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Abstract 
In this paper, the problem of asymptotically stabi- 

lizing switched systems consisting of second-order LTI 
subsystems is studied and solved. In a previous paper, 
the stabilization problem of switched systems consisting 
of subsystems with unstable foci was addressed. This 
paper extends the method therein to the stabilization 
of switched systems consisting of general second-order 
LTI subsystems. Necessary and sufficient conditions for 
stabilizability for such systems are obtained. Stabilizing 
switching control laws are also derived if the system is 
asymptotically stabilizable. Examples throughout the 
paper illustrate the approach and results. 

1 Introduction 
A switched system is a system that consists of several 

subsystems and a (switching) law that specifies which 
subsystem dynamics will be followed by the system tra- 
jectory at each instant of time. Switching is needed for 
the stabilization of a switched system if none of its sub- 
systems is stable. 

There are many papers on stability analysis and de- 
sign of switched systems (see, e.g., [l, 3, 5 , 6 ] ) .  Common 
approaches include common Lyapunov function, mul- 
tiple Lyapunov functions and LMI approaches which 
usually provide sufficient conditions for stability. In 
[lo], the authors focused on the design of stabilizing 
switching control laws for switched systems consisting of 
second-order LTI subsystems with unstable foci. Nec- 
essary and sufficient conditions were established for the 
asymptotic stabilizability of such kind of switched sys- 
tems. And conic stabilizing switching control laws were 
derived when the switched system was stabilizable. 

In this paper, we extend the method in [lo] to sta- 
bilize switched systems consisting of general second- 
order LTI subsystems. Specifically, we carefully study 
switched systems consisting of two second-order LTI 
subsystems with unstable nodes and saddle points (Sec- 
tions 3 and 4). Necessary and sufficient conditions are 
also obtained for stabilizability of such systems. If a 
switched system is asymptotically stabilizable, then sta- 
bilizing switching control laws can be obtained based 
on the conic switching laws. Miscellaneous examples 
are presented to show the effectiveness of the method 
throughout the paper. Additional details for the meth- 
ods and proofs in the paper can be found in [9]. 

2 Stabilization o f .  Second-Order LTI 
Switched Systems with Foci 

]The research was supported by the Army Research Office 
(DAAG 55-98-1-0199) and the Center of Applied Mathematics 
Fellowship, University of Notre Dame. 

First of all, we review some stabilization results from 
[lo]. Note that these results are constructive and the 
stabilizability conditions derived are necessary and suf- 
ficient as opposed to other literature results. 

A second-order system x = Ax is said to be with fo- 
cus, or node, or saddle point if the eigenvalues of A are 
complex conjugates or real numbers with the same sign, 
or real numbers with opposite signs, respectively (see 
[4] Chapter 1 for details). In the following, we say that 
the direction of a subsystem at x # 0 is clockwise (resp. 
counterclockwise) if, starting from z, its trajectory has 
the potential to travel clockwise (resp. counterclock- 
wise). 
2.1 Two Subsystems of the Same Direction 

Consider the following switched system, 

k( t )  = Alx(t), k ( t )  = A z ~ ( t ) ,  (2.1) 
whose subsystems are both with unstable foci and of 
clockwise directions. Note that the following method 
also applies for the case of counterclockwise directions. 

Let x = ( ~ 1 , x 2 ) ~  be a nonzero point on R2 plane, 
and let f1 = Alz = ( u l , a ~ ) ~ ,  f2  = A22 = (u3,a4)*. 
We can view x, fi and f2  as vectors in Rz and de- 
note &, i = l, 2 to be the angle from x to fi measured 
counterclockwise with respect to x (f3i is confined to 
-T 5 Bi < T). So in this case, when the ith subsys- 
tem is of clockwise direction, -T 5 Bi 5 0. 

As in [lo], we define the regions 

Ei, = { x I x ~ ~ ~ ( z )  = x ~ A ~ z  5 0}, i = 1,2,  
Ezu = { x [ z ' ~ ~ ( x )  = x ~ A ~ x  3 0}, Z = 1 , Z .  

