensive search is avoided here through the
concept ofadmissible constraints, introduced in Section IV. A
constraint is called admissible when, among the states that sat-
isfy the constraint, none could lead (uncontrollably) to a state
that does violate the constraint. Admissible constraints may be
simply and directly enforced on a plant without requiring that
the supervisor search through uncontrollably reachable mark-
ings. Computational techniques for generating admissible con-
straint transformations are presented in the Appendix, and su-
pervisors for enforcing admissible constraints can be synthe-
sized using the technique of Section III.

Section V shows how to characterize all admissible linear
constraints for a given Petri net. When a constraint is found to
be inadmissible, this characterization can be used to find the set
of all admissible constraints that have feasible regions that lie
within the feasible region of the original constraint. Section VI
shows how to construct a supervisor that will enforce the log-
ical union of all these admissible constraints (a disjunction of
linear inequalities), thus providing for a high degree of plant
freedom while accounting for uncontrollable and unobservable
transitions.

Section VII shows how real-time constraints can be enforced
by extending the supervision method to timed Petri nets. Con-
cluding remarks are given in Section VIII.

II. PETRI NET FUNDAMENTALS

A Petri net is a directed bipartite graph. The structure of a
Petri net is described by , , , , where and are
disjoint sets representing the vertices of the graph, known as
placesand transitions, and and are integer matrices
with nonnegative elements representing the flow relation be-
tween the two vertex types.

Places in a Petri net holdtokens, the distribution of which
indicates the net’s state or itsmarking. Transitions direct the
flow of tokens between places, thus thefiring of a transition is
a state-changingeventin a DES model. A Petri net’sincidence
matrix represents the weighted connections of directed arcs be-
tween its places and transitions. It is composed of two matrices,
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, representing arcs from places to transitions, and, rep-
resenting arcs from transitions to places

The incidence matrix is used to construct a difference equa-
tion that describes the evolution of the net’s state

(1)

where

(2)

where
set of integers;
net’s state ormarking vector;
input or firing vector;

and . The notation indicates that every
element of the marking and firing vectors is nonnegative at all
times. This element-by-element interpretation of inequalities
will be used throughout this paper whenever vectors or matrices
appear on either side of the inequality symbol.

The nonnegativity conditions in (2) lead to the Petri nettran-
sition enabling rule.A firing vector is feasible (represents a
valid set of transition firings) if and

(3)

where the iteration counterhas been dropped for convenience.
If the Petri net’s transitions contain no self loops, i.e., the posi-
tions of the nonzero elements in and are mutually ex-
clusive, then the transition enabling rule can be written as

(4)

Care must be taken when using (3) or (4) whenindicates
the concurrent firing of multiple transitions. A variety of dif-
ferent techniques exist for handling concurrency. Concurrency
may not be allowed at all, in which casewould be a zero vector
with a single element equal to one. Concurrency may be allowed
only when each of the indicated transition firings could occur
one after the other in any order. In this case,must satisfy (3),
or each transition firing indicated inmust independently sat-
isfy (4) as well as the completevector. If (4) is used without
this check for independently enabled transitions, then certain
concurrent firings may be allowed even though some or all of
the individual transitions indicated in the firing could not fire
by themselves. The choice of which of these methods to use is
dictated by the modeling requirements and the particular plant.

Petri netplace invariantsare fundamental to the supervisor
synthesis technique described in the following section. A place
invariant is an integer vector that satisfies

reachable

Thus, is a constant for all reachable states ifis a place
invariant. Place invariants can be computed by finding solutions
to the equation

III. I NVARIANT -BASED CONTROL SYNTHESIS

A. Description of Method

The system in need of supervision, theplant net,is modeled
by a Petri net with places and transitions. The plant’s in-
cidence matrix is . The controller net is a Petri
net with incidence matrix made of the plant’s
transitions and a separate set of places. Thecontrolled system
or controlled netis the Petri net with incidence matrix

made of both the original plant and the added con-
troller. The control goal is to force the plant to obey constraints
of the form

(5)

where is the marking vector of the plant,
, and . The inequality is with respect to

the individual elements of the two vectors and and can
be thought of as the logical conjunction of separate linear
inequalities.

Inequality (5) can be transformed into an equality by intro-
ducing an external Petri net controller that contains places that
represent nonnegative “slack variables.” The constraint then be-
comes

(6)

where is the marking of the controller. Note
that because the number of tokens in a Petri net place
cannot become negative; thus, (6) implies inequality (5). The
closed-loop system has the following Petri net structure:

(7)

The controller is computed by observing that the introduction
of slack variables forces a set of place invariants on the overall
controlled system defined by (6). The results in the propositions
below have been introduced and discussed in [15], [18], [19],
and [31].

Theorem 1—Invariant-Based Controller Synthesis:If

(8)

then a Petri net controller, with initial marking

(9)

(10)

enforces constraint (5) when included in the closed-loop system
(7), assuming that the plant’s transitions are controllable and
observable.

If inequality (8) is not true, then the constraints cannot be
enforced by any controller because the initial conditions of the
plant lie outside the range allowed by the constraints.

Proof: If inequality (8) is not true, then obviously
, and at least one row of exists, such that and

the initial conditions of the plant violate the constraint. If the
inequality is true, then (10) shows that the initial conditions of
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Fig. 1. The piston rod robotic assembly cell with its initial controller.

TABLE I
PLACE DESCRIPTIONS FORFIG. 1

the controller are defined as a vector representing the slack in
each of the constraints represented by .

Equation (9) forces (6) to be place invariants of the
closed-loop system (see [18], [19], and [31]), thus inequality
(5) will be true for all reachable markings of the closed-loop
system.

Proposition 2—Invariant-Based Controllers are Maximally
Permissive: Given a plant and a set of enforceable constraints
(5), a controller constructed according to the rules of Theorem 1
only acts to disable transitions when the firing indicated by the
given vector leads to a state forbidden by (5).

Proof: According to the rules of Petri net evolution, the
controller will only disable transitions when the firing indicated
by would cause the marking of at least one of its places to
become negative. Because (6) represents a set of invariants in
the closed-loop system, any negative element inindicates
a violation of (5), and all states allowed by (5) correspond to
nonnegative values in .

