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1 INTRODUCTION

The quest for machines that allow physical systems to exhibit higher autonomy has been the
driving force in the development of control systems over the centuries. For systems with high
degrees of autonomy, intelligent control methodologies appear to be necessary. An intelligent
control system should be able to operate appropriately and with a high degree of autonomy under
significant uncertainty that resuits from the fact that its components, control goals, plant models,
and control laws are not always completely defined, either because they were not known at the
time of design or because they changed unexpectedly. Intelligent and autonomous control
fundamentals are discussed for example in [3, 4, 8, 26] and the references therein.

In order to control complex systems, one has to deal effectively with the issue of
computational complexity. This has been on the periphery of the interests of researchers in
conventional control, but it is clear that computational complexity is a central issue whenever
one attempts to control complex systems. The physical processes of interest in intelligent control
are usually more general and complex than the processes that appear in conventional control,
They often exhibit complicated phenomena such as nonlinear behaviors and switching mechan-
isms. In addition, the goals of intelligent control problems are more ambitious [3]. Apart from
the usual problems of conventional control, concepts such as liveness and deadlock developed in
operations research and computer science arise in intelligent control. To develop tools that
facilitate the use of intelligent control systems it is essential to capture the phenomena of interest
accurately and in tractable mathematical form. A good mathematical description must be detailed
enough to describe accurately the phenomena of interest and at the same time simple enough to
be amenable to analysis and especially to design procedures.

The study of the computational issues in intelligent control is very helpful in the evaluation of
the progress of the research toward building systems with higher degrees of autonomy. It is also
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useful in identifying specific algorithms and methodologies that appear to be computationally
intractable and reconsidering their mathematical modeling. By modeling at different levels of
abstraction, computationally tractable solutions for complex intelligent control problems can be
identified. On the practical side, the utilization of the available computer resources can be
improved by considering the computational complexity of the relevant procedures. In this work,
we concentrate on computational issues in intelligent control that arise when discrete-event and
hybrid models are used to describe mathematically the processes of interest. The reader, of
course, should be aware of the computational results on conventional control algorithms (see for
example [65]) that have appeared in the literature in recent years. These results are not studied
here. The use of discrete-event and hybrid models in intelligent control systems has been
discussed at length, for example, in [6, 9, 61, 63, 82]. Here, we focus on the computaticnal issues
of specific approaches that have been proposed for the analysis, synthesis, and simulation of such
systems. It should be noted that the treatment of the subject it is not complete by far. The
importance of studying the computational issues in discrete-event and hybrid systems is only
starting to be recognized by the research community, and a number of relevant articles have
appeared in the literature. For example, computational issues of supervisor control theory for
discrete-event systems [70] have been addressed in [58, 60, 72, 81]. Complexity results for
hybrid systems can be found in [10, 12, 32, 75]. In this chapter, we study computational issues in
recent approaches to discrete-event and hybrid system analysis and design that were developed
by our group using Petri nets. We also present computational issues of related analysis and
synthesis problems that have appeared in the literature. A quantitative theory of intelligent
control based on formal models such as discrete-event or hybrid system models may result in
algorithms of high complexity. Often, there are applications for which the same algorithms can
be applied efficiently. There are also cases where the designer may decide on a compromise for a

“suboptimal” solution that can be computed in an efficient manner.

The modeling tool that we have selected to study the computational issues in intelligent
control here is that of Petri nets. Petri nets are a powerful modeling paradigm for a variety of
systems. Their basic characteristic is that they provide an excellent tool for capturing
concurrency and conflict within a system. They have an appealing graphical and mathematical
representation and they have been used extensively to model information processing systems,
manufacturing systems, communication systems, and chemical processes, among others. Petri
nets have been used extensively as a too! for modeling, analysis and synthesis for discrete-event
systems [16, 54]. In this chapter, ordinary Petri nets are used in the design of supervisors for
discrete-event systems [52] and a class of timed Petri nets, named programmable timed Petri
nets, is used for studying hybrid systems [40]. Petri nets can be viewed as a generalization of
finite automata and are used instead of finite automata for a number of reasons. The first is the
expressiveness of Petri nets. Petri net languages include the regular languages described by finite
automata and they can model switching policies that describe conflict, concurrency, synchro-
nization, and buffer sizes. Another reason is that recent results in the supervisory control of
discrete-event systems using ordinary Petri nets {52] have made possible the design of super-
visors in an efficient and transparent manner. In general, a Petri net representation for a
concurrent process will be more compact (fewer vertices) than its associated automaton
representation, and with the use of partial order semantics it is now possible to search the
Petri net’s state space in a efficient manner [48). The compactness of Petri nets may lead to
algorithms of high complexity. Note that theoretical results concerning Petri net modeling power
and limitations exist in the literature, as Petri nets have been used in a wide range of applications.
For example, in industrial process control Petri nets have been used to implement real-time

controllers, and to serve as a replacement for programmable logic controllers [18].
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The aim of this chapter is to investigate computational issues in discrete-event and hybrid
systems that are central in intelligent control and the importance and suitability of Petri net-based
models for intelligent control by studying computational issues that arise in such contexts. Our
framework for intelligent control is discussed in Section 2, where a hierarchica! functional
architecture that can facilitate the study of fundamental issues of a quantitative theory of
autonomous intelligent control is used. Note that such architecture also offers advantages with
respect to computational issues. In Section 2.2, the need for discrete-event and hybrid models in
intelligent control systems is discussed as well as the levels of abstraction in the hierarchical
architecture where such models frequently appear. Section 3 briefly reviews some basic notions
from complexity theory that are necessary for the study of computational issues in intelligent
control. Petri nets are discussed in Section 4. Some basic notions are first introduced in Section
4.1. Then, in Section 4.2, computational aspects of Petri nets are discussed including decidability
issues for various analysis problems. An integer programming technique for checking properties
of interest is discussed in Section 4.3 and an approach based on partial order semantics
(unfolding) for searching the state space is discussed in Section 4.4. Synthesis results and
supervisor control of Petri nets based on place invariants are discussed in Section 4.5. The
computational aspects of hybrid models are discussed in Section 5. First in Section 5.1,
computational issues in hybrid automata are discussed at length. Hybrid automata provide a
general modeling formalism for the formal specification and algorithmic analysis of hybrid
systems [1] and they are widely used in both the computer science and the control communities,
The computational issues of some important synthesis approaches proposed, in the literature are
also discussed. Programmable timed Petri nets are presented in Section 5.2, with emphasis on the
computational complexity of algorithms for the analysis and supervision of hybrid systems. The
computational aspects of simulating intelligent control systems are discussed in Section 6. In
particular, a parallel computing architecture for intelligent control is presented. The discussion
describes ongoing research for development of parallel computing tools for large, computation-
ally demanding, irregular applications where the computational load may change during run-
time. Our motivation was a parallel nun-time system intended for symmetric multiprocessors
(SMPs) that has been implemented on an IBM RISC 6000/SP machine. This parallel
architecture, is an application-driven scheme for applications that require large computational
tasks such as intelligent control systems. We discuss the suitability of this parallel computing
scheme for simulation of intelligent control systems, and in Section 6.1 we illustrate its
advantages by considering parallel discrete-event simulations.

2 INTELLIGENT CONTROL

2.1 General Concepts

Intelligent control describes the discipline in which the control methods developed attempt to
emulate important characteristics of human intelligence. These characteristics include adaptation
and learning, planning under large uncertainty, and coping with large amounts of data. Today, the
area of intelligent control tends to encompass everything that is not characterized as conven-
tional control. Intelligent control is interdisciplinary as it combines and extends theories and
metheds from areas such as control, computer science, and operations research. It uses theories
from mathematics and seeks inspiration and ideas from biological systems. Intelligent control
methodologies are being applied to robotics and automation, communicatiens, manufacturing,
and traffic control, to mention but a few areas of application. Neural networks, fuzzy control,
genetic algorithms, planning systems, expert systems, and hybrid systems are all areas where
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related work is taking place. The areas of computer science and in particular artificial intelligence
provide knowledge representation ideas, methodologies and tools such as semantic networks,
frames, reasoning techniques, and computer languages such as LISP and PROLOG. Concepts and
algorithms developed in the areas of adaptive control and machine learning help intelligent
controllers to adapt and learn. Advances in sensors, actuators, computation technology and
communication networks help provide the necessary techniques for implementation of intelligent
control hardware.

Why is intelligent control needed? The fact is that there are problems of control today that
cannot be formulated and studied in the conventional differential/difference equation mathe-
matical framework using “conventional (or traditional) control” methodologies that were
developed in past decades to control dynamical systems [3]. To address these complex problems
in a systematic way, a number of methods have been developed in recent years that are
collectively known as “intelligent control” methodologies. Intelligent control uses conventional
control methods to solve “lower-level” control problems and conventional control is included in
the area of intelligent control. Intelligent control attempts to build upon and enhance the
conventional control methodologies to solve new, challenging control problems.