In other words, the interior of Ei, (Ei,) is the set of all 
points on R2 plane where the trajectory of the i th sub- 
system would be driven closer to (farther from) the ori- 
gin if the subsystem evolves for sufficiently small amount 
of time starting from the point. 

To design stabilizing switching control laws, we de- 
fine the following conic regions. 

01 = El, n&,, 0 2  = El, n Ez,, 
0 3  El, n E2s n {Zla2a3 - ala4 5 O}, 
0 4  El, n E2s n (xIa2a3 - ala4 2 O}, 
0 5  = El, n E2u fl{ZIW& - ala4 I O}, 
0 6  El, fl E2, fl {Zla2a3 - ala4 2 0). 

= 
= 

= 

The conic switching law is as follows: switch the 
switched system to subsystem 1 whenever the system 
trajectory enters 01, 03, 0 5  and switch to subsystem 2 
whenever the system trajectory enters 0 2 ,  0 4 ,  0 6 .  
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Intuitively, the conic switching law just chooses the 
subsystem which has the potential to drive the trajec- 
tory closer to the origin at each point x. The follow- 
ing theorem is concerned with the stabilizability of the 
switched system (see [lo]). 

Theorem 2.1 Let 11 be a ray that goes through the ori- 
gin. Let xo # 0 be o n  11. Let x* be the point on 11 
where the trajectory intersects 11 for  the first t ime after 
leaving 20, when the switched system evolves according 
to  the conic switching law. The switched system (2.1) 
consisting of two subsystems with unstable foci and of 
the same direction is asymptotically stabilizable i f  and 

Remark: The approach mentioned above may look like 
the min-projection strategy proposed in [7], yet the dif- 
ference between the two is that our approach chooses 
subsystem according to the angle from z to f while the 
min-projection depends on the projection o f f  on x. 
2.2 Two Subsystems of Opposite Directions 

Consider the switched system (2.1) whose subsys- 
tems are both with unstable foci, and with subsystem 1 
of clockwise direction and subsystem 2 of counterclock- 
wise direction. 

only if l1~*112 < 1 1 ~ 0 1 I Z .  

We introduce the following conic regions. 

521 = El, nEzs,  522 = ElunE2u7 
523 = El, n E2, n {xIaza3 - ala4 2 O } ,  
o4 = El,  n E ~ ,  n {+a3 - 0104 I 01, 
a5 = E ~ ,  n n {+a3 - (1104 2 01, 

= E~, n n {ZlazU3 - ala4 I o}. 
The following theorem is concerned with the stabi- 

lizability of the switched system (see [lo]). 
Theorem 2.2 The switched system (2.1) consisting 
of two subsystems with unstable foci and of opposite 
directions is asymptotically stabilizable i f  and only if 
Int(R1) U Int(R3) U Int(n5) # 0.  

If the switched system is asymptotically stabilizable, 
then a conic asymptotic stabilizing switching law can 
also be obtained. The conic switching law is as fol- 
lows: first, by following subsystem 1, force the trajec- 
tory into the interior of one of the conic regions 01, n3, 
05(there must be one available), and then switch to an- 
other subsystem upon intersecting the boundary of the 
region so as to keep the trajectory inside the region. 
Remark: Let f l f l fz  denote the angle from vector f1 to  
fz  measured counterclockwise. Notice that a point 2 is 
in RI or 0 3  or as, if and only if the absolute value of 
the angle flf,f, satisfies 10,,f21 = 1011 + le21 2 r. 
Remark: The above method may seem to be close to 
using V(Z) = xTx as a Lyapunov function. Yet V(Z) is 
not monotonically decreasing in 523 and 525, hence V ( x )  
may not be readily used here. 

3 Stabilization of. Second-Order LTI 
Switched Systems with Nodes 

In this section, we study and design stabilizing 
switching laws for switched systems consisting of sub- 
systems with unstable nodes. We mainly study switched 
systems consisting of two subsystems. The results can 
similarly be applied to several subsystems. 