It has also been shown in [31] that the controller only induces
place invariants in the closed-loop system that are specifically
described by (6). All place invariants of the closed-loop system
are accounted for by those originally present in the plant and
those specifically required to enforce the constraints.

B. Example—The Piston Rod Robotic Assembly Cell

The piston rod assembly cell application is partially based on
a similar plant described in [4, ch. 8]. The Petri net model of the
plant is shown in Fig. 1, and Table I details the meaning of each
place in the net. The number of tokens in each place signifies
the number of resources or robots engaged in the activities de-
scribed in Table I. The assembly of each part requires work by
two different robots. An S-380 robot is used to prepare and align
the parts for assembly, and an M-1 robot installs the cap on the
piston rod. Places , , and in Fig. 1 are the components of
a supervisory controller, the design of which is covered here.

Three S-380 and three M-1 robots are available in the as-
sembly cell. Two piston pulling tools exist. These resource con-

straints are translated into linear inequalities on the state space
of the plant

(three S-380 robots) (11)

(three M-1 robots) (12)

(two piston pulling tools). (13)

Each inequality is enforced by a separate controller place. The
connections of these three places, , and , to the plant and
their initial markings are calculated using Theorem 1, resulting
in the maximally permissive supervisor shown in Fig. 1

IV. A DMISSIBLE CONSTRAINTS AND CONTROLS

A. Uncontrollable and Unobservable Transitions

A transition is calleduncontrollableif the firing of that transi-
tion may not be inhibited by an external action. The freedom of
an uncontrollable transition to fire is limited solely by the struc-
ture and state of the plant.

In order for a Petri net controller to inhibit a transition, it
must contain an arc from a controller place to the transition. The
transition will be disabled if the number of tokens in the control
place is less than the arc weight.

A transition is calledunobservableif the firings of that transi-
tion cannot be directly detected or measured. Because the firing
of an unobservable transition cannot be detected, a controller
state change cannot be triggered by such a firing.

For a Petri-net–based controller, both input and output arcs
to the plant transitions are used to trigger state changes in the
controller.A Petri net controller cannot have any connections
to an unobservable transition, thus all unobservable transitions
are also implicitly uncontrollable;of course, an uncontrollable
transition may or may not be unobservable. We can imagine a
situation in which the occurrence of some event in a plant could
be blocked without the controller ever receiving any feedback
relating directly to that event, but, in practical situations, the
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ability to inhibit an event is usually coupled with the ability to
detect occurrences of that event. For this reason, this limitation
on Petri-net–based controllers is not too severe.

B. Constraint Transformations

Given a set of constraints, , a supervisor must work
to ensure that the constraints are never violated directly and may
never be violated through the firing of uncontrollable transi-
tions or through incomplete knowledge because of unobserv-
able transitions. In order to avoid expensive online searches by
the supervisor through the uncontrollably reachable markings
of the plant, the approach taken here is to actually modify the
constraints themselves such that the new constraints account
for uncontrollability and unobservability. The following defini-
tions are useful in understanding the motivation for the trans-
formation of constraints. The definitions are with respect to a
plant with possible uncontrollable or unobservable transitions
and constraints on the marking behavior of the plant in the form

. Unobservable transitions are also assumed to be un-
controllable.

Definition 3: An admissible marking is a marking such
that the following occurs.

1) .
2) For all markings reachable from through the firing

of uncontrollable transitions, .

If either of these conditions is not met, then the marking isin-
admissible.

Definition 4: Given a plant with initial marking
, anadmissible constraintsatisfies two conditions.

1) .
2) For all reachable from through any path of

consecutively reachable markings,
, where

for

is an admissible marking.

If a constraint does not satisfy both of these conditions, then it
is inadmissible.

If a constraint is admissible, then condition 2) of Definition 4
indicates that the firing of uncontrollable transitions can never
lead from a state that satisfies the constraint to a new state that
violates that constraint. Note that the admissibility of a partic-
ular marking does not imply that the marking is actually reach-
able, either because of the initial marking of the plant or because
of the restrictions of a supervisor.

An admissible constraint will only allow admissible mark-
ings; however, admissible markings may exist that could be
reached by the uncontrolled plant that cannot be reached under
maximally permissive supervision. Definition 4 incorporates
this by checking the admissibility of markings that were
achieved by following paths in which all intermediate mark-
ings satisfy the constraint. This set of reachable, admissible
markings is similar to the set defined in [12].

Example: The Petri net of Fig. 2 contains two uncontrollable
transitions: and . Tokens in places and cannot be pre-
vented from freely traveling between these two places. How-

Fig. 2. Transitions 2 and 3 are uncontrollable.

ever, can be used to stop the introduction of new tokens into
and , and can be used to prevent tokens from leaving.
The constraint

(14)

is inadmissible. The initial state of the plant
satisfies the constraint, but the uncontrollable firing ofwould
lead to the state , which violates (14). The
constraint fails condition 2) of Definition 4.

The constraint

(15)

is admissible. The current state of the plant satisfies the con-
straint, and for any state that satisfies the constraint, no firing of
uncontrollable transitions occurs that would lead to a state that
does not satisfy it. The marking of is affected only by the fir-
ings of transitions and , both of which are controllable.

If is inadmissible, then it is desirable to find another
constraint such that is an admissible
constraint, and for all such that is also
true. In the example above, we could replace constraint (14) with

(16)

This constraint is admissible according to Definition 4, and all
reachable states that satisfy (16) also satisfy (14). Thus, con-
straint (14) could be enforced by designing a controller for con-
straint (16) using the technique of Section III. Unfortunately,
a controller designed this way may not be maximally permis-
sive. The method of handling uncontrollable/unobservable tran-
sitions in Section V of this paper follows along these lines, but
it also includes the idea of findingall constraints that
meet the criteria above. Section VI then shows how to construct
a controller that enforces the disjunction of these inequalities,
allowing for a high degree of plant freedom.