To control complex systems one has to deal effectively with the computational complexity
issue. This has been peripheral in the interests of the researchers in conventional control, but it is
clear that computational complexity is a central issue whenever one attempts to control complex
systems. Computational complexity issues are usually addressed by using hierarchies to describe
the operation of complex systems. A hierarchical functional architecture of a controller that is
used to attain high degrees of autonomy has been proposed in [9] (for intelligent control
architectures see also [73], the contributions in [8], and the references therein). This hierarchical
architecture, which is shown in Figure 1, has three levels: the execution level, the coordination
level, and the management and organization level. The architecture exhibits certain character-
istics that have been shown in the literature to be necessary and desirable in autonomous
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FIGURE 1
Intelligent autonomous controller functional architecture.
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intelligent systems. Such a hierarchical architecture can facilitate the study of fundamental issues
of a quantitative theory of autonomous intelligent control. The representation of a complex
system using formal models at different levels of this hierarchy enables the researcher to use
standard control-theoretic analysis (for example, conventional control or supervisor control
theory of discrete event systems). More importantly, in view of the content of this chapter, it
enables the study of the computational complexity of important problems in intelligent control.
We briefly outline some characteristics of the architecture. There is a successive delegation of
duties from the higher to lower levels; consequently the number of distinct tasks increases as we
go down the hierarchy. Higher levels are concerned with slower aspects of the system’s behavior
and with its larger portions, or broader aspects. There is then a smaller contextual horizon at
lower levels, that is, the control decisions are made by considering less information. Also notice
that higher levels are concerned with longer time herizons than are lower levels. Because of the
need for high-level decision making abilities at the higher levels in the hierarchy, it has been
proposed that there is increasing intelligence as one moves from the lower to the higher levels.
This is reflected in the use of fewer conventional numeric—algorithmic methods at higher levels
as well as the use of more symbolic—decision making methods. This is the “principle of
increasing intelligence with decreasing precision” of Saridis (see also [74] and the references
therein). The decreasing precision is reflected by a decrease in time scale density, decrease in
bandwidth or system rate, and a decrease in the decision (control action) rate. These properties
have been studied for a class of hierarchical systems in [62). All these characteristics lead to a
decrease in granularity of models used, or equivalently, to an increase in model abstractness.

2.2 Models for Intelligent Controllers

In highly autonomous control systems, the plant is sometimes so complex that it is either
impossible. or inappropriate to describe it by conventional mathematical system models
consisting only of differential or difference equations. Even though it might be possible to
accurately describe some systems with highly complex nonlinear differential equations, such
description may be inappropriate if it makes subsequent analysis too difficult or too computa-
tionally complex to be useful. The complexity of the plant model needed in design depends both
on the complexity of the physical system and on how demanding the design specifications are,
There is a trade-off between model complexity and our ability to perform analysis on the system
via the medel. Frequently, a more abstract, higher-level model can be utilized, which will make
subsequent analysis simpler. This model intentionally ignores some of the system characteristics,
specifically those that need not be considered in attempting to meet the particular performance
specifications. For example, a simple temperature controller could ignore almost all the
dynamics of the house or the office and consider only a temperature threshold model of the
system to switch the fummace off or on (see also the discussion on hybrid systems later).

2.2.1 Discrete-Event System Models. Discrete-event system (DES) models that use finite
automata or Petri nets, queuing network models, Markov chains, etc. are quite useful for
modeling the higher-level decision making processes in an intelligent autonomous controller.
The choice whether to use such models will, of course, depend on what properties of the
autonomous system are to be studied. More specifically, DES models are appropriate for general
expert control systems, planning systems, abstract learning control and often the higher
“management and coordination levels- in the hierarchical architecture for intelligent autonomous
systems. DES analysis and controller synthesis techniques (for example [70]) have been
successfully developed. Other important topics for intelligent control include approaches to
controllability, reachability, stability, and performance analysis. Applications of DES theoretic
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techniques have been reported for the modeling and analysis of Al planning systems and the
stability analysis of expert control systems (see for example [63, 64]). Discrete-event systems are
of course important in their own right and they have been studied using many approaches. They
are also very useful in connection with hybrid systems. Recently, an efficient methodology for
supervisory controller design for DES was developed using Petri nets [S1, 52, 53, 85). The
approach uses the concept of place invariants of the net to design control supervisors that enforce
linear constraints on the marking and firing vectors of the net. This approach is discussed later in
this chapter with emphasis on its computational efficiency and simplicity. Potential applications
of the approach in intelligent control include real-time control reconfiguration and planning
different control tasks, for example, in manufacturing and hybrid systems. In general, when
considering the application of DES theoretic techniques to intelligent control systems, it is
important to study their computational aspects, particularly in problems such as reachability,
liveness, and deadlock detection that arise in many intelligent control applications. Studying the
computational issues of DES approaches can be very important in automated verification,
controller synthesis, on-line reconfiguration, and task planning among others. Several models
have been proposed in the literature to describe the dynamics of DES. An important observation
is that higher expressiveness of the model typically results in algorithms of higher complexity.
Petri nets provide a trade-off between expressiveness and complexity and are suitable for
describing concurrent processes that appear frequently in intelligent systems. Petri nets are
studied at length in this chapter with respect to their computational properties.

2.2.2 Hybrid System Models. Hybrid systems are dynamical systems whose behavior of
interest is determined by interacting continuous and discrete dynamics (see for example [7]).
These systems typically contain variables or signals that take values from a continuous set (eg.
the set of real numbers) and also variables that take values from a discrete, typically finite set
(e.g. the set of symbols {a, &, c}). These continuous or discrete-valued variables or signals
depend on independent variables such as time, which may also be continuous or discrete; some
of the variables may also be discrete-event driven in an asynchronous manner.

There are several reasons for using hybrid models to represent the dynamic behavior of
interest. Reducing complexity was and still is an important reason for dealing with hybrid
systems; this is accomplished by incorporating models of dynamic processes having different
levels of abstraction. For example, a thermostat typically sees a very simple, but adequate for the
task in hand, model of the complex heat flow dynamics. As another example, in order to avoid
dealing directly with a set of nonlinear equations one may choose to work with sets of simpler
equations (e.g. linear), and switch among these simpler models. The advent of digital machines
has made hybrid systems very common. Whenever a digital device interacts with the continuous
world, the behavior involves hybrid phenomena that need to be analyzed and understood.

Hybrid control systems typically arise from computer-aided control of continuous processes
in industrial processes, manufacturing and communication networks, for example. They also
arise from the hierarchical organization of complex control systems. There, hierarchical
organization helps manage complexity and higher levels in the hierarchy require less detailed
models (discrete abstractions) of the functioning of the lower levels (continuous dynamics),
necessitating the interaction of discrete and continuous components. The study of hybrid control
systems is essential in designing sequential supervisory controllers for continuous systems, and
it is central in designing intelligent contro! systems with a high degree of autonomy, Hybrid
system analysis and controller synthesis techniques could provide an approach for design and
verification of intelligent control systems that exhibsit a truly autonomous operation.

Hybrid control systems appear in the intelligent autonomous control system framework
whenever one considers the execution level together with control functions performed in the
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higher coordination and management levels. Examples include expert systems supervising and
tuning conventional controller parameters, planning systems setting the setpoints of local control
regulators, and sequential controllers deciding which one of a number of conventional
controllers is to be used to control a system, to mention but a few.

The analysis, design, simulation, and verification of hybrid systems requires the development
of computationally efficient algorithms and approaches. Several models have been proposed in
the literature for the development of analysis and controller synthesis techniques (see for
example [5]). Timed automata and hybrid automata have been used by several researchers for
modeling, verification and controlter synthesis techniques of hybrid systems. Although the initial
results concerning the complexity of approaches based on timed and hybrid automata were
negative, recent efforts have proposed systematic techniques that are applicable to a large class of
problems. Because of the importance of hybrid automata-based methods, we outline some of the
basic computational issues of hybrid automata based approaches later in this contribution.

Recently, a class of timed Petri nets named programmable timed Petri nets [42] has been used
to model hybrid control systems. The main characteristic of the proposed modeling formalism is
the introduction of a clock structure that consists of generalized local timers that evolve
according to continuous-time vector dynamical equations. They can be seen as an extension
of the approach taken in [2, 1]. They provide a simple but powerful way to annotate the Petri net
graph with generalized timing constraints expressed by propositional logic formulas. It may be
that the more powerful expressiveness of Petri nets will result in analysis and controller synthesis
approaches of higher complexity than those based on hybrid automata. However, Petri nets may
be preferable as there are complex systems that include, for example, concurrency and/or
conflict and can be modeled more compactly using Petri nets than using finite automata, There
are also control specifications, for example mutual exclusion constraints, that can be studied
more efficiently in a Petri net framework. Moreover, there is the need to investigate the
applicability of recent results in Petri nets in a hybrid framework. Stability and supervisory
contro] design of hybrid systems modeled by programmable timed Petri nets have been studied
in [40], and in Section 5.2 we briefly outline that approach and focus on its computational
advantages,

3 ELEMENTS OF COMPUTATIONAL COMPLEXITY THEORY

This section contains some basic notions of complexity theory that are necessary for the study of
computational issues in intelligent control. The discussion here is kept rather informal, and for
precise results the reader is referred to texts in complexity theory (see for example [35, 91). An
alphabet is a finite set of symbols. A string over an alphabet X is a finite-length sequence of
symbols from Z. We denote the set of all strings over a fixed alphabet = by I* A language L
over an alphabet Z is a set of strings of symbols over Z. In the following, the term problem is
used to define a general question to be answered, which may have several parameters whose
values are to be determined. A problem is usually defined by describing its parameters and
specifying the properties an (optimal) solutiofds required to satisfy. An instance of a problem is
a list of values, one value for each parameter of the problem. In order to give a precise definition
of a problem I1, we consider a fixed alphabet I (e.g. Z = (0, I, 8]} and an encoding scheme that
translates any instance of the problem to a string of symbols over . Therefore, a problem can be
defined mathematically as a subset IT of Z* x T*. Each o € Z* that encodes all the known
parameters of the problem is called input of T1. A string T € Z* is called an ouiput or solution of
ITif (o, 1) € I1. A decision problem is a problem with yes or no answer. A decision problem can
be defined mathematically as a subset of I*, or equivalently as a language over Z. To solve
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problems, we develop procedures that utilize computing resources. The formal descriptions of
these procedures are called algorithms. An algorithm is identified with some computer model
and therefore, the study of algorithms requires the definition of a computer model. The model
that more often is used to represent a real-world computer is the Turing machine.

