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Abstract: In this paper, we design asymptotically stabilizing switching control laws for
switched systems consisting of several second-order LTI subsystems with unstable foci.
Switching is needed for the stabilization of a system consisting of several subsystems
if each of its subsystems is unstable. We first study switched systems consisting of
two subsystems with unstable foci and conic switching stabilizing control laws are
derived. Then the result is extended to several subsystems. In particular, necessary
and sufficient conditions for the asymptotic stabilizability of a switched system are
derived. If the switched system is asymptotically stabilizable, an asymptotically
stabilizing switching law can also be obtained. Finally, we briefly compare the method

derived here to a matrix inequality based design method.
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1. INTRODUCTION

A switched system is a system that consists of
several subsystems and a (switching) law that
specifies which subsystem dynamics will be fol-
lowed by the system trajectory at each instant
of time. Switchings may be time-driven (ie., a
switching happens at specific time instants) or
event-driven (i.e., a switching happens when some
internal or external event takes place). One issue
of major concern is the stability issue.

There are many papers on stability analysis and
design of switched systems (Branicky, 1994a;
Branicky, 1994b; Guckenheimer, 1995; Johansson
and Rantzer, 1996; Peleties and DeCarlo, 1991).
Several authors adopt multiple candidate Lya-
punov functions for analysis (Branicky, 1994¢;
Peleties and DeCarlo, 1991). In (Pettersson and
Lennartson, 1996; Johansson and Rantzer, 1996},
Linear Matrix Inequality (LMI) problems are for-
mulated for the stability analysis of switched sys-
tems.

In this paper, we focus on the design of stabiliz-
ing switching control laws. We establish necessary
and sufficient conditions for the asymptotic stabi-
lizability of a special kind of switched systems,
namely, switched systems consisting of second-
order LTI subsystems with unstable foci. We will
design switching control laws for this kind of
switched systems by studying the vector fields of
the subsystems. The effectiveness of our approach
for this kind of switched systems will be shown in
examples.

The outline of the paper is as follows. In Section 2,
we look into the asymptotic stabilizability prob-
lem for switched systems with two subsystems. In
Section 3, the method in Section 2 is extended
to the case of several subsystems. In Section 4,
examples illustrate our method, which is then
compared to a matrix inequality method. Section
5 concludes the paper.



2. TWO SUBSYSTEMS

In this section, we will design stabilizing switch-
ing laws for switched systems consisting of two
second-order LTI subsystems with unstable foci.
By a LTI subsystem with unstable focus, we mean
that the origin of R? plane is a unstable focus for
the subsystem (Khalil, 1996).

We will study the vector fields of both subsys-
tems and give an intuitive way of obtaining a
stabilizing switching control law. We shall say
that a subsystern is of clockwise{counterclockwise)
direction if starting from any nonzero initial point
in the phase plane its trajectory is a spiral around
the origin in the clockwise(counterclockwise} di-
rection. In the following, we will first consider
switched systems with subsystems of the same
direction and then consider switched systems with
subsystems of opposite directions. For more infor-
mation on the direction of second order LTI sys-
tems with focus, please refer to (Xu and Antsak-
lis, 1998).

2.1 Two Subsystems of the Same Direction

We will consider the following switched systems,
£(t) = A1z(t), 2(t) = Aqz(2), (1)

whose subsystems are both with unstable foci and
are both of the clockwise direction. For switched
systems whose subsystems both are of counter-
clockwise direction, all the following discussion
can be applied in a completely analogous manner.

Let z = (z1,72)T be a nonzero point on R? plane,
and let

fl =Ax = (0‘1’02)'1‘: fo=Asz = (a3:a4)T (2)

We can view z, f; and fo as vectors in R? and
we denote 8;,7 = 1,2 to be the angle from x to f;
measured counterclockwise with respect to x (6;
is confined to —# < 6; < 7). Soin this case, -7 <
6; < 0 (Figure 1(a)). Since if it were otherwise,
assume that f; (here we use f; for illustration) is
on the other side of  as shown in Figure 1(b}, then
in sufficiently small elapsed time dt, the trajectory
will travel in the counterclockwise direction, which
contradicts our assumption.
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Fig. 1. (a) The angle #, from z to f,. (b) f1 ison
the other side of vector z.