C. Petri-Net–Modeled Supervisors

The supervisors used in this paper are modeled by Petri
nets. Uncontrollable and unobservable transitions can cause
problems for Petri-net–based supervisors because of limitations
in their modeling power; however, Petri net supervisors are still
useful for several reasons. Unified plant/controller models are
elegant, facilitating implementation and closed-loop system
analysis. The evolution of Petri net models is inexpensive to
compute, facilitating their use in real-time control applications.
Desirable Petri net qualities, such as automatic handling of
concurrent events, are maintained with unified plant/controller
Petri net models. Though the decision power of a Petri net
supervisor is not unlimited, a good variety of DES control
problems can be effectively and efficiently solved through their
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use. Recognizing the controller as a Petri net facilitates under-
standing of what can and cannot be done with the supervisor,
as will become evident in the material below.

For an invariant-based Petri net supervisor to be realizable
on a plant with uncontrollable and unobservable transitions,
the constraint it is enforcing must be admissible. Proposition 5
provides necessary and sufficient conditions for any behavioral
constraint to be admissible. Definitions 3 and 4 are written
specifically for linear state-based constraints; however, they can
be thought of in terms of general behavioral constraints. That is,
Definition 3 requires that a particular marking and all behaviors
achieved through the firing of uncontrollable transitions from
that marking conform to the constraint. Definition 4 requires
that the initial condition of a plant satisfy the constraint and
that all markings visited through any behavior that conforms to
the constraint are admissible markings.

The behavior of a maximally permissive supervisor is ana-
lyzed in Proposition 5. Here, the term maximally permissive is
used in the sense of Section III, where all transitions are as-
sumed to be controllable. In this case, a maximally permissive
controller only prevents firings that lead to states that directly
violate the given constraint.

Proposition 5—General Constraint Admissibility:A con-
straint on the marking or firing behavior of a Petri net is
admissibleiff the following occurs.

1) Initial conditions of the plant satisfy the constraint.
2) A maximally permissive controller (constructed under the

assumption that all transitions are controllable) exists that
enforces the constraint and does not inhibit any uncontrol-
lable transitions that would otherwise be enabled.

Proof: Clearly, if the initial conditions of a plant violate a
constraint, then that constraint cannot be enforced and is inad-
missible according to condition 1) of Definition 4. Furthermore,
if the constraint is admissible, then a maximally permissive con-
troller would have no need to attempt to disable otherwise en-
abled uncontrollable transitions, as per Definition 4.

A maximally permissive controller will only allow reachable
states or behaviors that do not violate the constraint. Thus, if
a maximally permissive controller never attempts to inhibit an
otherwise enabled uncontrollable transition, then the constraint
it is enforcing is admissible according to Definition 4.

Corollary 6—Place-Constraint Admissibility:The single
vector constraint is admissible iff the controller
with incidence matrix and initial marking

will never attempt to disable an
uncontrollable transition that would otherwise be enabled.

Proof: If , then the initial conditions of the plant
violate the constraint, and that constraint cannot be enforced
and is inadmissible according to condition 1 of Definition 4. In-
variant-based controllers are maximally permissive according
to Proposition 2; if the constraint is admissible, then this max-
imally permissive controller would have no need to attempt to
disable otherwise enabled uncontrollable transitions, as per Def-
inition 4.

Invariant-based controllers only allow reachable states that do
not violate the constraint by inhibiting the firing of any transi-
tion that would directly lead to a marking that violates the con-

straint. Thus, if it never attempts to inhibit an otherwise enabled
uncontrollable transition, then the constraint it is enforcing is
admissible according to Definition 4.

Remark: Corollary 6 deals with individual inequality con-
straints instead of the vector inequality because each
of the inequalities in can be handled independently.
Certain constraints in may be admissible, and others
may not.

Equations (9) and (10) from Theorem 1 show that it is
possible to construct the incidence matrix of a maximally
permissive Petri net controller as a linear combination of the
rows of the incidence matrix of the plant. Negative elements
in correspond to arcs from controller places to plant
transitions. These arcs act to inhibit plant transitions when the
corresponding controller places are empty, and thus, they can
only be applied to plant transitions that permit such external
control. If we group all of the columns of that correspond
to transitions that cannot be controlled into the matrix , we
obtain the following corollary.

Corollary 7— Implies Admissibility: Given a
plant with uncontrollable transitions described by the incidence
matrix and a constraint , if

(17)

then the constraint is admissible for the given plant.
Proof: The proof follows from Corollary 6 and the

construction of the Petri net controller whose incidence matrix
is as described in Section IV-A. Inequality (17)
ensures that the controller draws no arcs to uncontrollable
transitions.

Example: Corollary 7 can be used to verify the results from
the example in Section IV-B. Because transitionsand are
uncontrollable in the Petri net of Fig. 2, is composed of the
second and third columns of the plant incidence matrix

Constraint (14) fails to meet condition (17) of the corollary

Constraints (15) and (16) both meet condition (17) and are both
admissible

Remark: Corollary 7 provides only a sufficient condition for
constraint admissibility. Situations exist for which ,
but is still an admissible constraint (see [15] and
[16]). However, for most practical examples, constraints that fail
condition (17) are inadmissible and will need to be transformed
if they are to be enforced.
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As discussed in Section IV-A, it is illegal for the controller
to change its state based on the firing of an unobservable tran-
sition, because no direct way exists for the controller to be told
that such a transition has fired. Both input and output arcs from
the controller places are used to change the controller state based
on the firings of plant transitions. Let the matrix represent
the incidence matrix of the unobservable portion of the Petri net.
This matrix is composed of the columns of that correspond
to unobservable transitions, just as is composed of the un-
controllable columns of .

Corollary 8— Implies Admissibility: Given a
plant with unobservable transitions described by the incidence
matrix and a constraint , if

(18)

then the constraint is admissible.
Proof: As with Corollary 7, the proof follows from Corol-

lary 6 and the construction of the Petri net controller whose in-
cidence matrix is as described in Section IV-A.
Equation (18) ensures that the controller draws no arcs to or
from unobservable transitions.

Remark: Corollaries 7 and 8 indicate that it is possible to
observe a transition that we cannot inhibit, but it is illegal to
directly inhibit a transition that we cannot observe.