Consider the Turing machine M with input alphabet X. The language accepted by M, denoted
by L(M), is the set of words in Z* that cause M to enter an accepting state. Given a Turing
machine M recognizing the language M, it is assumed that M halts whenever the input is
accepted. For not accepted words, it is possible that A will never halt, A ianguage that is
accepted by a Turing machine is said to be recursively enumerable. Another important class of
languages are the - machine that halts recursive language, which are defined as those accepted by
at least one Turing, on all inputs. An algorithm can be considered formally as a Turing machine
M. The description of the parameters of the problem constitutes the input string of the Turing
machine (after the application of an encoding scheme), The algorithm solves the problem for
each input string and initial state of the machine if, afier a finite number of moves of the tape
head, it stops in an accepting state, while it writes a string that is a solution of the problem,
Consider now a decision problem IT and encoding instances of the probiem by strings of
symbols over Z. For these problems it is assumed that the answer is “yes” if the machine M halts
and to be “no” otherwise. Therefore, the question whether there exists an algorithm for solving a
decision problem can be transformed to whether or not a particular language is recursive.

Decidable and undecidable problems. The discussion now is focused on the existence of
algorithms for decision problems. While it may seem restrictive to consider only decision
problems, in fact this is not the case since many general problems can be transformed to decision
problems that are provably as difficult as the general problem. A problem whose language is
recursive is said to be decidable. Otherwise, the problem is undecidable. That is, a problem is
undecidable if there is no algorithm that takes as input an instance of the problem and determines
whether the answer to that instance is “yes” or “no”. Semi-decidable procedures are often
proposed to deal with undecidable problems. These algorithms produce the correct answer if
they terminate, but their termination is not guaranteed.

Computational Complexity. It follows from the previons discussion that there are problems
that are unsolvable on a Turing machine (and by Church’s thesis on any computer). The
following discussion is focused on decidable problems. In particular, we classify decidable
problems based on the amount of time on space (or other resource) needed to solve a problem
(recognize the corresponding language) on a universal computer model, such as a Turing
machine. Consider a Turing machine M. If for a given string o of length », M makes at most
T(r) number of steps before halting, then M is said to be of fime complexity T(n) with time
complexity function T(n): N — N. The language L(M) accepted by M is also said to be of time
complexity T(n). Similarly, if for every input string of length n, M scans at most S(n) cells, then
M is said to be of space complexity S(n) with space complexity function S(ny: N — N. The
language L(M) is also said to be of space complexity S(n).

The Classes P and N'P. An algorithm is said to be of polynomial time (space) complexity if its
time (space) complexity function f(n) satisfies f(n) < p(n) for some polynomial p. The class of
all decision problems for which a polynomial time algorithm exists is called the class P.
Intuitively, P is the class of problems that can be solved efficiently. The class of decision
problems that can be solved by a deterministic Turing machine by using a polynomial amount of
working space is denoted by PSPACE. Similarly, EXPSPACE is used to denote the class of
problems that need an exponential amount of space. A number of important problems do not
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appear to be in P but have nondeterministic polynomial algorithms. This class of problems is
denoted by AP, To define formally the class AP, the nondeterministic Turing machine is used
[35]. A problem belongs to the class AP if it can be solved by a nondeterministic polynomial
algorithm (which is identified by a nondeterministic Turing machine). Of course, any attempt to
execute a nondeterministic algorithm in a deterministic device will need much more time, since
all possible choices have to be performed. Given a language L in the class NP then L is accepted
by a deterministic Turing machine of time complexity ##), for some constant k and polynomial
p- However, despite enormous research effort there is no language L in AP that has been proved
not to be in P. Finally, we close the discussion of basic notions in complexity theory with the
class of A"P-complete problems. A problem T (or language) is N'P-complete if IT belongs to
the class AP and every other problem in AP can be polynomially reduced to IT. What is
interesting about this class is that if a polynomial algorithm exists for any of these problems, then
all problems in A”P will be polynomial time solvable. A"P-completeness characterizes problems
that are “hard™ in a well-defined sense and more likely they are not in . Note that the notion of
completeness is more general and can be applied to any class C of problems. We say that a
problem II is C-complete if IT belongs to the class C and every IT" in C can be polynomially
reduced to II.

4 DES IN INTELLIGENT CONTROL USING PETRI NETS

In this section, Petri nets are used to study computational issues that appear in connection with
DES in intelligent control. As was mentioned in the introduction, there are several results on
computational issues of DES that use finite automata and the reader is referred to [58, 60, 72, 81}
and the references therein for more information. Petri net models have a wide range of
applications in intelligent control, for instance in task planning and fauit diagnosis. They are
especially useful in the case of concurrent systems and they can be enhanced to mode! various
dynamical systems. In this section, several computational issues in the analysis and design of
systems modeled by Petri nets are studied, Decidability issues for checking basic properties in
Petri nets are discussed. The use of integer programming for checking system propetties is also
presented. In addition, the computational advantages of unfolding algorithms that address the
state explosion problem in Petri nets are examined. Finally, a synthesis method for Petri net
supervisors is briefly presented with the emphasis on its computational efficiency.

4.1 Petri Nets: Basic Notions

Petri nets are a powerful modeling paradigm for a variety of systems [54, 67, 71). Their basic
characteristic is that they provide an excellent tool for capturing concurrency and conflict within
a system. They have an appealing graphical and mathematical representation and they have been
used extensively to model information processing systems, manufacturing systems, commu-
nication systems, industrial processes and so forth. In the following, some basic notions of Petri
nets that are necessary for the following sections are presented.

Definition. A Petri net structure is defined as a 3-tuple N = (P, T, F) where P is a finite set of
places, T is a finite set of transitions, and F C (P x TYU (T x P) is the incidence relation
representing a set of directed arcs connecting places to transitions and vice versa.

The preset and postset of a place p are defined by ep={r:(t,p) € F} and pe =
{t:(p,t) € F). The preser and posiset of a transition 7 are o1 ={p:(p,f) € F} and o1 =
p . (P, 1} € F), respectively. The marking of a Petri net is a mapping ¢ : P — N from the set of
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places onto the nonnegative integers which assigns to each place p a number of tokens p(p). The
dynamics of ordinary Petri nets are characterized by the evolution of the marking vector that
is referred to as the state of the net. A net system (N, uo) is a net N = (P, T, F) with initial

marking g,

The marking can be represented by an m-dimensional column vector s = [u,..., )T
where m = |P| is the number of places. The vector p gives, for each place p;, the number of
tokens in that place, y; = u(p,). The marking can be identified also with the multiset containing
H(p;) copies of p; for every p, € P. A multiset is a collection of elements over some domain that,
unlike a set, allows multiple occurrences of the elements. To avoid confusion, the marking 4 is
interpreted as a mapping when it is appeared with an argument and as a vector of nonnegative
integers otherwise. Multiset relations are frequently used. For example, the notation ¢ i is
interpreted as a multiset inclusion relation and it is true if and only if u(p;) < @(p;)}forallp, € P.

A transition / is enabled when each one of its input places is marked with at least one token,
#(p) > 0 for all p € of. An enabled transition may fire. If u(p) and (p) denote the marking of

place p before and after the firing of enabled transition ¢, then

up) +1 if pete\et
)= ulp) -1 if pete\et
up) otherwise

In words, firing an enabled transition ¢ causes one token to be removed from each place PEef,
and one token to be added to each p & te. The firing of the transition £ that is enabled at marking
# and results in the new marking ' is denoted as uft(y', A firing sequence from a marking y, is a
sequence of & = 41, ... 1, such thatug[t; }p,[6,) e, . . . [1,)1t,. A marking y is reachable in the net
system (N, p,) if there exists a firing sequence such that ufa)y’. The set of reachable markings

from pg in the Petri net N is denoted by R(N, ).

State space description of Petri net. The dynamic behavior of concurrent systems modeled by
Petri nets can also be described by matrix equations. These equations are similar to the difference
equation that are used to describe linear discrete-time systems with the additional restriction that
all parameters and vaiables involved take values only from the set of nonnegative integers. Note

that the state space description can be used to represent Petri nets with weighted arcs.

Let N be the set of nonnegative integers and let m = |P| and n = [T} denote the number of
places and ftransitions, respectively. The incidence relation can be represented using two
matrices. The arcs connecting transitions to places are described by the matrix D+ e N™ "
and the arcs connecting places to transitions are described by the matrix D~ € N™ " with entries
denoting the weights of each arc. Then the Petri net incidence matrix is defined D = D* — D~
Recall that the marking is represented with the m-dimensional integer vector 4 and describes the
distribution of tokens throughout the net. Let 4, denote the marking of the Petri net after the kth

execution. Using the incidence matrix Hyy) 8 determined by

ey1 = 4 + Dgy

where g, is the n-dimensional firing vector. Each entry of the vector q; represents the number of
times the corresponding transition has fired during the kth execution of the net. Equation (2) is
called the state equation of a Petri net. A given firing vector represents a valid possible firing if
all of the transitions for which it contains nonzero entries are enabled, The validity of a firing
vector g can be determined by checking the enabling condition # = D™g. In the remaining of the
section, both the graphical and algebraic representations of Petri nets are used to discuss the

computational complexity of central analysis and synthesis problems.
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4.2 Decidability Issues in Petri Nets

In spite of the large expressive power of Petri nets, most of the interesting properties for
verification purposes are decidable; however, they tend to involve algorithms of high computa-
tional complexity. In the following, we review some basic decidability results for Petri nets. For
more details see [20] and references therein.

Boundness. A net system is bounded if there exists finite k € N such that u(p) < k for every
place p and reachable marking 4 € R(V, y,). The set of reachable markings for a bounded Petri
net is finite. If the net is used to model systems with buffers or registers, then the verification of
the boundness property is essential to guarantee that there will be no overflows in the system.
The boundness problem for Petri nets is decidable. Checking boundness requires at least space
2% where ¢ is a constant and  is the size of the Petri net that reflects the number of places,
transitions and their interconnections, In the case when the bound & is constant k > 4, then the
problem is PSPACE-complete. A net N is structurally bounded if it is bounded for all possible
markings. It has been shown that a net is structurally bounded if and only if the system of linear
inequalities XD < 0 has a solution [50].