Note: In the following, we will take a;x; +
asz2 as the dot product of vectors f; and z.
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Fig. 2. Dot Product.

And we will also take a1x2 — a2z, as the dot
product of vectors f; and y = (z2, —z1)7. In this
way, we can provide a geometrical interpretation
for the above expressions (refer to Figure 2),
ie, a1z + a2zs = zTf1 = ||z2ll frll2 coséy
and a1z — asz1 = 7 fi = |lyll2llfa]l2 cos(6r +
%) = ll=ll2ll f1li2 cos(6y + ). Similar argument also
applies to fa.

Now we design the switching law that asymp-
totically stabilizes the switched system. In other
words, by our switching law, we want to drive
the trajectory closer and closer to the origin, i.e.,
Hz(t)|]s = 0 as t = 0. In the following, we try
to design such a switching law by always choosing
a subsystem which has the potential to drive the
trajectory closer to the origin.
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Fig. 3. The four different cases.

For a nonzero z € R?, let I; be a ray determined
by the vector z. Let I be a ray sufficiently close
to I as shown in Figure 3(a). The trajectory will
intersect Iy at the point (1) if it follows subsystem
1, it will intersect 5 at z*? if it follows subsystem
2. Let x=* be the point where ls is intersected by
a line perpendicular to I;. Let {|zM|z, [l=(®|i2
be the distances from zt}, (¥ to the origin,
respectively. And let ds = ||z* — z{|» (Figure 3
). Also we define the following conic regions

Ey={z| -7 < 0{(fi) < —;—r or ;—r < 8:(fi) < 7w}
= {z|zT fi(z) = 2T Az <0}, i=1,2  (3)
Bu={al- 2 <0i(f) < 3}
= {z|zT f;(z) = xT Az > 0}, i = 1,2. (4)

Now we try to associate a better subsystem to z
according to the followings.



Case 1: Assume that ¢ € E;; N Ey,. In this
case, as shown in Figure 3(a), ||z < |lz*|l2 <
flz(2))l2 when ds is sufficiently small. So we can
choose subsystern 1 in order to drive the trajectory
closer to the origin. We denote the conic region
E s N Epy as Q.

Case 2: Assume that x € E;, N Es,. In this case,
as shown in Figure 3(b), we can choose subsystem
2 by a similar argument as in Case 1. We denote
the conic region Ey, N Fy, as §1s.

Case 3: Assume that ¢ € E;;, N Ey,. In
this case, as shown in Figure 3(c), consider

lela—de "l a5 ds — 0. Let dty and dty be the

time the system would take to intersect l> along
the vector fi and f;, respectively. When ds is
sufficiently small, it is not difficult to see that we
approximately have

ds ds

di, = -

YT fillacos(y + Z) ~ laaza—azzy” (5)
;;$§+1§

dt ds ds .

n = I|f2|!2 COS(62 + %) = RsT2—@R4T1) (
z3+z}

By (5) and (6) and using L’Hospital Rule, we
obtain

i llzlls = liz® s
4550 |[alfz = = |2

= lim

\/.’; + :Eg - \/(:Bl + aldt1)2 -+ (172 -+ azdt1)2

ds—+0 \/.’L“l + :E% - \/(.’51 + aadt2)2 -+ (172 -+ a4dt2)2

_ (@171 + az72)(a3T2 — a421)
" (@172 — @271 )(@3T1 + GaT2)
_ cosfy cos(fz + %)
" cos(fy + %) cos B

In view of the above, we see that if

= [l
i 1l =10l
20 {lallz — 2@l

or, by simplification using (7) (notice (ajz2 —
az))(azzy + asx2) < 0 in this case), if azasz —
araq < 0, then we will have [lz(1}||; < [|z(®||; for
sufficiently small ds. In this case, we can choose
subsystem 1. And we denote the conic region E; ;N
Ezs N {z|azas — a1a4 <0} as 3.