Suppose, given a set of constraints , we construct the
matrices and and observe that violations to con-
ditions (17) or (18) exist. What other constraints, of the form

, will also maintain the original constraint ?
Lemma 9—Constraint Transformation Structure:

Let satisfy (19)

Let be a positive-definite 3 diagonal matrix

(20)

If , where

(21)

(22)

and is an dimensional vector of 1’s, then .
Proof: The transformed constraint is

. Because all of the elements are integers, the
inequality can be transformed into a strict inequality

Because is diagonal and positive definite

Assumptions (19) and (20) imply that all elements of the vector
; therefore, .

Lemma 9 shows a class of constraints, , which,
if enforced, will imply that is also enforced. The fol-
lowing lemma is used to show the conditions under which a par-
ticular set of constraints can be enforced on a particular Petri net.

Lemma 10—Initial Condition Check for Transformed Con-
straints: The constraint , where and are
defined by (21) and (22), can be enforced on a Petri net with
initial marking iff

(23)

Proof: Substituting and into (23) gives
, which is equivalent to the condition that

states that the initial conditions of the plant must fall within the
acceptable region of the constraints. Clearly, if a controller does
exist, then the initial conditions of the plant must not violate
the constraints. Furthermore, as shown in Section III, if the ini-
tial conditions lie within the acceptable region of the plant [in-
equality (8)], a controller to enforce the conditions can be com-
puted with incidence matrix and initial marking

.
Theorem 11 combines Corollaries 7 and 8 with the conditions

for creating a valid set of transformed constraints in Lemmas 9
and 10 to show how to construct a Petri net controller.

Theorem 11—Constraint Transformation and Supervisor
Synthesis:Let a plant Petri net with incidence matrix be
given with a set of uncontrollable transitions described by

and a set of unobservable transitions described by.
A set of linear constraints on the net marking, , are
to be imposed. Assume and meet (19) and (20) with

, and let

(24)

Then the controller

(25)

(26)

exists and causes all subsequent markings of the closed-loop
system (7) to satisfy the constraint without attempting
to inhibit uncontrollable transitions and without detecting unob-
servable transitions.

Proof: According to (9) and (10), (25) and (26) define a
controller that enforces the constraint . Lemma 9
shows that, if assumptions (19) and (20) are met, then a con-
troller that enforces a particular constraint will also
enforce the constraint . The fourth column of inequality
(24) indicates that the condition in lemma 10 is satisfied; thus,
the controller exists and the control law can be enforced. The
first column of (24) indicates that ; thus, condition
(17) is satisfied and no controller arcs are drawn to the uncon-
trollable transitions. The second and third columns of (24) in-
dicate that ; thus, condition (18) is satisfied and no
arcs are drawn between the controller places and the unobserv-
able plant transitions.

Remark: , which is used to describe the constraint
transformation, is a left multiplier in (24); thus, this matrix rep-
resents the use of rows from to eliminate positive elements
from and the use of rows from to zero the elements
of .

The usefulness of Theorem 11 for specifying controllers to
handle plants with uncontrollable and unobservable transitions
lies in the ease in which the matrices and can be gen-
erated. Two computational techniques for computing these ma-
trices can be found in the Appendix. The first technique is an
integer program that searches through feasible solutions satis-
fying (17) and (18) along directions dictated by (23). The second
technique finds appropriate transformations through the use of
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Fig. 3. The modified assembly cell and supervisor after the introductions of
uncontrollable and unobservable transitions.

constrained integer row operations. Full details of each algo-
rithm are included in the Appendix.

D. Example—Uncontrollable and Unobservable Transitions
in the Assembly Cell

Uncontrollable and unobservable transitions are introduced
into the robotic assembly cell example from Section III-B. The
operation of the M-1 robots is now considered to be governed
by a separate, independent controller. Transitions , and
can neither be observed nor inhibited by the resource supervisor
of Section III-B.

The uncontrollable and unobservable portion of the plant
is described by the matrix , which is composed of the
sixth through eighth columns of . Of the three constraints,
(11)–(13), only (13) fails the test of Corollary 8, because

(27)

If the plant transitions were merely uncontrollable and not un-
observable as well, then the constraint would be admissible ac-
cording to Corollary 7, but Corollary 8 indicates that
is the sufficient condition for admissibility with unobservable
transitions.

The right-hand side of (27) can be zeroed by adding to it the
seventh and eighth rows of . In terms of Theorem 11, this
process corresponds to a constraint transformation using

The transformed constraint

(28)

is admissible and represents the maximally permissive admis-
sible control law for enforcing (12). The new configuration for

is shown in Fig. 3. Note that places and now have the
same connections to the plant. It would be possible to eliminate

, because its action is now implied by, but instead, both
places will be maintained to account for dynamic changes in the
number of available resources or sensors (see [16] and [17]).

V. STRUCTURE OFADMISSIBLE CONSTRAINTS ANDCONTROLS

Given a plant with uncontrollable/unobservable transitions,
it is useful to seek methods for transforming inadmissible con-
straints into admissible ones, but it is also logical to ask, in gen-
eral, what are the admissible constraints for this plant? Does a
way exist to characterize all or most of these constraints? Sec-
tion V-A provides a method for just such a characterization.
Section V-B shows how this characterization may be used to
synthesize controllers for plants with unobservable transitions,

and Section V-C covers the synthesis problem for plants with
uncontrollable transitions.