Reachability. The reachability problem is one of the fundamental problems for Petri net
analysis. Given a marking u of the net system (N, p), the reachability problem is the problem
of deciding whether u € R(N, y,). The reachability problem is decidable. A lower bound for its
complexity is that it needs at least exponential space and exponential time. An extension of Petri
nets named extended Fetri nets has been defined to increase the expressive power of ordinary
Petri nets. These nets contain inhibitor arcs from places to transitions. If the place p is connected
with the transition # via an inhibitor arc, then ¢ can fire only if u(p) = 0 (zero detector). It is
interesting that the reachability problem of Petri nets with one inhibitor arc is decidable while,
with at least two inhibitor arcs, it is undecidable [20].

Liveness. The notion of liveness is fundamental for the detection and avoidance of deadlocks. A
transition f is live with respect to a marking p, if for each p € R(N, 1) there exists a firing
sequence o such that 4 enables . A net system is live with respect to the initial marking if every
transition is live. The liveness problem is recursively equivalent to the reachability problem, and
thus decidable. Relevant to the liveness notion is deadlock-freedom. A Petri net is deadlock-free
with respect to 4, if every reachable marking u € R(N, p,) enables a transition. The problem of
deadlock-freedom can be reduced in polynomial time to the reachability problem.

Persistence. Persistence is a useful property in the verification of parallel computing protocols
and asynchronous circuits [38]. It is related to conflict-freedom and is also central to identifying
and allocating shared resources in manufacturing systems, A Petri net is persistent if for any
marking in R(N, p,) an enabled transition can be disabled only by its own firing. If a Petri net is
persistent, then for any two enabled transitions, the firing of the one transition will not disable the
other. The problem to decide whether a given Petri net is persistent is decidable. In [38],
persistence of Petri nets is efficiently analyzed using unfoldings (see discussion later in the
section).

Equality problem for Petri net reachability sets. Consider two net systems (N,,q,) and
(N3, 113}, then the problem of checking whether R(V|, pt,} = R(N;, i1,) is undecidable. Deciding
whether R(N, p1,) € R(N, pt,) is also undecidable. The proof of these statements is based on
Hilbert’s tenth problem [67). It can be shown that the language inclusion problem is also
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undecidable for Petri nets. Assume that the system and the desired specifications have been
modeled by the Petri nets N; and N,, respectively. The above undecidability results prohibit the
automated verification for proving that the specifications represented by the net N, are satisfied
by the system N,. However, there are subclasses of Petri nets for which these problems are
decidable and algorithms for automated verification have been developed. An interesting special
case is for bounded Petri nets where the set of reachable markings is finite.

Reachability tree. The simplest way to investigate the reachability problem of Petri nets is to
expand its reachability tree. The reachability tree represents an exhaustive enumeration of all the
reachable markings. Starting with the initial marking y, all the enabled transitions are fired. This
leads to a set of new possible markings. Taking each of those as a new root, the reachability tree
can be constructed recursively. If the Petri net is bounded and therefore it has a finite reachability
set, then this procedure will terminate. In the case of an unbounded net, it is possible that the
reachability tree could grow indefinitely. However, by using a special symbol w as pseudo-
infinity to represent number of tokens that can be made arbitrarily large, it can be proved [67]
that the reachability tree is finite. The analysis of Petri nets using the reachability tree has its
limitations. For example, it cannot, in general, be used to solve the reachability or the liveness
problems in unbounded nets because the presence of the pseudo-infinity problem leads to a loss
of information. In addition, the size of the reachability tree can grow exponentially with respect
to the size of the original Petri net; thus the use of the reachability tree for analysis of Petri nets is
computationally inefficient. Alternative methods for avoiding the state explosion problem have
been proposed; see the discussion on unfolding later in this section.

4.3 Checking Properties Using Integer Programming

As it was discussed earlier, the dynamic behavior of a Petri net can be described by a matrix
equation known as sfate or marking equation. The use of the marking equation makes possible
the application of linear algebraic techniques for the analysis and verification of Petri nets. In
particular, we are interested in how integer programming can be used to cheek properties of
interest. For more details the reader is referred to [49].

The marking equation is derived using the initial marking and the incidence matrix of the net
and it can be seen as a set of linear constraints L that every reachable marking must satisfy. It is
important to notice that the set of reachable markings is a subset of the solutions of the linear
constraints L. Assume we want to check a property of interest P and let Lp be a set of linear
constraints that specify the markings that do not satisfy P. Then if the system L U Lp, which can
be solved using integer programming, does not have a solution, every reachable marking satisfies
the property P. The disadvantage of this method is that the solution of I, U Lp may or may not
correspond to a reachable marking.

If p € R(N, py), then the following problem has at least one solution with respect to the
n-dimensional vector x, which corresponds to the firing sequence o such that Holodu.

Variables : x, u integer
a=pu+0+ Dx
x,u>0

It is often desirable to cheek a property P that corresponds to linear (or equivalently convex)
constraints on the marking of the Petri net. These properties are general enough and usually
correspond to generalized mutual exclusion constraints. Such a property can be described by the
set of linear inequalities Lu < b, where L, b are of appropriate dimensions and consist of
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integers. If the following integer programming probiem does not have any solution with respect
to the vectors x and g, then every reachable marking satisfies the property Ly > b.

Variables : x, u integer
p=py+Dx

Lu<b

xuz0

Integer programming and mixed integer programming can be used to check other properties of
Petri nets such as deadlock-freedom (see [49]). An additional disadvantage of this approach is
the A"P-completeness of the integer programming problem. There are many applications in the
area of intelligent control (for example, manufacturing systems or communication protocols)
where it is desirable for the discrete state to satisfy convex constraints. For large-scale systems, to
check if such a property holds can be computationally expensive. Another approach is to modify
the system to guarantee that such constraints will be satisfied. In Section 4.5, a method for
designing a supervisor to enforce linear constraints on the marking is discussed. The method is
very simple and computationally efficient. The Petri net is changed by adding appropriate
monitor places that are determined by a single matrix muitiplication.

4.4 State Space Search Using Unfolding

Net unfolding is a well-known partial order semantics of Petri nets [19, 57] and provide a method
of searching the state space without considering all the interleavings of concurrent events. An
unfolding technique to avoid the state explosion problem in the verification of systems modeled
by ordinary Petri nets has been proposed by McMillan [48). Specifically, an algorithm to
construct a finite prefix of the unfolding that contains full information about the reachable states
is introduced and then the algorithm is used for deadlock detection. The unfolding technique has
been enhanced and applied to other verification problems, see for example [21, 38). The
advantage of the unfolding technique over an exhaustive state space search is that it takes into
consideration the captured conflict in the net and narrows the interleavings of concurrent
transitions. This section presents briefly the basic notions and the computational advantages of
Petri net unfoldings.

The first result of the unfolding algorithm is an acyclic net called occurrence net. Briefly, an
occurrence net is a Petri net without backward conflict (without two transitions outputing in the
same place), and without cycles. Formally, an occurrence net is a net N' = (P, T, F’) such that
(i) for every p € P'| o p/| < 1; (ii) F’ is acyclic, i.e., the (irreflexive) transitive closure of ¥ is a
partial order; (iii) N' is finitely preceded, i.e., for every ¥ € P U T, the set of elements
¥y € P UT such that (y/, x’) belongs to the transitive closure of F is finite; and (iv) no transition
¢ € T is in self-conflict. In the following, Min(N’) denotes the set of minimal elements of
P U T with respect to the transitive closure of F'.

Let N, = (P,, T\, F,) and N, = (P;, T}, F;) be two nets. A homomorphism from N| to N, is a
mapping & : Py UT) — P, U Tysuch that: (i) (P ) C P, and K(T\) C T, and (ii) for every
t € T, the restriction of 4 to e/ is a bijection between of (in N;) and #A(7) (in N,), and similarly
for te and k(f)e.

A branching process of a net system {N, p,) is a pair § = (N', ) where N' = (P, T", F') is
an occurrence net and 4 is a homomorphism from ¥ to N’ such that (i} the restriction of & to
Min(N'} is a bijection between Min(N") and p,, (#, is interpreted as a multiset), and (ii) for every
1, 1 € T',if oty = o, and h(t|) = h(1,) then 1, = 1,. Two branching processes f; = (N,, h;) and
B, = (N, h,) of a net system are isomorphic if there is a bijective homomorphism k from N to
N, such that k; o h = h;. Furthermore, (N,, i) contains (N, h,)if N, € N,and the restriction of



X.D. Koutsoukos and P.J. Antsaklis, "Computational Issues in Intelligent Control: Discrete-event. and
Hybrid Systems," in S oft C omputing a nd | ntelligent S ystems: T heory a nd P r actice , N.K. Slnha and M.M.
Gupta, Eds., pp. 39-69, Academic Press, 2000. Also Technical Report isis-99-005, Dept. of Electrical

Engr., Univ. of Notre Dame, May 1999.

52 CHAPTER 3/ COMPUTATIONAL ISSUES IN INTELLIGENT CONTROL

hy to nodes in N, is identical to hy. An wnfolding is the maximal branching process up to
isomorphism associated with a net system.

Consider the unfolding # = (N', k) of the net system (N, uy). The homorphism & can be seen
as a label function that preserves the environment of the transitions. More specifically, the
following remarks are concluded from the previous definitions. Since N’ s an occurrence net, the
unfolding is finitely preceded and it contains neither forward conflict (| e p| < I) nor self-
conflict. Since f is a branching process, it has no redundancy (for every ¢,,1, € T’, if ofy = of,
and h(¢)) = h(t,) then #; = 5). Since k is a homomorphism, the labels of the preset and postset
of any transition in the unfolding match the preset and postset of the corresponding transition in
the original net (for everys € T}, the restriction of k to e is a bijection between of {in ¥,) and
*h(t) (in N,), and similarly for, re and h(r)e). Also, the labels of the places in the unfolding with
no predecessors match the initial marking of the original net system (the restriction of A to
Min(N'} is a bijection between Min(N") and u,).