Let us begin our discussion by looking into the sim- 

plest second-order LTI system where A = 

c1 > 0 ,  c2 > 0. Figure 1 shows the trajectory of the 
system when cz > c1 (note in this section, we generally 
do not consider the special case c1 = c2 > 0, though the 
case can also be analyzed using similar techniques). 

Figure 1: Trajectory of the simplest second-order system 
with unstable node. 

For the trajectory in quadrant I, ( x z , - z ~ )  . 
( c I ~ I , c z ~ ~ ) ~  = (c1 - C Z ) Z ~ Z Z  < 0 ,  so the trajectory 
travels counterclockwise in quadrant I. Similarly, the 
trajectories in quadrant 11, I11 and IV travel clockwise, 
counterclockwise and clockwise, respectively. 

For a general second-order system with unstable 
node, linear transformation can be used to find a YZ - Y1 
coordinate system in which the system has the simplest 
form of system with node. So we can analyze the direc- 
tion of the solution at each point in the Y2 - Y1 coor- 
dinate system and then translate the result back to the 
original coordinate system. 

Now we consider the switched system (2.1) with both 
subsystems having unstable nodes. In the following, we 
exclude the trivial case A1 = cA2 for some fixed c. So 
whenever Int(01) U Int(03) U Int(R5) # 0 ,  asymptotic 
stabilizability can be assured (Here and in the following, 
521, n3, 0 5  are as defined in Section 2.2). Let 

In other words, Ei, (resp. Ei,,), i = 1 ,2  denotes the 
conic regions where the ith subsystem trajectory travels 
clockwise (resp. counterclockwise). 

With these notations in mind, we let E, , = El, n 
Ez,, which denotes the conic region in which both the 
trajectories of subsystem 1 and 2 travel clockwise. In 
the same manner, we can define E,,,, = El, n E2,,, 
E,,,, = Elcc n E2, and E,,,,, = Elcc n Ez,,. 

Figure 2 shows exhaustively the six possible arrange- 
ments of E,,,, E,,,,, E,, , and E,,,,,. Without loss of 
generality, we illustrate these cases by fixing El,, to  be 
in quadrants I, I11 and El, to be in quadrants 11, IV , 
respectively. (We can always do so by some linear trans- 
formation, which will not affect the applicability of what 
we will discuss later). 
Case 1. We only discuss Case 1(a) (Figure 2 Case l(a)), 
since similar argument can be applied to Case l(b). 

Notice that in this case the two subsystems are of 
the same direction in E,,,, E,,,,,, which means that any 
trajectory starting in the conic region will eventually 
leave the conic region if the switched system stay at 
both subsystem 1 and subsystem 2 long enough. We 
call this kind of conic regions Type A regions. Of 
course, if the switched system stick to subsystem 1 in 
E,,,, it will not leave E,,,, yet the system will not be 
stable, so this kind of strategy is not of interest to  us. 
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' E A  

Case 3(a) 

Ecc.cc j E,, 

Case 1 (b) 

Case 2(b) 

I E&cc 

Case 3(b) 

Figure 2: Cases for subsystems with nodes. 

The conic region E,,,, has the property that when- 
ever a trajectory goes into it, the trajectory can never 
leave it again, we call it a Type B region. 

For conic region E,,,,, the trajectory of the systems 
can always leave the conic region from both boundaries 
under appropriate switchings. The region is called a 
Type C region. 

Theorem 3.1 In Case l (a) ,  for  the Type B region E,,,,, 
we have Int(E,,,, n fl i)  = 0, i = 1,3,5.  

Next we introduce a theorem. 

Proof: See [9]. 0 
In view of Theorem 3.1, once the trajectory goes 

into the Type B region E,,,,, the trajectory cannot be 
stabilized for any switching sequences. So in general, the 
switched system is not stabilizable because stabilizability 
in general requires stabilizability from any initial point. 

Also notice that in the Type C region E,,,,, it can 
be shown that Int(E,,,, n ai) = 0, i = 1,3,5. 

