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Abstract

In this paper, we look into the problem of finding asymptotically stabilizing switching schemes for
switched systems consisting of several second-order LTI autonomous subsystems that have unstable
foci at the origin. Firstly we study the method to decide the direction of the solution of second-order
LTI autonomous system with focus at the origin. Then we study switched systems consisting of two
subsystems, and we provide a conic switching rule based on studies of the vector fields. Moreover,
we extend this conic switching rule to several subsystems. Sufficient and necessary conditions for the
asymptotic stabilizability of a switched system are provided. If the switched system is stabilizable, an
asymptotically stabilizing switching scheme can be obtained based on conic switching rules.

1 Introduction

A switched system is a system consisting of several subsystems. In this paper, we would study a special kind
of switched systems, namely, switched systems whose subsystems are second-order unstable LTI autonomous
subsystems () = A;z(t), A; € B2*2, i=1,2,--- ,N.

In [1], Branicky pointed out that it is sometimes possible to make a switched system asymptotically stable
by appropriate switching schemes even if none of the subsystems is stable individually. Yet the problem has
not been solved as to how to decide whether a given switched system is asymptotically stabilizable and if
yes, how to obtain a stabilizing switching scheme.

In [4], Linear Matrix Inequality (LMI) problems are formulated to search for the multiple Lyapunov
functions for switched systems consisting of linear subsystems. If the multiple Lyapunov functions can be
found, then the switched system is stabilizable and the switching rule can also be obtained. In {2], LMI
problems are also formulated as to show the stabilizability of the switched systems. LMI provides a very
good way to find sufficient conditions for the switched system. Yet it may not be necessary.

In this paper, we try to establish sufficient and necessary conditions for the asymptotic stabilizability
for a special kind of switched systems, namely, switched systems consisting of second-order LTI subsystems.
In [5], we classified second-order system by the type of its origin and we partly answer the question except
for the case when both subsystems have unstable foci at the origin. In this paper, we would mainly look
into such kind of systems. And such kind of subsystems &(t) = A;z(t) is said to be with unstable focus
hereafter. Throughout this paper, unless otherwise specified, the LTI autonomous subsystems we mention
are all subsystems with unstable focus.

The outline of the paper is as follows. In Section 2, we talk about the direction of the solution of second-
order systems with focus. In Section 3, we look into the asymptotic stabilizability problem for switched
systems with two subsystems. In Section 4, the method in Section 3 is extended to several subsystems’
cases. An algorithm and several examples are given in Section 5. Section 6 concludes the paper.



2 Direction of the Solution of & = Az, A € R**? with Focus

The solution of the LTI system
z = Az, z(0) = zo (2.1)
is well known to be
z(t) = etz for £ > 0. (2.2)

When A € R?*?, the trajectory of the solution can be shown on the R? plane. In this section, we are
interested in the case when A has two eigenvalues a + 8i with & # 0 and 8 # 0. The origin {0,0)7 are often
called stable(er < 0) or unstable{er > 0) focus of system (2.1). And the solution (2.2) is a logarithmic spiral
on the X3 — X plane. The question we would concern here is how to decide, without plotting the trajectory,
whether the trajectory will be a spiral around the origin in clockwise or counterclockwise direction. In the
following, coordinate transformation is considered so that the question can be answered.

Let us firstly consider the simplest case where A = [ _aﬁ z ] We have the following Lemma for this
case.

Lemma 2.1 For the LTI autonomous system £(t) = Az(t) with focus, where A = [ _aﬂ g ] . The solution

with £(0) = x4 # 0 has the following properties:

o Ifa <0 and B > 0, then the solution x(t) = e*tzy is a logarithmic spiral that converges to the origin
clockwisely.

o Ifa <0 end 8 <0, then the solution z(t) = etz is a logarithmic spiral that converges to the origin
counterclockwisely.

o Ifa >0 and B8 > 0, then the solution z(t) = ez, is a logarithmic spiral that diverges to oo clockwisely.

o Ifa>0and B <0, then the solution z(t) = etzyis a logarithmic spiral that diverges to co counter-
clockurisely.

Proof: We just prove the a < 0 and 3 > 0 case, the others follow similar arguments.
From linear system theory, we know that

At — gat | COS Bt sinpgt
- —sinft cosft |’

Notice that the initial state o = [o1, 202]T = [ro cosf, rosinfy]T, where ro = /23, + 22, and cosby =
%%l, sinfly = %%1 In other words, the representation of ¢ in the polar coordinate system is (rg, 6o)-

Now we get

z(t) = etz
rogat | €08 0y cos Bt + sin 8y sin B¢
= e — cos fp sin Bt + sin 8 cos St
ot COS(BO - ﬁt)
= T [ sin(6o — Bt) |-
Observe that the representation of 2(t) in the polar coordinate system is (rpe®t, 8 — Bt), so it is clear that

if « <0 and 8 > 0, z(t) is a logarithmic spiral that converges to the origin clockwisely, i.e., ||z(¢)|l2 = 0 as
t — co. m]



Before we proceed to the general case, we would look into linear transformation in R2.