In general, the unfolding of a net system is infinite in size. It is possible, however, to construct
finite prefixes of a maximal branching process that enumerate the reachable markings in a
computationally efficient manner. An important theoretical notion regarding occurrence nets is
that of a configuration. A configuration is a set of events representing a possibly partially ordered
run of the net. In an unfolding, each transition corresponds to a transition of the original net (via
the mapping ). We can associate each configuration of the unfolding with a state (marking) of
the original net by simply identifying those places whose tokens are produced but not consumed
by the transitions in the configuration. Then, it can be shown that every marking represented in a
branching process is reachable, and that every reachable marking is represented in the unfolding
of the net system. The local configuration associated with any transition consists of that
transition and all of its predecessors in the dependency order. This is the set of transitions that
necessarily are contained in any configuration containing the given transition.

Consider the problem of building a fragment of the unfolding that is large enough to represent
all reachable markings of the original net. The process starts with a set of places corresponding
to the initial marking of the original net. The unfolding is grown by finding a set of places that
correspond to the inputs (preset) of a transition in the original net, then adding a new instance of
that transition to the unfolding, as well as a new set of places corresponding to its outputs
(postset). If the new transition has no conflicts in its local configuration {more precisely, if it has
a local configuration), it is kept, otherwise it is disregarded. This is because the existence of a
conflict means that the new transition can occur in no configuration of the unfolding. The
unfolding of a net system is always complete. A complete prefix contains as much information as
the unfolding. Since a bounded net system has only finitely many reachable markings, its
unfolding contains at least one complete finite prefix. The key to termination of the unfolding is
to identify a set of transitions of the unfolding to act as cutoff points. This set must have the
following property: any configuration containing a cutoff point must be equivalent (in terms of
final state) to some configuration containing no cutoff points. From this, it follows that any
successor of a cutoff point can be safely omitted from the unfolding without sacrificing any
reachable markings of the original net. A sufficient condition for a transition to be a cutoff point
is the following: The final state of its local configuration is the same as that of some other
transition whose local configuration is smaller (see [21] for details).

Unfoldings of Petri nets provide a method for avoiding the state-space explosion in analysis
problems. The main advantage is the reduced size of the unfolding in comparison with the
reachability tree. A simple and elegant algorithm for the construction of the unfolding of a Petri
net is presented in {481. The size of the produced unfolding can be exponential in the size of the
Petri net. However, this is only the worst case; there are interesting applications when the size of
the unfolding is linear in the size of the Petri net. In general, the size of the unfolding will be
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smaller than the size of the corresponding reachability tree and will depend on the degree of
parallelism of the Petri net. In [48] it is also shown that the problem of existence of a marking
that will result in deadlock in an occurrence net is A"P-complete. This is in agreement with the
worst-case analysis for the size of the unfolding of a Petri net. However, there are cases when the
exponential complexity is avoided (for example, the dining philosophers problem). An
improvement of McMillan’s algorithms has been presented in {21], where it is shown that a
minimal complete prefix can be constructed with size polynomial in the size of the Petri net. A
technique that results also in a compression of the size of the unfolding is presented in [38).
Unfoldings can be used for the analysis of Petri nets to study all problems that are related to the
reachability problem. Such problems include liveness, deadlock-avoidance, boundness, and
persistence. In view of the time complexity of the resulting algorithms, it can easily be shown
that it will be polynomial in the size of the unfolding. Therefore, the size of the unfolding is the
important factor in the analysis of Petri nets following this approach.

4.5 Supervisory Control Theory of Petri Nets

The methods discussed above are concerned with the analysis and verification of systems
modeled by Petri nets and in general, do not lead to computationally efficient procedures.
Another approach, motivated by the supervisory control theory in [70], aims at the modification
of the original Petri net model (open loop plant) so that the resulting Petri net (closed loop) will
satisfy the desirable properties. If we assume that the specifications are expressed as a set of legal
markings for the system, then the aim of the control is to restrict the behavior of the net so that
only legal markings can be reached. In the following, we will briefly discuss approaches that rely
on the linear algebraic representation of the Petri net model of the plant.

Li and Wonham [43, 44] consider the synthesis of maximally permissive feedback control
policies when the legal markings are specified by a system of linear predicates. They showed that
under certain assumptions the supervisory state feedback control problem can be reduced to
solving a sequence of linear integer programming problems (in the presence of uncontrollable
transitions). The attraction of the general linear integer programming approach to Petri nets is
that the synthesis of supervisory control policies is reduced to the solution of a standard
optimization problem, eliminating the need to compute the reachability graph of the Petri net.

Linear constraints on the marking vector can also be enforced by monitor or controller places.
These places represent control places that are connected to existing transitions of the Petri net
model. A methodology for DES contro! based on Petri net place invariants has been developed in
[51, 52, 53, 85). A place invariant of a Petri net is defined as every integer vector x that satisfies
xTyt = xTpy where g, is the initial marking and p any reachable subsequent marking. Place
invariants characterize sets of places whose the weighted sum of tokens remains constant at all
reachable markings and is determined only by the initial marking. Consider linear constraints of
the form Ly, < b on the marking vector g, of the plant net. This inequality can be transformed
to the equality Ly, + 4. = b by introducing an extemnal Petri net controller whose places are
represented by the “slack variables” p.. The incidence matrix of the controller is then computed
by the equation D, = —LD, and its initial marking is yt,q = b — Lpi9. The controller introduces
place invariants in the closed loop system that enforce the linear constraint Ly, < b. For more
details on the place invariant method for controllable transitions see [85).

The significance of invariant-based supervision techniques to Petri net controller design is
that the control net can be computed very efficiently; thus the method shows promise for
controlling large, complex systems, or for recomputing the control law online due to some plant
failure. An invariant-based supervisor is computed very efficiently by a single matrix multi-
plication, and its size grows polynomially with the number of specifications. In the case when all
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the transitions of the plant net are controllable and observable, the invariant-based control

method is shown to be maximally permissive [85].

A more challenging case arises with the presence of uncontrollable and unobservable
transitions. Li and Wonham [43, 44, 45] show that optimal, or maximally permissive, control
actions which account for uncontrollable transitions can be found by analytically solving an
integer linear programming problem. If is not possible to solve the integer programming problem
symbolically, then it is necessary for the controller to numerically solve integer programs at
every iteration of the evolution of the discrete-event system. This can be computationally very
expensive for large problems. The approach presented in [51] for supervising a plant with
uncontrollable and/or unobservable transitions is to actually modify the constraints themselves
50 that the new constraints account for the difficult structures in the plant. If it is possible to
obtain an analytic solution for the transformed constraints, then the controller logic itself will be
very simple. Two techniques are presented in [51) for generating transformations of linear
constraints that will facilitate the controller synthesis in the presence of uncontrollable and/or
unobservable transitions. The first technique involves the solution of an integer linear problem
and the other the triangularization of an integer matrix through constrained row operations.
Although the derived supervisors are not always maximally permissive, a more restricted control
policy can be easily computed and implemented with monitor places. These suboptimal
controllers may be sufficient for many tasks, depending on the application. The suitability of
this technique has also been examined for deadlock avoidance and liveness. These methods that
apply to nets where uncontrollable and/or unobservable transitions may be present involve
finding the invariants and siphons of a Petri net and reduce computationally to finding elements
of the kernel of an integer matrix for which established algorithms exist (for more details see

[52].

5 HYBRID SYSTEMS IN INTELLIGENT CONTROL

Hybrid control systems typically arise from the interaction of discrete planning algorithms and
continuous processes, and, as such, they provide the basic framework and methodology for the
analysis and synthesis of autonomous and intelligent systems. Whenever a computer program
interacts with a physical process, hybrid system methodologies are necessary to guarantee the
desirable operation of the system. Hybrid automata have been proposed as a model for hybrid
systems and they have been studied extensively for the verification of computer programs that
involve continuous variables. Because of the importance of hybrid automata in the study of
hybrid systems, we review in Section 5.1 basic computational issues concerning the analysis of
such systems. Some recent results for controller synthesis are also outlined, with comments on
their computational complexity. Although most of the problems are computationally very
difficult and even undecidable, for many of them interesting applications efficient algorithms
can be developed. In Section 5.2, programmable timed Petri nets are presented as a model for
hybrid systems and some analysis and controller synthesis algorithms are described with

emphasis on their computational advantages.

5.1 Computational Issues in Hybrid Automata

Hybrid automata provide a general modeling formalism for the formal specification and
algorithmic analysis of hybrid systems [1]. They are used to model dynamical systems that
consist of both discrete and analog components that arise when computer programs interact with
an analog environment in real time. In the following we review some computational issues in the

analysis and verification of hybrid systems modeled by hybrid automata.
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A hybrid automaton is a finite state machine equipped with a set of real-valued variables.
More specifically, a hybrid automaton consists of a finite set X = {x,, ..., x,) of real-valued
variables and a labeled directed graph (¥, E). A vertex v € V is called a control mode or location
and is equipped with the following labeling functions: a flow condition or activity described by a
differential equation in the variables in X and an invariant condition inv(v) € R" described by a
logical formula in the variables in X. An edge e € E is called control switch or transition and is
labeled with a guarded assignment in the variables in X. A transition is enabled when the
associated guard is true and its execution modifies the values of the variables according to the
assignment. Another labeling function assigns to each transition an event from a finite set X.

A state 0 = (v, x) of the hybrid automaton consists of a control location v € ¥ and a valuation
x € " of the variables in X. The state can change either by a discrete and instantaneous
transition or by a time delay. A discrete transition changes both the control location and the real-
valued variables, while a time delay changes only the values of the variables in X according to
the flow condition. A run of a hybrid automaton H is a finite or infinite sequence

1
p=o'0—»}‘.:a|—>}:az-—>}22---

where o; = (v;, x;) are the state of H and f; is the fiow condition for the vertex v; such that (i)
7{0) = x;, (i) (&) = inv(v;) for all t € R : 0 <1 <1, and (iii) 5;,, is a transition successor of
&; = (v, fi(1;)) and &} is a time successor of ;.