Using (8), (9) can also be tramslated into the
condition sin(#; —@,) < 0, in other words, §; < 6.
So in this case, if #; < #», we choose subsystem
1. Similarly, if azes — a1a4 > 0, ie., 8, > 82, we
choose subsystem 2 and we denote the conic region
E,NEy N {2‘."0203 —aay 2> 0} as 4.

Case 4: Assume that z € E;, N E,. In
this case, as shown in Figure 3(d), consider

)y, —
"1(—;"2—"1“3 as ds — 0, In a manner analogous to

= 2= lIzl}z
the derivation of (8) above, we obtain

21, (9)

Nzl = |zl
ds—0 ||z ||y — ||z||2
_{a171 + a2z2)(a3®2 — @4T1)

= 10
{a1z2 — a2z1)(asz1 + a4Z2) (10)
_ cosfy cos(fa + §) (1)
" cos(fy + I)cosB
Then as in Case 3, we see that if
XM, —
lim l=""1lz — lill2 <1, (12)

ds=0 ||z |z = |lzllz ~

or, by simplification (notice (a1z2 — asz1){asz +
asz2) > 0in this case), if aza3 —a1a4 < 0, then we
will have [|lz(V|lz < ||#?]|; for sufficiently small
ds, so we can choose subsystem 1. And we denote
the conic region E;, N Esy, N {z|azas — ajas < 0}
as 95.

Similarly to Case 3, this condition can also be
translated into the condition #; < #;. So in this
case, if 8, < 64, we choose subsystem 1. Similarly,
if asaz — ayjaq > 0, ie, 61 > 82, we choose
subsystem 2 and we denote the conic region £y,,N
By nN {Ilagag —ajo4 2 0} as Q1g. ]

Notice that §;, ¢ = 1,2,---,6, are all conic
regions that partition the R? plane. We can as-
sociate with each region a subsystem according
to the above discussion. In essence, we associate
with each point on R? a subsystem i whose 0,
is smeller. This partition of the R? plane is of
particular importance here. In the following, we
call this switching law (that uses the partition and
the associated subsystems) the comic switch-
ing law. We will show that by using the conic
switching law, we can decide whether the system
(1) is asymptotically stabilizable or not. If (1)
is asymptotically stabilizable, the partition and
associated subsystems also provide a stabilizing
switching control law.

Note: If at a point z and & = &3, then we
associate with x the subsystem whose valid conic
region is to be entered.

o %
Fig. 4. The two rays and related points.

Consider the system (1). Let {; and I be two
rays that go through the origin and are in the
same conic region of one ;. Suppose I is on the
clockwise side of I; in the conic region and the
conic region with angle from [, to I3 is inside £2;.
Suppose o is on !;. Let (1) be the point on I
where the trajectory of the system intersects lp
for the first time if the system evolves according
to the subsystem associated with §2; in the conic



switching law. Let z(?) be the point on I where
the trajectory of the system intersects I for the
first time if the system evolves according to the
other subsystem. Figure 4 shows the two rays and
corresponding points. For the above-mentioned
rays and points, we have the following lemma.

Lemma 1. Ifl; and [; are in the same conic region
Q,i=1,2,---,86, then |lz(M{s < [jz(@]],.

Proof: See (Xu and Antsaklis, 1998). 0

In view of the above lemma, we can prove the
following theorem {Xu and Antsaklis, 1998).

Theorem 2. Let l; be a ray that goes through the
origin. Let zp be on I;. If x* is the point on I
where the trajectory intersects [ for the first time
after leaving xo, when the switched system evolves
according to the conic switching law, and if =,
is the point on I; where the trajectory intersects
I, for the first time after leaving zo, when the
switched system evolves according some arbitrary
switching law, then we have ||z*||2 < [|z1][2-

Theorem 2 implies the following theorem for the
necessary and sufficient conditions of the asymp-
totic stabilizability of switched system (1) with
subsystems of the same direction.

Theorem 8. The switched system (1) with sub-
systems of the same direction is asymptotically
stabilizable if and only if ||z*{|2 < ||zo||2 by the
conic switching law, where £* and z are the same
as in Theorem 2.