Suppose ex, and ey, are two unit vectors on R? for X, and X, axes, respectively. If a point = has
coordinate representation x = [z, z2]7, the corresponding vector on K2 is

= ex,, ex, ] [ 2 ] (2.3)

If we choose another coordinate system Y2 —Y; with unit vectors ey, and ey, for ¥; and Y5 axes, respectively.
And

[ e, ewy ] = ex,, ex, | T, where T € R?*? nonsingular. (2.4)

By this linear transformation, we know that a point z in the X, — X coordinate system would have
coordinate representation y = T~ !z in ¥, — ¥7 coordinate system.
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Figure 1: (a) Y2 — Y7 and X; — X, coordinate system agree in direction. {(b) Y2 —Y; and X, — X, coordinate
system disagree in direction.

Definition 2.2 The coordinate systems Yo — Y, and X» — X, are said to agree (disagree) in direction
if the directional angle 8 confined to —w < 8 < & from Y] azis to ¥z axis satisfles 0 < <7 (-7 <8 <0)
on X» — X, plane.

Figure 1 shows Y5 — Y7 and X, — X that agree and disagree in direction.
A simple criterion to decide the agreement or disagreement issue is to look at the linear transformation
matrix T by the following Lemma.

Lemma 2.3 The coordinate transforamtion in (2.4) results in a coordinate system Y2 — Y, that agrees
(disagrees) in direction with X» — X, system if detT > 0 (detT < 0). In the following, we also say that T
agrees (disagrees) in direction with Xo — X system.

tin a2
T= .
[ Inn a2 ]
By adding another axis X3 which is perpendicular to the plane Xo — X; as shown in Figure 2, we get a
coordinate system X3 — X — X; in R®. By analytical geometry, the cross product

Proof: Suppose

ex, ©ex, ex,

ey, Xey, = det t1 t12 0
ta1 ta2 O
tn b
= det e
[ tar o2 ] Xs
= (detT)ex,. (2.5)
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Figure 2: Coordinate system X3 — X3 — X; in R3.

Since the cross product, in this case, can also be written as
ey, X ey, = (|ley; [lzl|ex, |2 sinf)ex,, (2.6)

so by (2.5}, (2.6), we conclude that siné > 0 iff detT > 0. Therefore, if detT > 0 (detT < 0), we have
0<®<n(—7 <8 <0), that is, Yo — Y] system agrees (disagrees) in direction with X3 — X; system. ]

Now we come to the general case. Suppose A € R2*? has two eigenvalues & - 8i with a # 0 and 8 #0.
By linear algebra, we know that there exists nonsingular T' such that:

A=TAT™, where A = [ _"‘ﬂ g . (2.7)
If detT < 0, we can let Ty = TE),, with Ej5 = 01 to make detT; > 0, and
10
A=T AT, where Ay = [ g _aﬂ ] . (2.8)

So for simplicity, we assume that detT > 0 in (2.7), i.e., T agrees with the direction of X3 — X, system. By
letting y = Tz, (2.1) can be reduced to

g(t) = Ay(2), ¥(0) = T x(0) =T 'x. (2.9)

Upto this stage, we can use the following Theorem to decide the direction of the solution for (2.1).

Theorem 2.4 If A € R2*2? has two eigenvalues o + B with o« # 0 and § # 0, and A = TAT ™! as in
(2.7), where T agrees with the direction of X2 — X, system. The the direction of the solution {clockwise or
counterclockwise) of (2.1} is the same as the direction of the solution of (2.9).

Proof: Since T agrees with the direction of X2 — X, system, so Y — Y system agrees with the direction of
X5 — X, system. Therefore a solution whose direction is clockwise (counterclockwise) in ¥z — Y system will
also be clockwise (counterclockwise) in X» — X; system. O

By Theorem 2.4, we can find the direction of a solution in X3 — X, system by reducing it to a problem
in ¥ — Y7 system and then using Lemma 2.1 to obtain the conclusion. In the following, we would say
a subsystem z(t) = A;xz(t) has clockwise (counterclockwise) direction if the direction of the solution has
clockwise (counterclockwise) direction.