An important notion for the realizability of the hybrid automaton is the divergence of time. A
hybrid automaton is said to be nonzeno if it cannot prevent time for diverging. If a hybrid
automaton is nonzeno only finitely many transitions can be executed in every bounded time

interval.

EXAMPLE (1]

The hybrid automaton of Figure 2 models a thermostat controlling the temperature of a
room by tuming on and off a heater. The system has two control modes off and on. When
the heater is off the temperature of the room (denoted by the real valued variable x) is
governed by the differential equation x = —Kx (flow condition). When the heater is on
(control mode on) the temperature of the system evolves according to the flow condition
* = —K(h — x), where A is a constant. The location invariants and the transition relation
are specified by logical formulas and by guarded commands in the variables in X,
respectively. These labeling functions detect when the temperature crosses the thresholds
m and M and trigger an appropriate control switching.

Complex Systems can be modeled by using the parallel composition of simple hybrid
automata. The basic rule for the parallel composition is that two interacting hybrid automata
synchronize the execution of transitions labeled with common events (for more details see [1]).

FIGURE 2
Hybrid automaton describing a thermostat [1).
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Linear hybrid automata. The modeling formalism of hybrid automata is particularly useful in
the case when the flow conditions, the invariants, and the transition relations are described by
linear expressions in the variables in X'. However, for many of significant results that have been
reported in the literature, hybrid systems are modeled by more general hybrid automata [30, 47,
69].

A hybrid automaton is linear if its flow conditions, invariants, and transition relations can be
defined by linear expressions over the set X of variables. Note the special interpretation of the
term linear in this context. More specifically, for the control modes the flow condition is defined
by a differential equation of the form x = k where £ is a constant, one for each variable in X, and
the invariant inw(v) is defined by a linear predicate (which corresponds to a convex polyhedron)
in X. Also, for each transition the set of guarded assignments consists of linear formulas in X,
one for each variable. Note that the run of a linear hybrid automaton can be described by a
piecewise linear function whose values at the points of first-order discontinuity are finite
sequences of discrete changes. An interesting special case of a linear hybrid automaton is a timed
automaton [2]. In a timed automaton each continuous variable increases uniformly with time
(with slope 1) and can be considered as a clock X = 1. A discrete transition either resets the clock
or leaves it unchanged.

Another interesting case of linear hybrid automata is a rectangular automaton [29]. A hybrid
automaton is rectangular if the flow conditions are independent of the control modes, and the
variables are pairwise independent. In a rectangular automaton, the flow condition has the form
x =[a, b] for each variable x € X. The invariant condition and the transition relation are
described by linear predicates that also correspond to n-dimensional rectangles. Rectangular
automata are interesting because they characterize an exact boundary between the decidability
and undecidability of verification problems of hybrid automata,

Decision problems. The main decision problems concerning the analysis and verification of
hybrid systems are the emptiness problem, the language inclusion problem, and the reachability
problem. In the following we discuss some of the decidability results reported in the literature for
hybrid automata {29, 32] and timed automata [2].

The emptiness problem is concerned with the existence of a divergent run and is a
fundamental task for the verification of liveness requirements in hybrid automata. The emptiness
problem for rectangular hybrid automata is PSPACE-complete. Checking the emptiness of timed
automata is also PSPACE-complete (see [32] and [2] for complete proofs). On the negative side,
the emptiness problem is undecidable for linear hybrid automata. This follows from stronger
undecidability results reported in [1] for restricted classes of linear hybrid automata.

The reachability problem is formulated as follows. Let o and ¢’ be two states in the infinite
state space S of a hybrid automaton H. Then, ¢’ is reachable from o if there exists a run of H that
starts is o and ends in ¢’. The reachability problem is central to the verification of hybrid
systems. In particular, the verification of invariance properties is equivalent to the reachability
problem. For example, a set R C S is invariant if no state in S\R can be reached from an initial
state of H. From the undecidability of the emptiness problem, it follows that the reachability
problem is also undecidable for linear hybrid automata. For decidability and undecidability
results for particular classes of hybrid automata see [1, 32, 33].

Timed automata. The language inclusion problem for timed automata is very important in the
automatic verification of finite state real-time systems. Given two timed automata 4, and A, over
an alphabet X, the problem of checking if L(4,) € L(4,) is undecidable. However, if 4, is
deterministic, the previous problem is PSPACE-complete [2]. (In a deterministic timed auto-
maton all the edges that stem from the same state have mutually exclusive clock constraints). The
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language inclusion problem for linear hybrid automata is more general and it is studied by
introducing two labeled transition systems. The time fransition system abstracts continuous flows
retaining only information for the source and the destination locations and the duration of the
flow. The time-abstract transition system abstracts also the duration of the flows. The timed
inclusion problem compares the runs of a hybrid automaton with timed specifications, and the
time-abstract inclusion problem compares the runs of a hybrid automaton with a time-abstract
specification. For details see [29].

Verification of linear hybrid automata. While the reachability problem is undecidable even for
very restricted classes of hybrid automata, two semi-decision procedures, forward and backward
analysis, have been proposed in [1] for the verification of safety specifications of linear hybrid
automata. A dafa region R, is a finite union of convex polyhedra in R". A region R = (v,R,)
consists of a location v & ¥ and a data region R, and is a set of states of the linear hybrid
automaton. Given a region R, the precondition of R, denoted by pre(R), is the set of all states ¢
such that R can be reached from ¢. The postcondition of R, denoted by post(R) is the set of all
the reachable states from R. For linear hybrid automata both pre(R) and post(R) are regions, that
is, the corresponding data region is a finite union of convex polyhedra. given a linear hybrid
automaton H, an initial region R and a target region T, the reachability problem is concerned
with the existence of a run of H that drives a state from R to a state in 7", Two approaches for
solving the reachability problem have been proposed. The first one computes the target region
post * (R) of all states that can be reached from the initial state R and checks if post*(R)N T =
(forward reachability analysis). The second approach computes the region pre*(T) of the states
that can be driven to the final region T and checks if pre*(T) N R = @ (backward reachability
analysis). Since the reachability problem for linear hybrid automata is undecidable, these
procedures may not terminate (semi-decision procedures). They terminate with a positive
answer if T is reachable from R and a negative answer if no new states can be added and T
is not reachable from R. The crucial step in these approaches is the computation of the
precondition or postcondition of a region.

Controller synthesis approaches based on hybrid automata. The undecidability of the
reachability problem is a fundamental obstacle in the analysis and controller synthesis for
linear hybrid automata. Nevertheless, considerable research effort has been focused on devel-
oping systematic procedures for synthesizing controllers for large classes of problems.

Tittus and Egardt [79] studied control design for a class of hybrid systems with continuous
dynamics described by pure integrators. Although this class of hybrid systems is rather limited,
these models are very important for control of batch processes. Note that even when the
continuous dynamics of the physical system are more complicated, it is efficient to use low-level
continuous controllers to impose linear ramplike setpoints. By using traditional feedback control
in the execution level of the hierarchical architecture, the dynamics of the low-level closed loops
is abstracted by integrators in the coordination level. More specifically, the continuous dynamics
in [79] are described by differential equations of the form x(f) = &, where £, is 2 constant vector
associated with the control mode v of the hybrid automaton. The control specifications are
represented by data regions R, = {x € R" : A,x + b, < 0} and by a set O, of forbidden control
modes ot forbidden control switches. Controllability of hybrid integrator systems is defined with
respect to a pair of regions of the hybrid state space. A hybrid system is controllable with respect
to (R, R,) if there exists an acceptable trajectory that drives the state (v, x} from R, to R;. An
acceptable trajectory is a trajectory of the hybrid system that satisfies the control specifications.
For example, no forbidden control mode v € (y is visited and for every legal control mode v the
continuous state x lies in R,. Based on the definition of cantrollability, a semi-decidable
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algorithm is described that uses backward reachability analysis. The algorithm that analyzes
these integrator hybrid systems with respect to controllability generates as a by-product a set of
correct control laws that switch the system between 2 predefined number of control modes. The
semi-decidability of the algorithm is due to the undecidability of the reachability problem of
linear hybrid automata. Note that an algorithm for backward reachability that can be applied in
more general cases has been presented in [76}.

Discrete-time control for rectangular hybrid automata has been studied in [31], where it is
shown that rectangular automata form a maximal class of systems for which the sampling-
controller synthesis problem can be solved algorithmically. A realistic assumption for controller
synthesis is that, while the plant evolves in continuous time, the controller samples the state of
the system in discrete time. The methodology for controller synthesis for hybrid automata can be
seen as an extension of supervisor control theory [70]. Let O be the set of states (v, x), ve V,
x € R" of the hybrid automaton H. A controller C is defined as a mapping /. : Q0 — Z from the
set of states to the set of controllable events. The coupling of the hybrid automaton F with the
controller C is defined as a infinite-state transition system. given a region R of unsafe states, the
basic control problem is to determine whether there exists a controller C such that the region R is
unreachable in the closed loop system (H, C). In [31] this problem is called the safety control
decision problem. In the case when the answer to this problem is affirmative, the problem of
constructing a controller is referred as the safety controller synthesis problem. it is proven in [31]
that the safety control decision problem can be solved in PSPACE and the safety controller
synthesis problem can be solved in exponential time. The safety control problem can be solved
by iterating a predecessor operator on regions. In particular, the operator used is called the
uncontrollable-predecessor operator U Pr e(R) : 22 — 22 and represents the set of states that
no controller can keep out of R for even one transition.

A semi-decision procedure for synthesizing controllers for a larger class of linear hybrid
automata has been presented in [84]. In this work, the continuous dynamics are governed by
differential inclusions of the form Ax > b where 4 and b are a constant matrix and vector,
respectively. The control problem is formulated as a safety requirement represented as a linear
region R. A controller C is legal if all states that can be reached from the initial states of the
hybrid automaton / lie in the safe region R. The supervisor control problem is concerned with
the existence and the construction of a legal controller. It is known in [84] that the controller
synthesis problem for this class of linear hybrid automata with linear safety requirements is semi-
decidable. The control problem in this case is akso solved by iterating an appropriate predecessor
operator. Controller synthesis procedures are presented under either full or partial observability
and sufficient conditions for the nonzenoness of the synthesized controller are given. The
efficiency of the method depends heavily on the efficiency of the algorithm implementing the
predecessor operator.