2.2 Two Subsystems of Opposite Directions

We will consider the following switched system,
£(t) = A1z(t), £(1) = A2z(t), (13)

where both subsystems are with unstable foci, and
subsystem 1 is of clockwise direction while sub-
system 2 is of counterclockwise direction. Figure
5 shows the angle §; ( -7 < 6; < 0) and 6:
(0 < 82 < w) in this case.

Fig. 5. The angle 8; from = to f;,1 =1,2.

We would like to consider a switching law that
asymptotically stabilizes the switched system. By
our switching law, we want to lead the trajectory
closer and closer to the origin, i.e., ||z(t)]]z — 0
as t —+ 0. In the following, we will design a

switching law by choosing a subsystem which has
the potential to drive the trajectory closer to the
origin. We first define the following conic regions

0 = Eys N Eas, (14)
2= By N By, (15)
Q3 = By N Epy N {z|azas — ayaq4 > 0}, (16)
Qy = E1y N Eyy N {z]aza3 — 104 <0}, (17)
Qs = By, N Eag N {zlasas — ayaq > 0}, (18)
Qg = B, N Exg N {z|asas — a1a4 < 0}, (19)

where E;;, Ej, are as defined in (3) and (4).
Notice, some ;’s in this case are different from
1;’s in the previous subsection.

Case 1: If Int(y) # 0, it is clear that any trajec-
tory of the switched system that is totally inside
2, is stable (Figure 6(a)). Now if the initial point
of the switched system is outside Q;, we can follow
the trajectory of any one subsystem to go into £2;.
Then we can use the conic switching law, i.e.,
switch to another subsystemn upon intersecting the
boundary of €11, as this will give us a trajectory
that is totally inside ; and it is bounded. If
there exists € @, such that [8;(fi(z))| # %
for some ¢ = 1, or 2, then the switched system is
asymptotically stablizable by the conic switching
law.
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Fig. 6. (a) Case l:Int(f4) # 0. (b) Case
2:Int(3) # 0.

Case 2: Let Int(f23) # 0. In this case, assume
{; and Iz be two rays that go through the origin
and are in the same conic region €23, and that the
conic region with angle from I; to [y is inside Q3
(Figure 6(b)). Suppose I3 is on the clockwise side
of I; in the conic region and suppose g is on I3.
Then we have the following Lemma.

Lemma 4. Let the switched system follow subsys-
tem 2 until the trajectory intersects [, for the
first, time at z; and then let the system switch to
subsystem 1 and evolve according to subsystem 1.
Suppose z* is a point on I where the trajectory
intersects I; for the first time after the switching.
Then we have ||z*[l2 < ||zollz.

Proof: See (Xu and Antsaklis, 1998}. a

According to Lemma 4, the conic switching law
(i.e., switch to another subsystem upon iniersect-
ing the boundary of Q3 s0 as to keep the trajectory
inside 13 (Figure 6(b))) will give us a trajectory



that is totally inside {23 so it is bounded. If there
exists z € O3, such that |8,(f)| + |82(f2)] # =
at z, then the switched system is asymptotically
stablizable by the conic switching law.

Case 3: Let Int(f25) # 0. Then similar argument
as in Case 2 can be applied and we find that the
system can be stabilized by conic switching law to
keep the trajectory inside Q5. |

The following theorem shows us that the system
can only be stabilized for the above-mentioned
three cases.

Theorem 5. The switched system (13) with two
subsystems of opposite directions is asymptoti-
cally stabilizable if and only if Int(Q; YUInt({23)U
Int{Qds) # 0 and there exists x € Int(f};) U
Int(Q3)UInt(f2s) such that |6, (f1)[|+02(f2)| # 7
at x.

Proof: See (Xu and Antsaklis, 1998). a

3. SEVERAL SUBSYSTEMS

Now we study stabilizing switch laws for switched
systems with several second-order LTI subsystems
with unstable foci

i(t) = Az(t), i=1,2,--- ,N.  (20)

3.1 All Subsystems of the Same Direction

Assume that all the N subsystems are of the clock-
wise direction. Notice that from the discussion in
subsection 2.1, we find the conic switching law by
associating with each point on R? a subsystem
1 with smaller #;. As an extension of the conic
switching law there, we obtain the conic switch-
ing law by associating with each point on R? a
subsystem ¢ where 8; is the smallest.