So in this case, the switched system cannot be stabi- 
lized regardless of the initial point. U 
Case 2. We only discuss Case 2(a) (Figure 2 Case 2(a)). 
Case 2(b) is analogous. E,,, and E,,,,, are Type A 
regions. E:,,, is a Type B region and E:,,, is a Type C 
region. 

In this case, it can be shown that Int(E;,,,nRi) = 8, 
i = 1,3,5. So we conclude that the system is not asymp- 
totically stabilizable. Yet, it is still possible for the tra- 

jectory starting in the Type C regions to be stabilized by 
using some switching laws as long as the region satisfies 
the condition of the following theorem. 
Theorem 3.2 In Case 2(a), the trajectory starting in- 
side the Type C region E:,,, can be asymptotically sta- 
biZized i f  and only i f  Int(E;,,, n RI)  U Int(E&, n 0,) U 
W E : , , ,  n a,) # 0. 
Proof: See [9]. 0 

In this case, it is possible that the conditions in The- 
orem 3.2 be satisfied, hence the trajectory starting from 
inside the Type C regions might be stabilized using the 
conic switching laws as in Section 2.2. 

Figure 3: Example 3.3. 

Example 3.3 Consider the switched system consisting 
of two subsystems with unstable nodes with 

1 -37 -152 
A 1 = [ ;  A 2 = [  14.25 58 . 

Using the conic switching law, the trajectory starting in 
E:,,, is asymptotically stabilizable. Figure 3 shows (a) 
conic regions in E&,, (b) the trajectory of the system 
in 025, (c) t ime domain responses, with xo = (-8, l)T. 
0 
Case 3. We only discuss Case 3(a) (Figure 2 Case 3(a)). 
Case 3(b) is analogous. In this case, E:,, and E:,, are 
Type A regions. It can be shown that Int(E,,,,nfli) = 8 
and Int(E,,,, n fli) = 8, i = 1,3,5. Hence, the trajec- 
tory must not always be inside E,,,, (E,,,,) in order to  
possibly make the trajectory stable. 

In fact, we can adopt similar (one round) test as 
in the case of two subsystems with unstable foci of the 
same direction in Section 2.1. In particular, the conic 
switching law can be chosen as follows. The corre- 
sponding subsystem can be chosen as subsystem 1 in 
E,,,,, subsystem 2 in E,,?,. While in E;?, and E:,,, the 
subsystem is chosen similar to the case of unstable foci 
of the same direction, the subsystem which has the po- 
tential to drive the system trajectory closer to the origin 
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is chosen at each point. The following theorem provides 
a necessary and sufficient condition for the asymptotical 
stabilizability of the switched system. 
Theorem 3.4 Let 11 be a ray that goes through the or i -  
gin. Let xo be on 11. If x* is the point on 11 where the 
trajectory intersects 11 for the first t ime after leaving 20, 
when the switched system evolves according to  the conic 
switching law stated above. Then the switched system as 
an Case 3(a) is asymptotically stabilizable i f  and only i f  
Ilx*112 < 11XOI12~ 
Proof: See [9]. 0 

The conditions in the above theorem is not easy to 
check. The following corollary provides a simplified suf- 
ficient condition to check whether a switched system is 
not stabilizable. 

Figure 4: Figure for Corollary 3.5. 

Corollary 3.5 (The Parallelogram Sufficient Con- 
dition) If in Case 3(a), the boundaries of  the regions are 
denoted as 111, 112, 121, 122 as shown in Figure 4 .  Let 
xo be a nonzero point o n  121. If ~ 0 x 1 ~ 2 ~ 3  is  a parallel- 
ogram on R2, where x 1  E 122, 2 2  E 111, 5 3  E 121 and 
~ 0 x 1  ( 1  ~ 2 x 3  11 112, ~ 1 x 2  11 5 0 2 3 .  Then  the switched sys- 
t e m  i s  not asymptotically stabilizable if 11x3112 2 1120112. 