A methodology for synthesizing controllers for nonlinear hybrid automata has been presented
in [80]. Motivated by problems in aircraft conflict resolution, the authors developed a synthesis
procedure based on game theoretic methodologies. The continuous dynamics are described by
nonlinear differential equations (that satisfy appropriate conditions for the existence and
uniqueness of solutions). The regions of the hybrid state space consist of arbitrary invariant
conditions for the control modes and regions of the form G = {x € " : I(x) < 0} where
1:R" — N is a differentiable function. The control specifications are expressed as acceptance
conditions on the system’s state. The controller synthesis problem is formulated as a dynamic
game between the controller and the environment. The goal is to construct the largest set of states
for which the control can guarantee that the acceptance condition is met despite the action of the
disturbance. The problem is solved by iterating two appropriate predecessor operators. Consider
a region K of the hybrid state space. The controllable predecessor of K contains alt states in K

By
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for which the controllable actions can force the state to remain in X for at least one discrete step.
The uncontrollable predecessor contains all states in X°) (the complement of X) and all states
from which the uncontrollable actions may be able to force the state outside K. The computation
of the predecessor operators is carried out using an appropriate Hamilton-Jacobi-Bellman
equation. The computational efficiency of the synthesis procedure depends on the ability to solve
efficiently this equation.

In summary, recent research efforts towards controller synthesis results have shown that there
are classes of hybrid systems for which computationally tractable procedures can be applied.
Although many important problems related to hybrid automata are intrinsically difficult, there
are efficient algorithms for large classes of systems, Many practical applications can be modeled
accurately enough by simple hybrid models. Again, the choice of such models depend on their
suitability for studying specific problems.

5.2 Programmable Timed Petri Nets

In this section, a class of timed Petri nets named programmable timed Petri nets (PTPN) [42] is
used to model hybrid control systems. The main characteristic of the proposed modeling
formalism is the introduction of a clock structure that consists of generalized local timers that
evolve according to continuous-time vector dynamical equations. They can be seen as an
extension of the approach taken in [2, 1]. They provide a simple, but powerful way to annotate
the Petri net graph with generalized timing constraints expressed by propositional logic formulas.
In contrast to previous efforts to include continuous processes in the Petri net modeling
framework (for example [17, 23, 25, 41], the proposed model still consists of discrete places
and transitions, and it preserves the simple structure of ordinary Petri nets. The information for
the continvous dynamics of a hybrid system is embedded in the logical propositions that label
the different elements of the Petri net graph. In view of result on hybrid automata, corresponding
problems of PTPNs will be of the same or higher complexity. The introduction of hybrid Petri
nets does not aim at solving problems similar to those presented at Section 5.1. The motivation is
to develop a framework to use supervisor control design similar to the one presented in Section
4.5. Supervisor control of Petri nets based on place invariants is a special case of the general
supervisor control theory for which controllers can be synthesized very efficiently. With respect
to continuous dynamics, the basic idea is to follow a natural invariants approach as presented in
[76]. In contrast to the hybrid automata-based approaches presented above, these considerations
limit the potential problems to cases where the continuous and discrete specifications are
uncoupled.
Formally, a programmable timed Petri net is denoted by the ordered tuple

(N’X’ ’,P’ ITa ll' IO)

where

« N=(P,T,1,0) is an ordinary Petri net where P, T, [, and O denote the set of places,
transitions, input arcs (from places to transitions) and output arcs (from transitions to
places), respectively.

o X is a set of N local clocks that can be seen as a collection of continuous-time dynamical
systems. The ith clock, X; is described by x; = f{x;) where x; € R is the continuous state
(local time) and f : " — R" is Lipschitz continuous automorphism over R" characteriz-
ing the local clock’s rate ;.
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e lp: P> P, I1:T—P, I : 1> P, and [y : O — P are functions that label the places,
transitions, input arcs, and outputs arcs (respectively) of the Petri net N. P is the set of the
logical formulas that are constructed by applying propositional connectives between rate
constraints (x; = f(x;)), time constraints (h(x;} < 0 and/or h(x;) =0, h: R" - RN), and

reset equations (x;,(t) = Xy).

For more details in PTPN modeling of hybrid systems see [40, 42].

A PTPN can be used to model a hybrid dynamical system in the following manner. The
network, ¥, is used to represent the logical dependencies between mode switches. The timers, X,
of the PTPN are the dynamical equations associated with the continuous-time dynamics of the
system. The label, I, /1, I}, and I, are chosen to represent conditions on the continuous state for

mode switches as well as describing the various switching behaviors within the network.

Analysis of hybrid systems modeled by PTPNs. PTPNs have been used in [40] for studying
the uniform ultimate boundness of hybrid systems consisting of multiple linear time invariant
plants and switching mechanisms that uses a logical rule described by a Petri net. Sufficient
conditions for the stability of LTI switched systems can be found in [11, 36, 66). Computational
methods based on solving linear matrix inequalities (LMIs) for checking the sufficient conditions
for switched system stability are provided in [37, 68]. The sufficient conditions that are used to
compute candidate Lyapunov functionals can be very conservative, unless the structure of the
switching law is explicitly accounted for. Petri net models of the switching logics can be used to
extract useful information to formulate the appropriate LMIs. A sufficient condition [28] for the
Lyapunov stability and ultimate bounded behavior of a switched LTI system is that a set of
feasible LMIs associated only with the fundamental cycles of the system’s reachability graph
exist. The fundamental cycles can be found using computationally efficient techniques based on
the unfoldings of the PTPN. This approach addresses the problem of identifying potential system
faults that violate the specifications without having to resort to exhaustive simulation. The
computational complexity of the approach depends on the complexity of the unfolding

algorithms for Petri nets and on algorithms for solving LMis.

Supervision of hybrid systems. In a hybrid control architecture, the supervisor control
algorithms must guarantee the proper and safe operation of the system for a large number of
different plans. Moreover, the algorithms should exhibit some capability to react to the perceived
situation in order to handle unexpected events and uncertain plant behavior. Supervisor control
algorithms based on invariant properties of the discrete and continuous dynamics have been
proposed in [39, 40]. These algorithms are realized using state feedback control (discrete or

continuous) and therefore the control action depends on the state of the system.

A methodology for DES control based on Petri net place invariants has been discussed briefly
in Section 4.5. A feedback controller based on place invariants is implemented by adding control
places and arcs to existing transitions in the Petri net structure. Although the method was
developed for ordinary Petri nets, the introduction of time delays associated with each transition
will not affect the controlled behavior of the Petri net with respect to the discrete specifications.
With respect to continuous dynamics, the basic idea is to follow a natural invariants approach.
The natural invariants of the system are used to partition the state space into regions. The
switching policy for the hybrid system is then derived by determining the region where the
continuous state lies. The basic property of these regions is that their boundaries satisfy certain
conditions that preclude the state trajectories from crossing them, The resulting conditions can be
embedded very efficiently in the PTPN model of the hybrid system by changing the label

functions.
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The underlying Petri net structure, which generates the switching policy, offers two important
computational advantages. First, it makes possible to efficiently design the supervisor that
satisfies specifications that frequently appear in complex systems such as generalized mutual
exclusion constraints. Second, it reduces considerably the search for common flow regions, since
only desirable switching strategies generated by the controlled Petri net have to be examined.
The set of all invariant hypersurfaces can be found by solving analytically a partial differential
equation (the characteristic equation for the vector field of the system [76]). The task of
determining suitable invariant hypersurfaces is very difficult in general. For special cases (e.g.,
integrator systems), the differential equation can be solved analytically. Otherwise, a computer-
ized procedure for identifying the common flow regions using backtracking from the target
region can be used. In this case, the computational complexity of the algorithm is of the order ¢”,
where g is the number of quantization levels and » is the number of the continuous states. There
are also interesting cases where it is sufficient for the control objective to approximate the
invariant hypersurfaces using Lyapunov functionals [40]. This approach is more efficient and can
be applied to a larger class of systems: furthermore, the design based on Lyapunov functions
exhibits desirable robustness properties. However, by assuming that the common flow regions
are bounded by manifolds defined by Lyapunov functionals, we impose restrictive conditions on
the dynamics of the continuous subsystems. In most of the cases, these conditions are quite
restrictive but they provide a systematic way to compute common flow regions.

Programmable timed Petri nets provide a very powerful modeling formalism for hybrid
systems. It is shown that certain problems in the analysis and synthesis of hybrid systems can be
addressed using PTPNs and efficient algorithms are developed. Current research effort aims at
identifying additional problems in hybrid systems where the use of Petri net will offer
computational advantages.

6 PARALLEL COMPUTING ARCHITECTURE FOR INTELLIGENT CONTROL

An important requirement for the evaluation and control of intelligent systems is the availability
of efficient simulations tools. A hierarchical functional architecture was used throughout this
chapter to describe a number of computational issues that arise in intelligent control. Such
architecture requires the availability of simulation tools at different levels of abstraction and the
means to transfer efficiently useful information between the different levels. These issues have
been studied for example in [13, 87]. Integration of heterogencous mathematical models and
algorithms is necessary because of the complexity of the physical processes involved and the
generality of the control objectives. The simulation of intelligent control systems may require
highly diverse discrete-event system simulators, optimization algorithms, on-line control
reconfiguration algorithms, and task planning among others. Furthermore, because of the size
of the systems of interest, simulation of intelligent control systems often requires great
computational resources. It is therefore natural to consider the paraliel execution of such
simulations. The objective of simulations in general is 1o extract useful information about the
system to facilitate decision making algorithms to control the system so that it exhibits desirable
behavior. The aim of parallelizing techniques is to discover a set of modules that are as
independent as possible in order to minimize the communication costs among the components.
The purpose of parallel simulations is to reduce the execution time of a simulation by
distributing the modules of a system model among a number of simulation agents running in
parallel. These agents organize the simulation of the whole model by the interchange of
messages among each other.
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FIGURE 3
Parallel run-time system: architecture [15].