Example 2.5 Consider A = ? _12

[-2 5

[-3 13

5 1 ], we have A = TAT! with T = [

]andA:

-5 -2
the origin clockwisely.

]. By Theorem 2.4 and Lemma 2.1, the solution of (2.1) associated with this A converges to



3 Two Subsystems

In this section, we will study the stabilizing switch schemes for switched systems consisting of two second-
order unstable LTI autonomous subsystems. We will mainly study those switched systems whose subsystems
are all with unstable foci.

Consider a switched system with two LTI autonomous subsystems with unstable focus:
(t) = Az(t), () = Azx(t). (3.1)

In this section, we will study the vector fields of both subsystems and give a very intuitive way of obtaining
a stabilizing switching rule. In the following, we would firstly consider switched systems with subsystems in
the same direction and then consider switched systems with subsystems in different directions.

In the following, when we mention the angle from one ray !, to another ray Iy, we take the counterclockwise
angle to be positive and the clockwise angle to negative.

3.1 Two Subsystems in the Same Direction

We would consider switched systems, whose subsystems both have clockwise direction. For switched systems
whose subsystems both have counterclockwise direction, all the following discussion can be applied similarly.

Let z = (z1,72)T be a nonzero point on R? plane, and let
a a
fima=| 2] == 2], (32)

If we take z, f) and f> to be vectors in R2. We argue that the angle 8 (@ is confined to —7 < 8 < 7) from
z to fi (or f2) satisfy —w < @ < 0, in other words, f; must be on one side of vector £ as shown in Figure
3(a). Since if otherwise, assume that fy is on the other side of = as shown in Figure 3(b), then in sufficiently
small time elapse dt, the trajectory will travel counterclockwisely, which contradicts our assumption.

X2y Xa4

{a) )

Figure 3: (a) The angle @ from z to fi. (b) fi is on the other side of z.

Now we consider the switching scheme that asymptotically stabilize the switched system. In other words,
by our switching schemes, we want to lead the trajectory closer and closer to the origin, i.e., ||z(t)||2 — 0 as
t — 0. In the following, we will discuss the way by which we try to obtain such switching rules by choosing
a sybsystem which has the potentiality to drive the trajectory closer to the origin.

For a nonzero point x € R?, let f, and f; asin (3.2) and let 81, &2 be angles from x to fi, fa, respectively.

Let Iy be a line sufficiently close to line I; determined by z as shown in Figure 4(a). The trajectory will
hit &2 by point (1) if it follows subsystem 1, it will hit Iz by z'?) if it follows subsystem 2. Let z* be the
point where I, is hit by a line perpendicular to ;. Let ||z(}}||z, ||z(®){|2 be the distance from (¥}, 2(2) to the
origin, respectively. And let ds = ||z* — z{|» (Figure 4 ). Also we denote the following conic regions

Eiy = {zl - 7 < 0:(f(a)) < -3} = {ale” file) =s"Aiz <0}, i = 1,2 (3.3)
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Figure 4: The four different cases.

B = {z] - % < 8,(fi(z)) <0} = {z|z” filz) = zT Aiz 2 0}, i = 1,2. (3.4)

Now we try to associate a better subsystem for z according to the following different cases.
Case 1: Assume that

T € E1;,N Eay.

In this case, as shown in Figure 4(a), ||z(V)||2 < ||lz*[l2 < ||z®||2 when ds is sufficiently small. So we can
choose subsystem 1 in order to drive the trajectory closer to the origin. We denote the conic region Ey,NEs,
as Ql .

Case 2: Assume that
T € By, N Es;.

In this case, as shown in Figure 4(b), we can choose subsystem 2 by the similar argument as in Case 1. We
denote the conic region Ej,, N B, as §s.

Case 3: Assume that
T E Els N Ey,.
In this case, as shown in Figure 4(c), consider

llzllz = fl= |2
llzllz = =2 iz

Let dt; and dty be the time elapse the system would take to hit I> along the vector f; and fa, respectively.
When ds is sufficiently small, we approximately have

asds = 0.

ds
!ulxz-—agml l ?

JaTrel

dtl = (35)

ds

a3To—R4T1)
z3+ai

dts = (3.6)



By (3.5) and (3.6) and using L'Hospital Rule, we obtain
— (1)
i Il = Il
ds—0 |||z — ||z
_ g YELEE -Vt @dh)? + (2 + 0adh)?
ds—0 /22 + 2% — \/(z1 + asdta)? + (23 + asdiz)?