Proof: See [9]. 0 

Example 3.6 Consider the switched system consisting 
of two subsystems with unstable nodes with 

Using the conic switching law, the switched system is 
asymptotically stabilizable. Figure 5 shows (a) the re- 
gions fo r  subsystems, (b) the trajectory of the system, 
(c) t ime domain responses, with xo = (-4,0.5)T. 0 

4 Stabilization of Second-Order LTI 
Switched Systems with Saddle Points 

In this section, we study and design stabilizing 
switching laws for switched systems consisting of sub- 
systems with saddle points. We mainly study switched 
systems consisting of two subsystems. The results can 
similarly be applied to  several subsystems. 

Let us begin our discussion by looking into the sim- 

plest second-order system where A = [ 1. Here 

we assume c1 > 0 > c2. Figure 6 shows the trajectory 
of the system. 

For the trajectory in quadrant I, we have ( x 2 ,  -XI) 1 

( C I X I , C ~ Z ~ ) ~  = (c1 - c2)2122 > 0, so the trajectory 
travels clockwise in quadrant I. Similarly, the trajecto- 
ries in quadrant 11, I11 and IV travel counterclockwise, 

, 

I . . . . . . . . . l  
so 0 5  1 1.5 2 2 5  3 35 4 .5 5 

1 5 ,  , , , , . , , , , , 

Figure 5: Example 3.6. 

Figure 6: Trajectory of the simplest second-order system 
with saddle point. 

clockwise and counterclockwise, respectively. While on 
X 2  axis, the trajectory tends toward the origin. On X 1  
axis, the trajectory tends toward ca. 

Now consider the switched system (2.1) whose sub- 
systems are both with saddle points. Similarly to  the 
previous section, we can define Eic, Ei,,, i = 1 , 2  to be 
the conic regions where the i th subsystem trajectory 
travels clockwise (counterclockwise). 

Figure 7 shows exhaustively the six possible arrange- 
ments of E,,,, E,,,,, E,, , and E,, ,,. As in Section 3, 
we illustrate these cases by fixing &, to  be in the I, I11 
quadrants and El,, to be in the 11, IV quadrants. 
Case 1. We only discuss Case 1 (a) (Figure 7 Case 1 (a)). 
Case l (b)  is analogous. In this case, E,,,, E,,,,, are 
Type A regions. E,,,, is a Type B region and E,,,, is a 
Type C region. 

Theorem 4.1 In Case l (a) ,  f o r  the Type C region E,,,,, 
In this case, we have the following theorem. 

Int(E,,,, n 0 1 )  U W E , , , ,  n 0 3 )  U W E , , , ,  n 0 5 )  # 0. 

Proof: See [9]. 0 
For the Type B region E,,,,, we have the following 

1342 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 8, 2009 at 14:47 from IEEE Xplore.  Restrictions apply. 



Case l(a) 

c- 

Case 2(a) 

Case 3(a) Case 3(b) 

Figure 7: Cases for subsystems with saddle points. 

theorem. 
Theorem 4.2 If Int(E,,,, n 01) U Int(E,,,, n $2,) U 
Int(E,,,, n 0,) # 0, then any trajectory starting in 
ECc,,,, EC9, and E,,,, can be asymptotically stabilized. 

By Theorem 4.1 and 4.2, the system is asymptot- 
ically stabilizable from any initial point on EX2 if and 
only if the condition of Theorem 4.2 holds. And conic 
switching law can also be obtained similarly to Section 
2.2. 
Example 4.3 Consider the switched system consisting 
of two subsystems with saddle points with 

I A1 = [ ; -;o] 1 A2 = [ -5.5 -4.5 
-4.5 -5.5 

The trajectory starting in E,,,c is  asymptotically stabi- 
lizable. Figure 8 shows (a) conic regions in E,,,,, (b) 
the trajectory of the system in a conic region in 01, (e) 

0 
Case 2. We only discuss Case 2(a) (Figure 7 Case 2(a)). 
Case 2(b) is analogous. In this case, E,,, and E,,,,, are 
Type A regions, E & ,  is a Type B region and Et,,, is a 
Type C region. 