Recent advances in parallel computing have ignited considerable research effort towards
exploiting the parallelization of heterogencous simulations (see for example [34, 88]). We
present now a parallel computing architecture appropriate for modeling parts of intelligent
control systems. Our purpose is to take a step toward the development of an application-driven
parallel computing scheme for intelligent control applications. Motivated by a parallel mn-time
system for the efficient implementation of adaptive applications on distributed memotry machines
[15}, our goal is to explore recent advances in parallel computing for intelligent control
applications. The architecture of the overall run-time system and its layers are depicted in
Figure 3. It must be noted that this section described current research for the use of high-
performance computing for large, irregular applications. Intelligent control applications have
been identified as a challenging area where there is the need for the development of high-
performance computing tools. We describe now the basic characteristics of this architecture.

The first layer, named Data Movement and Control Substrate (DMCS) [15], consists of the
following three modules:(i) a threads module, (ii) a communications module, and (ii) a control
module. The threads module provides machine-dependent code for creating, running, and
stopping threads. It also provides an easy interface for writing and porting thread packages.
The communication module is implemented on top of a generic active message implementation
on an IBM RISC/6000 SP [14, 83]. The fundamental idea in active messages is that every
message is sent along with a reference to a handier which is invoked on receipt of the message.
DMCS provides the notion of a globa! pointer through which remote data can be accessed. A
global pointer consists of a processor id and a pointer to the local address space. The integration
of the communication module and threads takes place in the control module. The control
subpackage provides support for remote service request and load balancing. A remote service
request consists of a remote context (processor), a function to be executed at the remote context,
and the arguments of the function. In addition, a type argument is also passed, indicating the type
of the remote service request (threaded, nonthreaded) and its priority (lazy, urgent). DMCS
implements a simple parametized load balancing primitive. The load on a processor is defined to
be simply the number of threads on that processor. DMCS also provides a primitive that enables
a processor to start a new thread on the least loaded processor within a certain window size,
which can be customized.

The second layer, named Mobile Object Layer (MOL) [27), provides the tools to build
distributed data structures consisting of mobile objects linked with mobile pointers. For example,
a directed graph might be built using one mobile object for each node. Each node holds a list of
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mobile pointers to other nodes. The data structure of the mcbile object can be moved from
processor to processor and all the mobile pointers remain valid. MOL uses a decentralized
directory and updates the local directories of each processor using a lazy protocol to reduce the
ovethead of broadcasting updates. The specific implementation is built on top of the DMCS layer
to handle messages sent to objects. MOL provides the mechanisms to support mobile objects and
mobile pointers, but it does not specify the policies that govem the use of mobile objects. It is the
responsibility of the application to decide the migration policy. MOL supports both threaded and
nonthreaded models of execution.

The parallel run-time system described above is an application-driven scheme that is general
enough and uncoupled from the specific application. Its main advantages are that it hides the
bookkeeping of data structures and messages from the application developer and it provides
efficient tools for remote service request and load balancing. The parallel run-time system
provides to the application developer a very simple but powerful interface for building
application programs or libraries.

The program complexity of intelligent control applications increases due to the computation
and communication requirements that are dynamic, data-dependent, and irregular. Simulations of
intelligent control applications usually consist of several algorithms (for example, continucus or
discrete-event simulations, task planning, feedback control, optimization algorithms, and so on)
that are implemented using different models (discrete-event, continuous, hybrid). The format
models of the physical processes involved can be represented as mobile objects holding several
data structures. Then the algorithms can be viewed as methods that can be invoked upon the
receipt of an active message by the object. The paralle] architecture discussed above offers the
maintenance of complex and distributed data structures and a sophisticated run-time system for
low-latency communication and load balancing. At the same time it hides the details from the
application developer to allow fast and efficient programming. The run-time system automati-
cally maintains the validity of global pointers as data migrates from one processor to another and
implements a correct and efficient message forwarding and communication mechanism between
the migrating objects. In intelligent control applications of large-scale systems the workload is
known only at run-time. There are many heuristic algorithms for the dynamic load balancing
problem and can be incorporated easily using the proposed architecture (migration policy). In
summary, the parallel computing architecture outlined above provides the primitives for utilizing
powerful symmetric multiprocessors (SMPs) to solve large problems and to speed up computa-
tions.

As an architecture of how such computing architecture can be used in intelligent control,
consider a hybrid system described by a large programmable timed Petri net. The PTPN can be
viewed as a data structure consisting of mobile objects (nodes) linked with mobile pointers. Each
mobile object holds substructures representing the rate constraints (differential equations),
generalized time constraints, and reset equations and methods that can be applied to these
substructures describing ODE solvers, feedback control algorithms, or algorithms for solving
optimization problems. Assume that we want to initiate the simulation of the continuous dynamics
according to the label /x(p), that associates with the place p of the PTPN a differential equation.
The place of the PTPN is considered as a mobile object that holds appropriate representations of
its label functions. A message can be sent to the object using a mobile pointer. When the message
reaches the object, a user-specified handler is invoked. The remote invocation call, {which can be
caused, for example, by a change of the operation point of the system), can initiate the simulation
of the continuous dynamics using appropriate ODE solvers, a different local feedback control
algorithm, or the contribution of the local mode to a global optimization problem.

We believe that such a framework can be very useful in the design of intelligent control
applications. The designer can focus on the application-specific problems and not on the
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implementation of the parallel computing protocols. On the other hand, the architecture is
sufficiently open to allow the efficient use of existing codes for a variety of problems. The main
characteristic is basically the use of the global pointer, which can easily be incorporated to
existing application programs. The reader is referred to [15, 27] for issues concerning the

portability of the implementation as well as other systems using similar architecture.

6.1 Parallel Discrete-Event Simulation

We have investigated the advantages of this approach for parallel discrete-event simulation
(PDES). It should be clear that, in our view of intelligent control, PDES is an essential part in the
design of intelligent control applications. Our intention is not to study new techniques for PDES,
but rather to show that results that have appeared in the literature can be incorporated in the
application development using the proposed parallel architecture. Discrete-event simulations are
very useful for the evaluation of an intelligent control system at a level of abstraction where
discrete-event system models or event-based control of hybrid systems [78] are used. Discrete-
event system representations in intelligent control have been also used in [86). A discrete-event
simulation model assumes that the system being simulated changes state only at discrete points
in simulated time. When we choose to model a real-world system using discrete-event
simulation, we give up the ability to capture a degree of detail that can only be described as
smooth continuous change. In return, we get simplicity that allows us to capture important

features of interest that are too complex to capture with continuous simulations.

Discrete-cvent simulations have been studied in [22, 24, 46, 55] and typically require
significant computational effort. A discrete-event simulation discretizes the observation of the
simulated system at event occurrence instants. When executed sequentially, a discrete-event
simulation repeatedly processes the occurrence of events in simulated time, often called virtual
time, by maintaining a time-ordered event list, holding time-stamped events scheduled to occur
in the future, and using a (global) clock indicating the current time and state variables defining
the current state of the system. A simulation engine drives the simulation by continuously taking
the first event out of the event list (i.e., the one with the lowest time-stamp), simulating the effect
of the event by changing the state variables and scheduling new events in the event list. This is
performed until some predefined end-time is reached, or unti there are no further events to occur.
The objective of parallel discrete-event simulations is to accelerate the execution of simulations
using P processors. The parallelism in discrete-event simulations can be exploited at different
levels. At the fimction level, the execution time of the simulation is reduced due to the
distribution of the subroutines, constituting a simulation experiment, ¢o the available processors.
At the component level the simulation model is decomposed into submodels to reflect the
inherent model parallelism. Model parallelism exploitation at the next lower level, the event
level, aims at a distribution of single events among processors for concurrent execution. The
event list can be a centralized data structure maintained by a master processor. A higher degree
of parallelism can be exploited in strategies that allow the concurrent simulation of events with
different time stamps. In this scheme, each node maintains its own decentralized event list.
Schemes following this idea require protocols for local synchronization, which in turn may cause

increased communication costs.

The main idea for all simulation strategies at the event level is to partition the discrete-event
model into a set of communicating logical processes (LPs). The objective is to exploit the
parallelism inherent among the model components with the concurrent execution of the logical
processes. A parallel discrete-event simulation can be viewed as a collection of communicating

and synchronizing simulations of submodels.
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Using the proposed paralle! architecture, most of the difficulties in parallel discrete-event
simulation can be addressed very efficiently. Consider the case when timed Petri net are used for
discrete-event simulation. The performance of the simulation depends on how the partition of the
overall system into logical processes captures the inherited parallelism of the involved processes.
To achieve high performance, automated PDES must measure workload at run-time, and perform
dynamic remapping when needed; for example dynamic remapping algorithms have been
proposed in [56) to address load imbalancing. It was discussed above that the nodes of the
Petri net can be viewed as mobile objects connected using mobile pointers. The initial partition
of the Petri net model results in a distribution of mobile objects to different processors. Several
dynamic remapping algorithms can be implemented with migration policies of the mobile
objects so that the designer will not have to keep track of the location of the objects. The
additional communication overhead due to the remote service requests has been measured in
certain applications and is only 7-10%.

7 CONCLUSIONS

In considering intelligent control of complex systems, it is necessary to address the computa-
tional complexity issue. In this chapter, computational aspects of intelligent control methodol-
ogies are discussed at length. In particular, computational issues in the analysis, controller
synthesis, and simulation of discrete-event and hybrid systems were studied. Emphasis is put on
computational issues in recent approaches to discrete-event and hybrid system design that have
been developed by our group using Petri nets.
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