(a.l(z1+a.|dt])+a;(:c2+agdh))\/::f+z§

(o172 ~8221)4/(z1+01881)3 +H{za+azdt)?

ds—20  (az{z1+asdiz)}tas{zateadiz))/zi+a

(aazg—nqml)\/(21+aadtz)2+(32+04dt2)2
(a1 + aszs)(aszzs — aq471)

= 3.7
(@122 — asxy)(@3z) + a472) @7
_ cosbycos(fz + 3) (3.8)

~ cos(6y + T)cosb; ’

By the above calculation, we learn that if
(a171 + az7s)(asz2 — as1) > 1, (3.9)
(@12 — a2z1)(aszy + a422)
in other words, by simplification,

Q203 — Q104 < 0, (310)

we will have [[z(V)|]2 < ||z{®||; for sufficiently small ds. In this case, we can choose subsystem 1. And we
denote the conic region Ey,; N Ea, N {:l',’|0.203 — 0144 < 0} as {13.

This condition can also be translated into the following condition (since cos(6y + Z)cosf2 < 0 in this
case)
T T
cos 6 cos{@s + 5) — cos{fy + 5) cosf, <0,
that is
sin(fy — #2) <0,
that is
8, < 5. (3.11)

So in this case, if 8, < 84, we choose subsystem 1. Similarly, if azaz — a1a4 > 0, i.e., 61 > 62, we choose
subsystem 2 and we denote the conic region By, N Bz, N {z|azas — a1a4 > 0} as 4.

Case 4: Assume that
z € By, N Egy.
In this case, as shown in Figure 4(d), consider

izl — ll=]l2

— " a35ds— 0.
|2 — [z

By the similar calculation, we have

o Ol = fall
im e
ds=0 ||z |z — [iz}2
(@121 + azz2)(@3z2 — G4721)

= 3.12
(@122 — az71) (0371 + G422) ( )

cosf; cos(fz + %)
= 1
cos(f; + §) cos @z (3.13)




By the above calculation as in Case 3, we learn that if

(011‘1 + 02.’52)(&31‘2 — a4
(@122 — @271)(a371 + @472

) <1, (3.14)

in other words, by simplification,
Qo3 — A104 S 0, (315)

we will have ||z{V]); < ||z®)||2 for sufficiently small ds, so we can choose subsystem 1. And we denote the
conic region Eyy, N Eq, N {z|a:as — a1a4 < 0} as Ns.

Similar to Case 3, this condition can also be translated into the following condition (since cos(@, +
Z)cosBs > 0 in this case)

8, < 6,. (3.16)

So in this case, if #; < @2, we choose subsystem 1. Similarly, if azas — a1a4 > 0, i.e., 8 > 05, we choose
subsystem 2 and we denote the conic region E;, N Fp, N {z|azas — ajaq > 0} as Q.

Notice that Q;, i = 1,2,---,6, are all conic regions that partition the R* plane. We can associate with
each region a subsystem according to the above discussion. In essence, we just associate with each point
on R? with a subsystem i whose 8; is smaller (if #; = #2, we may choose either of the subsystems). This
partition of the R? plane is of particular importance here. In the following, we call the switching rule by
using the partition and adopting the associated subsystems the conic switching rule. We will show that
by using the conic switching rule, we can decide whether the system (3.1) is asymptotically stabilizable or
not. If (3.1} is asymptotically stabilizable, the partition and associated subsystems also provide a stabilizing
switching scheme.

Figure 5: The two rays and related points.

Consider the system (3.1). Let I; and I be two rays that go through the origin and are in the same
conic region of one 0;. Suppose [z is to the clockwise side of I3 in the conic region and the conic regicn with
angle from {; to I» is inside §2;. Suppose x¢ is on ;. Let z(1) be the point on I; where the trajectory of the
system hits I, for the first time if the system evolves according to subsystem 1. Let z{?) be the point on I3
where the trajectory of the system hits s for the first time if the system evolves according to subsystem 2.
Figure 5 shows the two rays and corresponding points. For the above-mentioned rays and points, we have
the following lemma.

Lemma 3.1 Ifl; and l; are in the conic region O, then |||y < [|z®||2.

Proof: Let r1(f) = ||2(8)|]2 — llzollz and r2(t) = {|z(¢)}l2 — ||zo]|2 when the trajectory evolves according to
subsystem 1 and subsystem 2, respectively. We have

TWh , _ 2O A()
@l = T

dry = d(|lz(8)]l2) = dt,



_zT () fe ,, _ aT(t)Asz(t)
Clz®ll T Hs@)ll

dry = d{|lz(?)ll2) dt.