In this case, it can be shown that Int(E;,,, n 01) U 
Int(Et, , ,  n Q3) U In t (E tc , ,  n Q5) # 0. Furthermore, 

t ime domain responses, with xo = (-2,0.8)T. 
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Figure 8: Example 4.3. 

we can also prove that I n t ( E & ,  n $2,) = 0, i = 1,3,5. 
Therefore, in this case, the system is not asymptotically 
stabilizable. Yet for initial points in E:,,,, we can use the 
conic switching law as in Section 2.2 to keep the trajec- 
tory in E:,,, so that the trajectory can be stabilized. 

a1 I 

Figure 9: Example 4.4. 

Example 4.4 Consider the switched system consisting 
of two subsystems with saddle points with 

[ 1 0 1 ,  [ 1.6667 0.8889 ] 
-2.0000 -1.6667 . Ai = A2 = 0 -10 

The  trajectory starting in E;,,, is asymptotically stabi- 
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lizable since I n t ( E & , n R I )  # 0 .  W e  keep the trajectory 
between the rays 11 with angle 1.6 and 12 with angle 1.8. 
Figure 9 shows (a)  11 and 12 in E:,,,, (b) the trajectory 
of the system in a conic region between 11 and 12,  (c)  

0 
Case 3. We only discuss Case 3(a) (Figure 7 Case 3(a)). 
Case 3(b) is analogous. In this case, E;,,,, and E:,,,, 
are Type A regions. 

In this case, we can prove that Int(E,,,, n RI)  U 
Int(E,,,, no,) U Int(E,,,, n R5) # 0.  This is because 
for a point x E E,,,, which is very close to the X2 axis, 
we will have 16)flf21 > 7r. 

Furthermore, we claim that the system is stabilzzable 
in this case. This is because for any initial point x E 
R2, we can always first choose appropriate switchings 
such that the system trajectory is driven into E,,,, and 
then adopt the conic switching law as in Section 2.2 so 
as to keep the system trajectory in Int(E,,,, n QI)  or 
Int(E,, , ,nRs) or Int(E,,,,nR5). In this way, the system 
can be asymptotically stabilized. 

t ime domain responses, with xo = (-2, 

2q . I 

Figure 10: Example 4.5. 

Example 4.5 Consider the switched system consisting 
of two subsystems with saddle points with 

1 -1.5714 -0.8571 [ -41’ [ 1.7143 1.5714 ’ 

The  trajecto ry  is asymptotically stabilizable since 
Int(E,,,, n Q,) # 0 and trajectories f rom any initial 
point can be driven into E,,,, n 0 3 .  Here we keep the 
trajectory between the rays 11 with angle 1 and 12 with 
angle 1.5. Figure 10 shows (a) conic regions in E,,,,, (b) 
the trajectory of the system, (c) t ime  domain responses, 

0 W i t h  20 = (8, - l)T. 

5 Conclusions 
In this paper, we study the stabilization problem 

for switched systems consisting of general second-order 

LTI subsystems. Necessary and sufficient conditions 
were obtained for the asymptotic stabilizability of such 
switched systems. If the system is asymptotically stabi- 
lizable, stabilizing laws were also derived. The method 
developed in this paper uses the geometric properties of 
vector fields of second-order LTI systems. The stabi- 
lization problem is studied according to the type of the 
origin (focus, node or saddle point) and the direction of 
the vector field at  a point (clockwise, or counterclock- 
wise). For switched systems consisting of subsystems 
with mixed types of the origin (e.g., one subsystem with 
focus and the other one with node), similar techniques 
can be adopted to find the modified conic switching laws. 
The method does not use Lyapunov functions directly. 
Note that the computation to  obtain the conic regions 
are easy to carry out and the method can readily be used 
to study several subsystems. It should also be noted that 
the conic switching laws have been shown in [2] to be 
robust. 

Since the topological structures of R2 and Rn,n >_ 
3 are quite different, it may be difficult to  extend the 
method to Rn space directly. Note that up to now, there 
has been no necessary and sufficient conditions for the 
asymptotic stabilizability of switched systems consisting 
of n-th (n 2 3) order LTI subsystems. 
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