A. Characterization of Admissible Constraints

As in the previous sections, let the matrix represent the
incidence matrix of the unobservable portion of the Petri net. It
is illegal for the controller to contain any arcs in
the unobservable portion of the net; thus, an admissible set of
constraints will satisfy

(29)

as indicated in Corollary 8.
Any that satisfies (29) will lie within the kernel of . Let
satisfy

(30)

where . The rows of form a linearly
independent basis for the kernel of ( is full rank). The
process of finding is equivalent to finding the place invariants
(an algorithm appears in [14]) of the unobservable portion of
the plant Petri net. All realizable constraints must lie within the
basis described by the rows of, and thus can be formed as
linear combinations of these rows. Every admissible constraint
can be described by , where . In general,
the coefficient matrix of any set of admissible constraints

can be written as

(31)

where .
A characterization of all admissible constraints is not as trans-

parent for the case of uncontrollable transitions as it is for unob-
servable ones. For unobservable transitions, we have an equality,

, which must be satisfied, but for uncontrollable tran-
sitions, it is an inequality, , so we cannot simply find
the kernel of . In this case, the following equality can be
formed

where is a matrix of nonnegative slack variables. The pre-
vious equation is rewritten as

A kernel , solving

can then be used to construct a basis for all admissible linear
constraints that may be placed on the plant.must be com-
puted so as to ensure that the elements that correspond to
are nonnegative. Each element of the kernel will have
scalar components, where is the number of uncontrollable
transitions. The final elements of each kernel vector cor-
respond to the slack variables in. Additional row operations
may need to be performed on to ensure that the final ele-
ments in each vector are nonnegative. After ensuring that none
of the slack variables are negative, all admissible constraint ma-
trices can be found in the the linear combinations ofthat
leave nonnegative values in the final slack columns. The
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first components of a given kernel vector represent an admis-
sible value for a row of , as long as the final components
of the kernel vector are nonnegative.

B. Constraint Transformations for Unobservability

Suppose we have a set of constraints such that
. It is necessary to create new constraint matrices

with the following two properties.

1) .
2)

Property 1) is necessary to ensure that the new controller will not
utilize the unobservable transitions, and property 2) indicates
that the new constraints must be at least as restrictive as the
original ones. Lemma 9 from Section IV-C is used to deal with
this condition.

To perform the transformation, it is necessary to determine
values for the matrices and defined in Lemma 9 that
meet assumptions (19) and (20). It is possible for a designer to
determine the values of and by using the kernel of .
Combining (21) and (31), we see that

The designer should premultiply each constraint inby some
positive integer (which will determine the diagonal elements in

) and add new positive coefficients (which will determine
) such that the new constraint is a linear combination of the

rows of . This process will yield the matrix, and can be
calculated using and (22).

When multiple distinct transformations exist, the technique
of Section VI can be used to enforce the disjunction of all these
inequalities.

C. Constraint Transformations for Uncontrollability

The invariant-based control method yields maximally per-
missive supervisors for enforcing linear constraints of the form

. When these constraints are transformed, because of
the uncontrollability and unobservability of certain transitions,
into , the invariant-based control method will still
yield a maximally permissive realization of the transformed
constraint. Unfortunately, the new constraint itself may not
represent the most permissive admissible control law corre-
sponding to the original constraint. The maximally permissive
admissible constraint associated with a linear predicate on the
plant’s marking may be a nonlinear predicate that cannot be
optimally controlled by a standard invariant-based controller.

At this time, a complete description of the conditions under
which an optimal transformation of linear constraints is another
set of linear constraints is unknown. Li and Wonham [13] have
shown that, when the uncontrollable portion of the plant has
a “type 1 tree structure,” the optimal transformation will be a
disjunction of linear predicates,1 whereas a “type 2” structure
will yield a linear transformation. These conditions, however,
are only sufficient, not necessary.

1A procedure for enforcing these with a modified PN controller is presented
in Section VI.

Given an inadmissible constraint , a permissive con-
trol law for the enforcement of this constraint can be synthesized
using the following steps.

1) Find all inequalities that are:

a) valid transformations of according to
Lemma 9;

b) admissible constraints according to the theory de-
veloped in Section V-A.

An infinite number of inequalities may exist that meet
these two requirements, but they may be expressed with a
finite number of inequalities because linearly dependent
constraints do not represent different restrictions on the
behavior of the plant. Detailed instructions for carrying
out this step can be found in [16].

2) Construct the controller incidence matrices associated
with these constraints using .

3) Enforce theunion of the individual control laws by fol-
lowing the procedure of Section VI.

The procedure above is similar to the idea of thesupremal
controllable sublanguage[22], [28] from the supervisory con-
trol literature. In both cases, all of the valid behaviors of the plant
are characterized based on the plant’s structure and the desired
constrained behavior, and the supervisor is then used to ensure
that the behavior of the plant is limited to this set of admissible
behaviors.

To say that the procedure above will always result in a max-
imally permissive control law, the following two points would
have to be proven.

1) Maximally permissive control law associated with a plant
and constraint can always be expressed as the
disjunction of other linear state inequalities.

2) Transformation procedure in Lemma 9 covers all valid
constraint transformations; i.e., if for all such
that is also true, then can
be expressed as a linear function of according to the
rules and assumptions of Lemma 9.

Li and Wonham [13] have shown that condition 1) is true when
the uncontrollable portions of a plant have a certain “tree struc-
ture” (see [13]). For the general case, however, the answer is not
known.

VI. ENFORCINGDISJUNCTIONS OFLINEAR CONSTRAINTS

A. Description of Method

The inequality

(32)

represents the logical intersection, or conjunction, ofseparate
linear inequalities. That is, if is the th row of and is the
th element of , then (32) is equivalent to

The feasible solutions to the inequalities form a convex region
[6], and the behavior of a Petri net can be restricted to this region
by adding further Petri net structures to the net, as was shown in
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Section III. A logical union, or disjunction, of linear constraints
is, in general, nonconvex and cannot be enforced with maximal
permissivity on a Petri net through the use of other Petri net
structures because of the linear nature of reachable Petri net state
spaces. A proof of this claim appears in [15].

This section will show how a slight modification to the evo-
lution rules of the controller net can be made such that it will act
as a maximally permissive supervisor for a class of nonconvex
constraints.

The following disjunction of linear inequalities is to be en-
forced on the marking of a plant with initial marking
(all elements nonnegative) and incidence matrix

(33)

where and . Let

(34)

(35)

for . This procedure is the same as detailed in Sec-
tion III; thus, each pair is a maximally permissive
Petri net supervisor for enforcing the constraint . If
all of these supervisor elements, however, were to be simultane-
ously enforced on the plant, then the result would be the logical
intersection of the constraints instead of their union.