Assume #; and t; are the time the system take to go to z{!} and z(?), respectively. Since in 2, T A4,2<0
and zT Az > 0, we have

t; T t
i) = 1Ol ~ llaola = [ =080 < ["oae =o, (3.17)
o =)z 0
t2 T ta
rafen) = 6@l —llsola = | 205201 > [P a0, (3.18)
o =@l 0
Combining (3.17) and (3.18), we conclude that [jz(! ||z < [|z{®]].. O

Lemma 3.2 Ifl; and l; are in the conic region (3, then ||z(V||z < ||2(?||2.

Proof: Let o be the angle from [; to the line on which z(t) lies and let a; be the angle from I; to l;. Let
z(t) and (3 (t) be the trajectory of the system if the system follows subsystem 1 and 2, respectively. If
we use a as a variable, then we can also denote z{1}(¢) and 2(2)(¢) as (! (a) and z(®(a).

From the discussion of Case 3, we know that in a very small neighborhood of z(0)(i.e., —¢ < a < 0 with
€ > 0 very small), ||z {a)|lz < [l (a)||2.

¥ T .

[+] Xy

Figure 6: Figure for proof of Lemma 3.2.

Now choose a*, a1 < o* < 0, such that ||z{1(a)||z < ||z®)()||2 holds for any a € (a*,a” +¢) with some
€ > 0 very small.

If such o* does not exist, then clearly ||z (a)||z < z¢*}(a)l|> holds for any @, a1 < @ < 0.

Otherwise, assume that there exists an o*, a; < a* < 0, such that ||z (a*)||2 = ||z®(a*)||2 on line i3
which is inside the conic region formed by I, and lz2(Figure 6). Then we have

2(a*) < b1 (a”).
Yet combining (3.11), we obtain
Bz (a*) = 61 (a"),
that is
ag03 — araq = 0. (3.19)

The solution of (3.19) are two lines on R? plane. So I3 is one of the lines.
Now observe {3.10)

a3 — Q104 S 0, (320)



the solution of which is a conic region formed by the two lines in (3.19). Therefore, there exists an o very
close to a* and a < a* such that 8;{a) < #;{«a), yet this leads to a contradiction to (3.11).

Therefore |[$(1)(a)”2 < "5,;(2)(0,)“2 for any @, 0 < a < ai, by continuity, we have |];,;(1)(a1)||2 <
122 (an)ll2, that is |l=V]lz < [l la. )

Like the proofs of Lemma 3.1 and Lemma 3.2, we can prove the similar result for conic regions {23 to {2s.

Now that we have the above lemmas, we can prove the following theorem.

Theorem 3.3 Let l, be a ray that goes through the origin. Let xo be on l;. If x* only is the point where the
trajectory hits Iy for the first time after leaving xo when the switched system evolves according to the conic
switching rule. And if ) on l; is the point where the trajectory hits Iy for the first time after leaving xq
when the switched system evolves according some arbitrary switching rule. Then we have ||z*||z < ||z1]|2-

Proof: Let a be the angle from !; to the line on which z(t) lies. Assume the s is a switching rule such

that the system switches when o is equal to 0,0n,0q, ++ @, --. Combining the switching a’s above with
the switching a’s derived by conic switching rule and a — 2. For simplicity of notation, we still denote the
combined switching as as 0,a1,02, -+ ,@n, -+, —2m,---. Let the trajectory for s be z,(c) and the trajectory

by conic switching be z.(a).

Now in the conic region oy < a < 0, using the above lemmas, it is better to follow the switching rule by
the conic switching rule. So upon arriving a;, we have ||z.(o1)||2 < ||lzs(a1)]l2-

In the conic region a; < a < ay, if ||z:{a1)|l2 = ||zs(a1)||2, then by using the above lemmas, it is
better to follow the conic switching rule. If ||z (i )|l2 < ||zs(e1)|l2, then it would be even clear that it is
better to follow the conic switching rule, since every trajectory evolving according to any one subsystem
starting from z.{c;) is closer to the origin than starting from z,(c,). Therefore upon arriving a2, we have
lze(az)llz < [|zs(a2)ll2-

By induction, we can use the similar argument as above to prove that upon arriving ay, we have ||z.(a—
27)|l2 < llzs{a — 2m)ll2, i, [[2*|l2 < llz1]2- m

Theorem 3.3 implies the following theorem for the sufficient and necessary condition of the asymptotic
stabilizability of switched system (3.1) with subsystems in the same direction.

Theorem 3.4 The switched system (8.1) with subsystems in the same direction is asymptotically stabilizable
if and only if ||z*||2 < llzoll2 by conic switching method, where £* and z¢ are the same as in Theorem 3.3.

3.2 Two Subsystems in Different Directions

Now we consider switched systems with two subsystems in different directions.

We would consider switched systems (3.1), where subsystem 1 has clockwise direction and subsystemn 2
has counterclockwise direction.