Similar argument as in section 2.1 can be made for
several subsystems to show the following theorem.

Theorem 6. Let I; be a ray that goes through
the origin. Let zo be on !; and consider the
conic switching law. Let =* on !; be the point
where the trajectory intersects I, for the first
time after leaving z¢. The switched system (20) is
asymptotically stabilizable if and only if ||z*||2 <
lzollz-

3.2 Not All Subsystems of the Same Direction

Assume that K (K > 0) subsystems are of clock-
wise direction and M (M > 0) subsystems are of
counterclockwise direction (K + M = N). Com-
bining the previous results, the following theorem
can be obtained.

Theorem 7. The switched system (20} with K (K >
0) subsystems Sy ,--- ,5g of clockwise direction
and M{M > 0) subsystems S;,--- , S}, of coun-
terclockwise direction is asymptotically stabiliz-
able if and only if at least one of the following
three conditions holds:

(1) The switched system consisting of S ,--- , 5S¢
is asymptotically stabilizable.
(2) The switched system consisting of Sjt,--- , S5,

is asymptotically stabilizable.

(3) There exist ¢ and j with 1 < i < K and
1 < 7 < M such that the switched system
consisting of two subsystems S; and S} is
asymptotically stabilizable.

4. EXAMPLES AND COMPARISON TO
MATRIX INEQUALITY APPROACH

4.1 Ezamples

In the following examples, the conic switching
laws are used.

Ezample 8. Consider the switched system (1)
with two subsystems of the same direction with

1 13 -12
A= [-2 3]’ A"‘[—loa]‘
It can be shown that it is asymptotically sta-
bilizable using the conic switching law, though
each subsystem has unstable foci. The regions for
subsystems are specified and a stabilizing control
law is derived. Figure 7 shows the regions for

subsystems, the trajectory and the time domain
responses of the switched system.

Ezample 9. Consider the switched system (13)
with two subsystems of different directions with

-2 52 11 -10
A1=[—8 6]’A2=[50 —9]'

It is asymptotically stabilizable since the region
Int(§?;) is nonempty. Figure 8 shows the conic
regions, the trajectory and the time domain re-
sponses of the switched system.

4.2 Comparison to a Matriz Inequality Approach

In (Pettersson and Lennartson, 1996), Pettersson
introduced a LMI based stability analysis method.
Note that, by some modification of the LMI ap-
proach, the design of stabilizing control laws can
be formulated as matrix inequality problems (Xu
and Antsaklis, 1998). Yet because these problems
typically are complicated and may be nonlinear
in some variables, they are generally very diffi-
cult to solve. And if we cannot obtain a solution
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Fig. 7. Example 8: (a) The regions for subsystems.
(b) The trajectory of the system. (c¢) Time
domain responses. (zo = (2,2)7)
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Fig. 8. Example 9: (a) The conic regions. (b) The
trajectory of the system. (c¢) Time domain
responses. (zp = (—2,2)7)

for the problem, we may not know whether the
switched system is stabilizable or not. Even for
second-order LTI switched systems discussed in
this paper, the matrix inequality problem may

not be easy to solve. One may need to associate
multiple candidate Lyapunov functions for each
subsystem and hope to find a solution.

Therefore, although the matrix inequality formu-
lation for control design seems to be general for n-
th order LTI switched systems, they are difficult to
solve even for second-order switched systems. Our
method in this paper can solve the design problem
efficiently for second-order switched systems.

5. CONCLUSION

In this paper, we look into the problem of find-
ing asymptotically stabilizing switching control
laws for switched systems consisting of several
second-crder LTT subsystems with unstable foci.
Necessary and sufficient conditions were given for
the asymptotic stabilizability of such switched
systems. Also a design procedure for deriving
such stabilizing control laws was presented. For
the general second-order LTI switched systems
with subsystems having unstable nodes or sad-
dle points instead of unstable foci, the design of
stabilizing switching control laws poses further
research questions and it is currently under in-
vestigation.
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