In order for the controller to enforce a disjunction of inequal-
ities, at least one of the inequalities must be true at
every transition firing iteration of the net’s evolution. Let

so that

(36)

and

(37)

which is identical to the controller construction from Section III.
The enabling rule for the controller portion of the net, however,
must be changed such that it ensures that at least one of the
inequalities is being obeyed at all times instead of all of them at
all times.

A firing vector is valid (indicates the firing of an enabled
transition) iff

(38)

and

for some (39)

Inequality (38) is the standard Petri net enabling condition for a
plant that may include transitions with self loops. The enabling
condition for the controller (39) does not include any terms
because controllers constructed according to the rules in Sec-
tion III do not contain self loops. Condition (39) may also be
written as

(40)

Note that it is still true that

(41)

However, unlike the standard nonnegative slack variables from
before, many of the elements of this may be negative. The
restriction placed by condition (40) ensures that at least one of
the elements is nonnegative, and thus at any time, at least one of
the inequalities in (33) is being satisfied.

Proposition 12—Maximal Permissivity of Disjunction-En-
forcing Controllers: A controller constructed according to (36)
and (37) using enabling rule (40) is a maximally permissive
supervisor for the enforcement of constraint (33) on the plant

iff

for some (42)

Proof: If condition (42) is not met, then the initial condi-
tions of the plant violate the constraint (33) according to (37),
and the constraint cannot be enforced.

Equation (41) shows that the state space of the closed-loop
system being outside the bounds of constraint (33) is equivalent
to the situation when all elements of are negative. This is
the only condition, however, that is prevented by enabling rule
(40). The only time the controller will intervene to disable a
transition is when the firing of that transition would cause a
direct violation of constraint (33), and thus, the supervisor is
maximally permissive.

Remark: The simple rules that govern ordinary Petri net be-
havior are what help to make the Petri net model so attractive
both for analysis and implementation. The reluctance to modify
this model for the enforcement of nonconvex constraints on
Petri net plants is overcome for the following reasons.

1) Ability to handle the disjunction of linear constraints as
well as their conjunction is a powerful advancement in
the utility of the method and is necessary for the proper
solution of problems in many applications.

2) Disjunctions of linear constraints are important for the
permissive enforcement of linear constraints under con-
ditions in which transitions may be uncontrollable or un-
observable.

3) Modified rules for controller state evolution involve only
a slight modification of the ordinary transition-enabling
rule. Analysis and implementation are similar to that of
ordinary Petri nets.

B. Example—An Uncontrollable Loop Is Added to the
Assembly Cell

The robots of the piston rod robotic assembly cell are not
100% reliable. It is possible that the M-1 robot will fail to prop-
erly secure a piston cap to its rod. The plant is now augmented
with an error recovery loop considered to be under the supervi-
sion of an auxiliary controller. The modified structure is shown
in Fig. 4. The uncontrollable firing of transition indicates that
a fault has occurred. Place is then marked with the number
of M-1 robots that have experienced faults and have entered the
recovery loop. Tokens in represent the combined actions
of M-1 and S-380 robots to replace and realign the appropriate
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Fig. 4. The final structure of the assembly cell and supervisor. Placesc and
c obey the modified PN enabling rule (40) to enforce the nonconvex constraint
(45).

parts so that the procedure can begin again at. The new tran-
sitions, , and are all considered uncontrollable and
unobservable to the resource managing supervisor.

Constraints (11) and (12) need to be rewritten to account for
the use of the two robots in the recovery loop. An S-380 robot
is used in , and the M-1 robot is required in both and .
The new constraints are then

(three S-380 robots) (43)

(three M-1 robots) (44)

Following the procedure of Section V-B, the kernel,, of the
unobservable incidence matrix, , is computed

Admissible constraints will be linearly dependent with the rows
of . The left-hand side of (44) is represented by the fifth row
of ; thus the constraint is admissible and requires no transfor-
mation. In order to make the left-hand side of (43) an element
of the kernel of , we can either add the missing elements
from row four or row five of . Because there is a choice, the
transformed constraint will be written as a disjunction of the two
candidate inequalities

(45)

A controller is calculated to enforce (45) using the procedure
described in Section VI-A. The supervisor, shown with its con-
nections to the plant in Fig. 4, is maximally permissive.

VII. REAL-TIME CONSTRAINT SPECIFICATIONS

Constraints of the form [inequality (5)] are useful
for representing a large variety of forbidden state problems. Fi-
nite resource management can be automated using invariant-
based control [16], [17] as well as serial, parallel, and gen-
eral mutual exclusion problems [4], [7]. Both direct and indi-
rect enforcement of constraints on events, i.e., linear inequal-
ities involving the firing vector, can be handled using the in-
variant-based control method [15], [31]. A class of logical predi-
cates on plant behavior can be transformed into systems of linear

inequalities to be enforced by a supervisor [9], [16], [30]. This
section explains how the techniques for supervision of ordinary
Petri nets can be expanded to timed Petri nets and real-time con-
straints.

Supervisory controllers are generally driven by sequences of
events (firings of transitions) occurring in the plant. Some tran-
sitions fire before others; some may fire simultaneously. The
states of the plant and controller evolve through time, but no di-
rect representation of time exists. The controller may respond to
the firing of transition and then respond to the firing of tran-
sition , but no indication exists of how much time has elapsed
between the firings of these two transitions. This section will
be used to discuss the issues that developed when time is intro-
duced into the control framework.

The most common way of introducing time into a Petri net
model of a system is through the use oftimed Petri nets[23],
[25]. A timed net works like an ordinary Petri net, but includes
a new function defined on either the transitions or the places
of the net. The function indicates the amount of time required
for particular transitions to fire or the amount of time that must
elapse between the arrival of a token in a place and when it is
allowed to take part in enabling and firing another transition. In
many cases, the function is simply a constant vector that indi-
cates the timing requirements for each of the net’s transitions or
places, but it may also be complicated with the firing times re-
lying on the state of the net, the current time, and other factors.