Similar to the case of two subsystems in the same direction, we take z, f; and f2 to be vectors in R2.
We consider the angle #; ( —m < 8, < 0) from z to f;. And we consider the angle 6; (0 < 6, < 7) from x
to f2 (Figure 7).

We consider switching schemes that asymptotically stabilize the switched system. In other words, by
our switching schemes, we want to lead the trajectory closer and closer to the origin, i.e., [{z(t)|l2 = 0 as
t = 0. In the following, we will discuss the way by which we try to obtain such switching rules by choosing
a sybsystem which has the potentiality to drive the trajectory closer to the origin. In the following, sets E;,
and E;, are as defined in (3.3) and (3.4). A lot of geomtric motivation is much like those in the previous
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Figure 7: The angle 8; from z to f;, ¢ =1,2.

subsection. Here we would firstly denote the following conic regions

0 Eys N B, (3.21)
L2 Eryu N Eoy, (3.22)
Q3 = B3N Epun {z|azas —a1aq > 0}, (3.23)
Qs = Ey,NEy N {z|aza; —aa4 <0}, (3.24)
15 = E14NEy N {z|aza3 —ajaq > 0}, (3.25)
Qg Ei.NEsynN {:Elagaa —ajag < 0} (3.26)

Notice, some ;s we denote in this case are different from ;’s denoted in the previous subsection.

Case 1: If Int($;) # 0, it is clear that any trajectory of the switched system that is totally inside €
is stable (Figure &(a)). Now if the initial point of the switched system is outside ;, we can follow the
trajectory of any one subsystem to go into €;. Then we can use the conic switching rule, i.e., switch to
another subsystem upon hitting the boundary of €2;, this will give us a trajectory that is totally inside £,
and it is stable. If there exists x € (1, such that 8,(fi{z)) # @2(f2(x)), then the conic switching rule is
asymptotically stable.

Xa4

Q, x,‘H
. SN
| X /g
Ve
- jj\\ U7 %,
4 / v
v ¥
/ /s
s
/I/
i - < -
o X1 0 X

(a) (b)
Figure 8: (a) Case 1:/nt() # 0. (b) Case 2:Int(Qs) # 0.
Case 2: If Int(Q;) # 0. In this case, assume I, and l> be two rays that go through the origin and are in

the same conic region Q3. And the conic region with angle from !; to I3 is inside 23 (Figure 8(b)). Suppose
l2 is to the clockwise side of [; in the conic region and suppose zg is on Iz, we have the following Lemma.

Lemma 3.5 If the switched system follows subsystem 2 until the trajectory hit I, for the first time at ;.
Then the system switches to subsystem 1 and evolves according to subsystem 1. Suppose z* is a point on Iy
where the trajectory hits I for the first time after the switching, then we have [iz*||2 < ||zo|2-

11



Proof: Figure 8(b) shows the case. It is quite clear that if we consider &(¢) = Azx(t) with £(0) = z;, where
Az = —Aj, then the trajectory is exactly the same as the trajectory from z to z; but evolving in opposite
direction. Also notice that f3 = (—asz, —a4)7.

Now consider %(t) = A;z(t) and £(f) = Azx(t), they are in the same direction. And since the conic region
of angle from {; to I, are inside Q; defined in (3.10), it is also inside Ey1, N E3, N {z|az{—as) — ai1(—aq) < 0}.
Therefore, by lemma 3.2, we obtain |[z*[|2 < ||zoll2. |
According to Lemma. 3.5, we can use the conic switching rule, i.e., switch to another subsystem upon

hitting the boundary of (3 so as to keep the trajectory inside £33 (Figure 8(b}), this will give us a trajectory
that is totally inside 25 so it is stable.

Case 3: If Int(Qs) # 0. The the similar argument as in Case 2 can be applied and we find that the system
can be stabilized by conic switching rule to keep the trajectory inside 2s.

The following theorem shows us that the system can only be stabilized for the above-mentioned three
cases.

Theorem 3.6 The switched system consisting of two subsystems in different direction is asymptotically
stabilizable by switching rules if and only if Int(£)) U Int(3) U Int(Qs) # 0 end there exists x € Int(Q;) U
Int(Q13) U Int(Sts) such that 8,(f1(z)) £ —02(f2(x)).

Proof: by using the conic switching rules associated with §2;, ¢ = 1,3,5 if Int(f;) # 0, the sufficiency is
quite clear from the above discussion.

Necessity. Assume zg lies on ray ;. Let a be the angle from {; to the line on which =(t} lies. Assume
s is an arbitrary switching rule such that the system switches when a is equal to 0,¢, a9, -+ ,an, -+ and
starting from subsystem 2. And let the correponding points at switching moment bexo,z1,Z2, - , T, -
(The similar argument can be applied to an arbitrary switching rule starting from subsystem 1.)

X34
[

"lw/_ I

/“1 X,

X

-
NIZE

E

Figure 9: Figure for the proof of Theorem 3.6.

Now we consider the trajectory of subsystem 2 and go backward in time, i.e., z{—t). Assume z* is the
point where the trajectory hits {; for the first time (at time —t*) (Figure 9). Let

E={z(t) -t <t <0}

If we consider the trajectory from zo to 2, it is clear that for any points z on the trajectory between
#o to 21, ||z|]2 would be greater than or equal to the norm of the corresponding points on E. (z’' on E
corresponds to x; when they are on the same ray through the origin).

If Int(Q1)UInt(Q3)UInt(Qs) # 0 or Int(Q)UInt(:)UInt(25) # O but Vz € Int()UInt{Qz)UInt(Ss)
we have 81 (f1(z)) # —62(f2(z)). By induction, we can show that any z on the trajectory between z; and
zp+1 would have a norm greater than or equal to the norm of the corresponding points on E. Therefore,
any z on the trajectory of the switched system would have a norm than the smallest norm of the points on
E. Therefore, the switched system is not asymptotically stablized by any s, which is a contradiction to our
assumption. ]
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4 Several Subsystems

Now we study the stabilizing switch scheme for switched systems with several LTI autonomous subsystems
with unstable focus

#(t) = Az(t), i=1,2,--,N. (4.1)

We would consider the following case.

4.1 All Subsystems in the Same Direction

Assume that all the N subsystems are in the clockwise direction (the similar argument can also be applied to
several subsystems in the counterclockwise direction). Notice from the discussion of two subsystems in the
same direction, we find the conic switching rule associate with each point on R? with a subsystem i where
#; is smaller. In fact, we can apply the similar method to several subsystems in clockwise direction. We let
the conic switching rule associated with each point on R? where 8; is the smallest (if some 8; = 8;, we may
choose subsystem ¢ or j}.

Except for the number of subsystems, we can follow the similar argument as in subsection 3.1, and we
have the following Theorem.

Theorem 4.1 Letl, be a ray that goes through the origin. Let xq be on 1y and consider the conic switching
rule. Let x* on 1, be the point where the trajectory hits Iy for the first time after leaving xo. The switched
system (4.1) is asymptotically stabilizable if and only if ||z*|l2 < lizo]l2-

4.2 Not All Subsystems in the Same Direction

Assume that K(X > 0) subsystems are in clockwise direction and M(M > 0) subsystems are in coun-
terclockwise direction (K + M = N). by some observation and combination of the previous results, the
following Theorem can be obtained.

Theorem 4.2 Thw switched system with K(K > 0) subsystems S| ,---,Sg in clockwise direction and
M(M > 0) subsystems ST ,---, S}, in counterclockwise direction is asymptotically stabilizable if and only if
one of the following three conditions holds:

1. The switched system consisting of ST ,--- , Sk is asymptotically stabilizable.
2. The switched system consisting of ST, ,S%; is asymptotically stabilizable.

3. There exists 1 <i < K and 1 < j < M such that the switched system consisting of two subsystems S;
and S; is asymptotically stabilizable.

5 A Practical Algorithm and Exmaples

The conic switching rule in Section 3 and Section 4 depends on the computation of many conic regions. For
each conic region, we are going to solve second-order equations of z in terms of x; which gives us two lines
as boundaries of the conic region. Yet in practice, along with the increase of the number of subsystems,
the compuation can be cumbersome. So in practice, we would not compute the accurate boundaries of the
conic regions but use the following algorithm to obtain the conic regions and the switching rule associated
with each region. We just explain the algorithm for two subsystems, teh similar argument can be applied to
several subsystems.



Assume two subsystems are in the clockwise direction. Consider a circle with center at the origin and
radius r {r not too small) on R?. Pick n points 4 = (rcosay,rsinag)? with o = &(k-1),k=1,2,--- ,n,
on the circle. Compute the 8;(f;(zx)) (—7 < 8; < 0) for subsystem 1,2 and associate a subsytem to x; with
smaller 8;. If we use “*” to denote those points associated with subsytem 1 and “0” to denote points
associated with subsytem 2. Now draw lines [;’s through the boundary of “*” and “o” regions as in Figure
10, then !; and I, will give us a rough boundary of conic regions associated with individually subsystems.
In this case, some of the ;s are in the same conic region by {; and I; and we do not have to identify them
differently.