Timed nets are a useful extension of ordinary nets because
they do not alter the basic behavior of these nets, they simply
provide more information about their evolution, which means
that the standard Petri net definitions, including structural in-
variants, still hold true. A controller that enforces certain state
constraints and sequential behaviors on an ordinary Petri net will
enforce these same behaviors on the net after timing information
is added to it.

The invariant-based control method is implemented through
new places and arcs that connect to existing plant transitions. If
the timing information of the plant net were associated with the
transitions, then the control method could be used without any
changes in the method itself. Because the controller has no new
transitions of its own, it is not necessary to establish any new
timing properties for the controller. It will react to the firings of
the plant and will evolve naturally using the plant’s own timing.
Control goals, such as mutual exclusions, deadlock avoidance,
regulation of finite resources, or avoiding forbidden states, may
be implemented on timed Petri nets using the method exactly as
described. When the elapse of time is associated with transition
firings, the resulting behavior of the controlled plant may not be
entirely what the control designer expected. Consider the simple
constraint

In standard untimed nets, transition firings are considered to be
instantaneous. Because of this, the constraint above means two
things: 1) place 1 may never have more than 1 token and 2) tran-
sition 1 may not fire if contains a token. Now, consider if
this constraint were to be placed on a Petri net that contained
timed transitions. The constraint would take on a third meaning:
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3) place 1 may not contain any tokenswhile transition 1 is in
the process of firing. In some cases, this result may be exactly
what the designer wants; however, the designer must be aware
of these subtle changes in the meaning of the constraint inequal-
ities when designing the system.

It is possible to maintain the original meaning of the con-
straint inequalities by using nets that place their timing informa-
tion on the places instead of the transitions. Transitions undergo
instantaneous firing in these nets, just like in ordinary Petri nets.
Constraints may be enforced on nets with timed places using
the supervisory control techniques of this paper. The controller
will add places to the plant net, and because this is a timed net,
timing information must be associated with these new controller
places. The tokens in a controller place are used to keep track of
the plant’s state. They are the controller’s bookkeeping device
and do not represent a process that requires lengthy amounts of
time compared with the time associated with the evolution of the
plant. For this reason,the time delay associated with controller
places is defined as zero.

Difficulties may develop when supervisory control specifi-
cations deal directly with time instead of events. Because the
controller has no direct access to a clock, it is not possible to di-
rectly realize constraints that reference absolute time or relative
timing offsets. Some of these kinds of situations may be tackled
by including Petri net structures in the plant that the controller
can use as an interface between its event-driven world and the
world of continuous time.Clock and timer structures are de-
scribed in the example below.

Example: Consider a plant with five places and seven tran-
sitions and the following two constraints.

1) Transition may not fire between 6:00PM and 12:00AM.
2) Transition may not fire until at least 2 min has elapsed

since the last firing of transition . If has never fired,
then the firing of is unrestricted.

The supervisory controllers presented here have no access
to the current time of day, nor are they informed regarding the
amount of time that separates the events to which they react.
In order to enforce these constraints, new Petri net structures
will be added to the plant, allowing an interface between the
controller and time.

A one-way loop of timed Petri net places with a single token
can be used to create a clock indicating the current time of day.
For example, 24 places connected in a ring, with a 1-h delay for
each place, can be used to indicate the current hour of the day.
It is not necessary that the delay in every place of the clock be
equal, butthe firing rules for the clock must indicate that en-
abled transitions fire instantly.Item 1 above indicates that we
are concerned with the 6-h period between 6:00PM and 12:00
AM. The controller will gain access to the current time through
the use of the two-place clock shown in Fig. 5(a). The time de-
lays for the two places are

Times for hours

The clock is initialized with a single token in at 12:00AM.
After 18 h, the token in will be available to fire . The token
in will transfer to at 6:00PM, and it will remain there until

(a) (b)

Fig. 5. (a) A two-place time-of-day clock. (b) Place 8 contains tokens
whenever fewer than 2 min has elapsed since the last firing oft .

midnight. Thus, constraint 1 can be enforced with the inequality
.

Constraint 2 does not involve the time of day; rather, it in-
volves a relative offset in time after the firing of transition 4.
Transition 7 must wait at least 2 min after the last firing of
before it is allowed to fire. A structure is added to the plant to
indicate when less than 2 min has elapsed after the last firing of

, which can be done using the net shown in Fig. 5(b), where
the time delay for is 2 min. As with the clock of Fig. 5, the
firing rules must indicate that fires whenever it is enabled.

Using the net of Fig. 5(b), we know that transition 7 should
never be allowed to fire when place 8 contains tokens. An ini-
tial guess might suggest that we then enforce the constraint

, but item 2 says nothing about limiting the ability of
to fire, and this constraint would prohibit from ever con-

taining more than one token, indirectly inhibiting the freedom of
. Let be the maximum number of tokens that could ever ap-

pear in place 8. This number could be determined through tem-
poral analysis of the plant, or the designer may simply choose

as a number so ridiculously large thatcould never fire that
many times in a reasonable amount of time. Using this value,
the following constraint is then placed on the plant:

(46)

This constraint will ensure that never fires if place 8 con-
tains any tokens. If is too small, then transition may be
indirectly inhibited by constraint (46), so it is necessary to de-
termine a large enough value of to avoid this situation.

In summary, the control designer should be aware of the fol-
lowing points when introducing timing requirements into the
invariant-based control method.

• Defining time delays on the places of a net, instead of its
transitions, avoids certain ambiguities in the meanings of
combined state/event constraints. Either method may be
used, but the meanings of the constraints in each case must
be understood.

• When time is defined on the places of a net, time delays
associated with the controls are defined as zero to avoid
artificial delays in the evolution of the plant.

• Standard supervisory control constraints dealing with the
plant state or mutual exclusions can be implemented seam-
lessly on place-timed Petri net plants.

• External clock and timer structures with appropriate time
delays may be added to the plant to provide an interface
between the event sequences of supervisory control and
real time.

• The accuracy of clocks and timers is ensured by firing
rules that insist on the instantaneous firing of enabled tran-
sitions for these structures.
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• Upper bounds, such as in the example, can be used to
avoid unwanted consequences of state/event related con-
straints that deal with the conditions of timers and clocks.