Figure 10: The boundaries of conic regions.

The similar method can be carried out to check whether Int() U Int(Q23) U Int(Qs) # @ in the case of
two subsystems in different directions to decide whether the system is stabilizable and if yes, to obtain the
conic switching rule.

In the following we show several examples.

Example 5.1 The switched system (3.1) with two subsystems in the same direction
a1 1B8Y_[3 -2 2 57[3 27"
Tl-2 3171 1 -5 2|1 1 ’

wo[ -2 [ 1)1 41 1]
7] -0 3|7 ~1 3])|-41]|-13)] "
s asymptotically stabilizable using the conic switching rule, though each subsystem is unstable. Figure 11

shows the trajectories of the individual subsystem. Figure 14 shows the conic regions, the trajectory and the
time domain response of the switched system.

Example 5.2 The switched system (3.1) with two subsystems in the seme direction
a5 02]_[1 -1])[8 2][1 1]
'] -4 1|7 |0 2][-23]{0 20] °
[ 1 02]_[1 1 3 2771 177!
2| -4 5 |7 |0 20]{-23][0 2] °

is not asymptotically stabilizable. Figure 12 shows the trajectories of the individual subsystem. Figure 15
shows the conic regions and the trajectory of the switched system using the conic switching rule.
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Example 5.8 The switched system (8.1) with two subsystems in different directions
a2 2] [3 -2 2 20][3 -2]7"
Yl-8 671 1 -20 2 || 1 ’

A1 -] _f1 1 r 20][1 117"

27150 -9 |7 [3 -1]]| -2 1 3 -1]
is asymptotically stebilizable. Figure 13 shows the trajectories of the individual subsystem. Figure 16 shows
the conic regions, the trajectory and the time domain response of the swilched system.

Example 5.4 The switched system with three subsystems in the same direction
a—[ L 0s5]_[1 0 1 511 o1
'] -50 1 |7|0o wf[-51f]0 10] "

Ay = 25.75 25.75 | _ | 0.7071 -7.071 1 5 0.7071 -7.071 17"
2= | -25.75 -23.75 |~ [ 07071 7.071 -5 1 0.7071  7.071 !

—-23.75 25.75
~ | -0.7071 7.071

A= 0.7071 7.071 1 5 0.7071 7.071 1"
3T —25.75 25.75 ’

-5 1 -0.7071  7.071

is asymptotically stabilizable. Figure 17 shows the conic regions, the irajectory and the time domain response
of the switched system.

6 Conclusion

In this paper, we look into the problem of finding asymptotically stabilizing switching schemes for switched
systems consisting of several second-order unstable LTI autonomous subsystems. Sufficient and necessary
conditions are given for the asymptotic stabilizability of the switched system.

The method developed in this paper uses the vector fields of second-order LTI autonomous subsystems.
The method does not directly use Lyapunov function. And the computation of the conic regions are easy to
obtain and implement. The relationship between the method in this paper and the LMI formulation problem
in [4] are to be explored more clearly.

The method used in this paper is mainly depending on the geometric nature of vector fields on R? plane.
Since the topological structure of R and R®,n > 3 is quite different, the method may not be extended to
R™ space directly. In fact, there has no sufficient and necessary conditions for the asymptotic stabilizability
of switched systems consisting of n-th order LTI autonomous subsystems up to now. Though many LMI
method has been proposed, yet they are not necessary conditions.

By look into the vector fields of second-order LTI autonomous subsystems, the reachability problem may
also be solved, yet several sliding mode may appear in the process. We will not discuss it in detail here.
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Figure 11: Example 5.1: {a) The trajectory of the subsystem 1. (b) The trajectory of the subsystem
2.(z0 = (2,2)7)

F] ] Y + 3 » . O - - 3
-
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Figure 12: Example 5.2: (a) The trajectory of the subsystem 1. (b) The trajectory of the subsystem
2.(z0o = (2,2)T)
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Figure 13: Example 5.3: (a) The trajectory of the subsystem 1. (b) The trajectory of the subsystem

2.(z0 = (2,2)7)
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Figure 14: Example 5.1: (a} The switching region for conic rule.
conic switching rule. (c) Time domain response. (xo = (2,2)7)
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(b) The trajectory of the system using
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Figure 15: Example 5.2: (a) The switching region for conic rule. {b) The trajectory of the system using
conic switching rule. (2o = (2,2)7)
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Figure 16: Example 5.3: (a) The conic regions. (b) The trajectory of the system. (¢) Time domain response.
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Figure 17: Example 5.4: (a) The switching region for conic rule. (b) The trajectory of the switched system.
(c) Time domain response. (zg = (—2,2)T)
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