VIII. C ONCLUSIONS

Petri nets possess many assets as models for DES. Concurrent
processes and events can be easily modeled within the frame-
work. They provide for larger reachable state spaces, more com-
pact representation, and increased behavioral complexity com-
pared with automata-based models. The goal of this paper has
been to present an approach to Petri net supervisory control that
is unified and tractable as well as comprehensive and practical.

The primary technical tools required for the use and analysis
of the control methods presented here involve Petri net theory
and matrix algebra. The main synthesis technique is based on
the idea that specifications representing desired plant behavior
can be enforced by making them invariants of the closed-loop
system. Most of the other tools in this paper also revolve around
the creation or characterization of invariants or an analysis of
the interrelation between control specifications and plant and
controller structure.

Because an invariant-based controller is itself a Petri net, the
unified plant/controller system facilitates the use of established
synthesis and analysis methods. The closed-loop system can be
designed, analyzed, simulated, verified, and augmented using
tools already established for Petri nets.

Unobservable transitions have received little attention in the
DES Petri net control literature, but they present an important
problem, and systems that incorporate unobservable events are
of practical concern. Here, the problem of unobservability has
been presented and analyzed concurrently and analogously to
uncontrollability.

A method has been described for characterizing all feasible
invariant-based controllers for enforcing a linear constraint on
a plant with uncontrollable and unobservable transitions. This
characterization can be combined with an extended Petri net
controller definition to enforce the logical union of all these
feasible controls. Supervisors designed this way will have a
high degree of permissivity. Unfortunately, it has not been
demonstrated that these controllers will always be maximally
permissive, because it is not known if a situation exists in
which the maximally permissive control law corresponding to
a linear predicate is ever something other than a disjunction of
other linear predicates.

A wide variety of supervisory control goals can be handled
with the proposed method. Inequality (5) is not only appropriate
for formulating a large range of forbidden state problems, gener-
alized mutual exclusion constraints, and finite resource manage-
ment problems, but it is also appropriate for specifying a number
of supervision goals that are not normally thought of as state-
based constraints. The addition of timer and clock structures to
a timed Petri net plant model will permit real-time–based con-
straints to be represented in the form of (5). A number of ap-
proaches to deadlock avoidance and ensured liveness can also be
reduced to the enforcement of linear inequalities. The integra-
tion of these techniques with the invariant-based control method
is a current research topic.

Computational efficiency is one of the goals of the supervi-
sion techniques presented here. An invariant-based controller

is computed very efficiently by a single matrix multiplication,
and its size grows polynomially with the number of specifica-
tions. Because the controller is a Petri net, control actions are
also simple to compute online.

Handling uncontrollable and unobservable transitions does
not add any complexity to the online computation of control ac-
tions. The increased complexity is encountered only in the initial
control design. Computationally tractable techniques have been
presented for this process involving the solution of an integer
linear program or through the triangularization of integer ma-
trices through constrained row operations (see the Appendix).

Invariant-based supervisors are viable models for real-time
control implementations. The speed and efficiency with which
they are computed also makes them appropriate for online con-
trol reconfiguration because of sensor or actuator faults, or dy-
namically modified system specifications.

APPENDIX

A. Generating Constraint Transformations

1) An Integer Linear Program for Calculating and
: The conditions of Theorem 11 can be converted into an

integer linear programming problem (ILP) in the standard form.
We will consider only a single constraint on the system; mul-
tiple constraints can be handled individually and independently.
Thus, and are vectors, andand are scalars.

Let

where and is a vector of slack variables.
The ILP is defined as

s.t.

(integer).

(47)

After solving (47), if the minimum of the objective function
is greater than , then the problem cannot

be solved, as no values of and exist that will satisfy the
condition in Lemma 10. If the minimum is less than or equal
to , then transform back into and generate the
controller using the formulas in Theorem 11.

Remark: Minor difficulties may be encountered when using
this method of generating and . For a controller to exist,
we need the objective function of the ILP, ;
however, it is not clear that we should attempt to minimize this
function. Oftentimes, this function will have an unbounded min-
imum, making it necessary for the designer to introduce an addi-
tional constraint to achieve a bounded solution. Care must also
be taken such that the ILP does not yield the pathological trans-
formation , when other nonzero possibili-
ties exist for .

2) Matrix Row Operations:It is possible to obtain appro-
priate constraint transformations by performing row operations
on a matrix containing the uncontrollable and unobservable
columns of the plant incidence matrix. The computational
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Fig. 6.

Fig. 7.

part of this procedure involves little more than the integer
triangularization of a matrix, and thus, it is simpler to compute

and using this method than by using the ILP presented
in the previous section. When using the algorithm, recall that

corresponds to the uncontrollable transitions
in the plant that may be observed,while all unobservable
transitions are represented in .

As was done in Section I-A, we shall ensure that condition
(19) is met by making . In terms of row operations, this

Fig. 8.

Fig. 9.

means that elements in rows are eliminated strictly through ad-
dition, never through subtraction, and that rows can be premul-
tiplied only by positive integers. Algorithm 1 in Fig. 6 presents
the procedure for determining and . The procedure for
zeroing out the elements in a column of numbers that have the
opposite sign of the “pivot” is given in Algorithm 4 in Fig. 9.

Algorithm 1 ensures that condition (20) is met because the
procedure for choosing the “pivot” elements never picks from
the and portions of the matrix. Combined with
the zeroing procedure of Algorithm 4, these steps ensure that
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the portion of the matrix is diagonal with strictly positive
elements.

Algorithms 2 and 3 in Figs. 7 and 8, respectively, (called by
Algorithm 1) are used to make sure that the transformed con-
straints meet conditions (17) and (18). The feasibility check at
the end of Algorithm 1 directly tests the condition of Lemma
10 to ensure that the controller does exist. The instructions for
picking positive or negative elements to act as pivots in the
two main loops are left specifically vague. Different methods
of choosing the pivot will lead to different constraint transfor-
mations.It would be possible, for instance, to find a basis for all
valid constraint transformations by repeating the procedures in
Algorithm 1 whenever a choice of more than one pivot for a
given column existed.
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